
Dynamic join order optimization for SPARQL
endpoint federation

Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

Database Center for Life Science, Research Organization of Information and Systems,
Japan

{wu,atsuko,jdkim}@dbcls.rois.ac.jp

Abstract. The existing web of linked data inherently has distributed
data sources. A federated SPARQL query system, which queries RDF
data via multiple SPARQL endpoints, is expected to process queries on
the basis of these distributed data sources. During a federated query,
each data source may consist of a search space of nontrivial size. There-
fore, finding the optimal join order to minimize the size of intermediate
results from different sources is key to optimizing the performance of
such federated queries. In this study, we present a dynamic optimiza-
tion approach to determining join order, which can find more optimized
join plans than static optimization approaches. Our experimental results
show that our proposed approach stably improves the performance of a
federated query as the query becomes increasingly complex.

Keywords: linked data, SPARQL, federated query, dynamic join order
optimization

1 Introduction

Linked data technology has substantially contributed to the freeing of data con-
fined in individual silos; however, searching over such data is still performed
within a single SPARQL endpoint, making it difficult to truly affirm that data
are truly freed from their respective silos even in the linked data space.

A number of federated query systems have been developed to enable search
across multiple endpoints. Although it is difficult to assert that the performance
of these query systems is close to production level, the research community is
continuously trying to improve such performance [2,3,5,6,8,10]. In this paper, we
propose a novel technique, i.e., dynamic join order optimization, to significantly
improve the performance of federated search.

A federated query inherently has to explore multiple endpoints, and while
traversing these endpoints, results from one endpoint must be joined with results
from the next endpoint and so on. Here each endpoints may consist of a search
space of nontrivial size. To efficiently perform the search across these multiple
search spaces, determining the optimal join order is key to good performance.

Join order optimization has been a research topic for a number of years [4,11–
13]; however, in these studies, the common approach is to somehow try to find

48

2 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

the optimal join order before beginning actual exploration into the endpoints.
We therefore call this static join optimization. Considering the importance of join
order on the performance of a SPARQL query, we argue that join order cannot be
sufficiently optimized at the onset of the query; further, by utilizing intermediate
results obtained during search, join order can be significantly improved. We
present a simple algorithm for dynamic join order optimization as well as an
implementation in the form of an extension to FedX.

Our experimental results show that dynamic join order optimization is effec-
tive in controlling the search space size, thereby avoiding explosions in size. We
also developed a new benchmark for evaluating the join optimization of federated
query performance. This benchmark is developed to include more complex join
operations than those introduced in FedBench [8]. Our experimental results here
show that our dynamic join order approach stably improves the performance of
federated search.

2 Related work

In relational databases, associated data entries are maintained in tables consist-
ing of any number of columns; in RDF, data pieces are maintained in triples,
the smallest unit of representation for typed binary relationships. Therefore, join
operations generally occur much more frequently when processing a SPARQL
query than when processing a corresponding SQL query.

(a) Static approach (b) Dynamic approach (c) Final results for two ap-
proaches

Fig. 1. Intermediate results for the static and dynamic approaches

Suppose we have a query that can be decomposed into three subqueries, Qa,
Qb, and Qc, which have answers Ra, Rb, and Rc, respectively, from three dif-
ferent endpoints. Then, final answers are to be those that satisfy the constraints

49

Dynamic join order optimization for SPARQL endpoint federation 3

set by the three subqueries. In Figure 1(c), the three circles Ra, Rb, and Rc
represent the sets of results of the three subqueries, with the gray area repre-
senting the final results. To reach the set of final results, there are six distinct
join orders, i.e., (1) A → B → C; (2) A → C → B; (3) B → A → C; (4) B → C
→ A; (5) C → A → B; and (6) C → B → A. Regardless of which join order is
selected, the final set of results is the same; however, the number of intermedi-
ate results that must be handles varies on the basis of the different join orders.
For example, if subquery Qc is executed first, Rc must be handled as the initial
set of intermediate results; however, we would like to avoid that choice because
|Rc| produces the largest set of intermediate results among the three possible
subqueries.

If the size of the intermediate results is known or can be estimated in advance,
the join order may be optimized. For example, the result size of the individual
subqueries may be estimated in advance as |Ra| < |Rb| < |Rc|. Based on this
information, the join order may be optimized as A → B → C. Below are the
necessary operations that must occur in the given order:

1. Receive result set Ra.
2. Bind variables in query Qb using result set Ra and then submit intermediate

results to Eb.
3. Receive result set Ra ∩Rb.
4. Bind variables in query Qc using result set Ra ∩ Rb and then submit inter-

mediate results to Ec.
5. Receive final result Ra ∩Rb ∩Rc.

With the given join order, the size of the intermediate result sets that must
be handled is |Ra| + |Ra ∩ Rb|. This is more or less the scenario in which most
federated search systems have been developed in terms of join order optimization,
i.e., to better optimize the join order, attempt to estimate the result set sizes of
individual subqueries with heuristics or statistical information.

In this paper, we argue that even if the initial estimation is performed per-
fectly, there is still large room for further optimization. Note that after Qa is first
executed, there are two choices for the next execution, i.e., Qb and Qc. Although
|Rb| is estimated to be smaller than |Rc|, choosing Qc for the next execution
is in fact a more optimal choice because |Ra ∩ Rc| (i.e., Figure 1(b)) is smaller
than |Ra ∩ Rb| (i.e., Figure 1(a)). To select the optimal choice in this case, we
propose a dynamic join order optimization approach that evaluates queries as
follows: (1) evaluate the size of all subqueries, obtaining |Ra| < |Rb| < |Rc|; (2)
evaluate Qa, then apply Ra to Qb and Qc, noting that |Ra ∩ Rc| is less than
|Ra ∩ Rb|; (3) evaluate |Ra ∩ Rc|; and (4) join Qc. Therefore, the join order is
A → C → B. Here the dynamic approach obviously performs better than the
static approach because the intermediate result space |Ra|+ |Ra ∩Rc| is smaller
than the static approach space (i.e., |Ra| + |Ra ∩Rb|).

To date, research regarding join order optimization, both in relational database
and RDF data management systems, has been centered on static optimization
in which optimization is performed only once before queries are actually exe-
cuted. As an example, FedX builds a subquery for a group of triple patterns

50

4 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

in which each triple exclusively shares a single relevant source. FedX assumes
this type of exclusive subquery, and the subquery with fewer free variables has
a high selectivity ranking. The assumed selectivity ranking and variable count-
ing technologies are not suitable for all situations as queries become complex.
DARQ [6], SPLENDID [3], ADERIS [5], Avalanche [2], and other similar systems
use pre-computed information, such as service description or VoID, to estimate
selectivity and optimize join order; however, none of these can overcome the
fragility of static optimization techniques. More specifically, the search space
changes as the query is processed. Based on this and the frequency of join op-
erations in a SPARQL query, we argue that join order should be optimized by
utilizing intermediate results with a dynamic approach.

3 Dynamic join order optimization model

3.1 Static join order optimization

To best introduce our dynamic join order optimization algorithm, we first show
a simple algorithm that uses the static join order strategy. Here we assume the
existence of a sortSubQueries operation to sort subqueries by some measure and
an evaluateQuery operation to output a set preResults of results for variables
appearing in a given SPARQL query.

Algorithm 1 Query execution with static join order optimization

1: function StaticJoin(setSubQueries: a set of subqueries)
2: listSubQueries← sortSubQueries(setSubQueries)
3: preResult← ∅
4: while listSubQueries is not empty do
5: curSubQuery ← pop(listSubQueries)
6: preResult← evaluateQuery(preResult, curSubQuery)
7: end while
8: return preResult
9: end function

Algorithm 1 shows the flow of query execution when a static join order op-
timization scheme is applied. Given the setSubQueries set of subqueries, the
algorithm first sorts the subqueries on the basis of estimations of their result
sizes and then executes the subqueries in the given order. In other words, the
optimal join order is determined before the execution of any subqueries, and the
join order does not change during execution, which is why we call it a ”static”
optimization strategy.

3.2 Dynamic join order optimization

Algorithm 2 shows the flow of query execution with dynamic join order opti-
mization. Unlike the static optimization strategy described above, the optimal

51

Dynamic join order optimization for SPARQL endpoint federation 5

subquery to be executed next is determined at each step of query execution by
considering the intermediate results obtained thus far. We therefore call this
approach a ”dynamic” optimization strategy.

Algorithm 2 Query execution with static join order optimization

1: function DynamicJoin(setSubQueries: a set of subqueries)
2: preResult← ∅
3: while setSubQueries is not empty do
4: curSubQuery ← findOptimalSubQuery(setSubQueries, preResult)
5: preResult← evaluateQuery(preResult, curSubQuery)
6: setSubQueries← setSubQueries− {curSubQuery}
7: end while
8: return preResult
9: end function

In the algorithm, findOptimalSubQuery finds the subquery with the high-
est selectivity among all subqueries (line 4). On line 6, the executed subquery is
removed from the subquery set, and then this process repeats until all subqueries
finish.

Finding the optimal subquery In Algorithm 3, we apply a greedy strategy
at each step to find the subquery that has the smallest result size.

Algorithm 3 Finding the optimal subquery

1: function findOptimalSubQuery(setSubQueries, preResult)
2: optimalSubQuery ← setSubQueries[0]
3: minSize←MAX V ALUE
4: for each subQuery in setSubQueries do
5: if |setSubQueries| equals 1 then
6: break
7: end if
8: size← estimateResultSize(subQuery, preResult)
9: if size < minSize then

10: optimalSubQuery ← subQuery
11: minSize← size
12: end if
13: end for
14: return optimalSubQuery
15: end function

Estimating result size There are many approaches for estimating the result
size of a subquery, for example, using pre-computed statistical information. In

52

6 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

this paper, our implementation uses COUNT queries that do not need any pre-
computed information. More specifically, we bind previous subquery results to
each remaining subquery, construct a COUNT query, and send it on the fly
to the relevant sources to determine under the current conditions how many
intermediate results they will produce.

Note that a COUNT query is a SPARQL query with the form “select count(*)...”
that evaluates the result size of a subquery. We construct COUNT queries for all
subqueries as follows: (1) search the triple pattern with a bound value from pre-
vious results preResult; (2) bind the variables in the remaining subqueries, i.e.,
setSubQueries, with their corresponding values; and (3) use UNION keywords
to combine multiple small queries for a subquery into a large query to decrease
the number of COUNT queries. An example of our approach here is shown in
Figure 2; note that this example comes from our benchmark Q7 and that the
bold font portion represents the bound variable and its value.

SELECT count(*)
WHERE{
{?enzyme kegg :substrate <http://bio2rdf.org/kegg:D06880> .
?enzyme rdf:type kegg:Enzyme>.
?reaction kegg:enzyme ?enzyme . }
UNION
…
UNION
{?enzyme kegg :substrate <http://bio2rdf.org/kegg:C11613> .
?enzyme rdf:type kegg:Enzyme>.
?reaction kegg:enzyme ?enzyme . }
}

?enzyme kegg:substrate ?cpd.
?enzyme rdf:type kegg:Enzyme.
?reaction kegg:enzyme ?enzyme.

?drug drugbank:category ?category.
?drug drugbank:x‐kegg ?cpd.

(c) COUNT query: bound with the values
of ?cpd from the previous subquery(b) The subquery to estimate its selectivity

(a) The evaluated previous subquery

cpd=<http://bio2rdf.org/kegg:D06880>
…
cpd=<http://bio2rdf.org/kegg:C11613>

bind variable
?cpd

unionized into
one query

Fig. 2. An example using a COUNT query to evaluate selectivity for a subquery

For dynamic join order optimization, the system must apply all previous
query results to the candidate subqueries; however, when there are a large num-
ber of values in the intermediate results, it is costly to bind all values to the
remaining subqueries and execute the large query. Note that for join order opti-
mization, we need only a rough estimate of the size of the query results on which
the subqueries may be ordered. This estimation does not need to be very precise
because a small difference in the size of results will not significantly impact the
overall performance.

Thus, rather than exhaustively consider the entire set of intermediate results,
we take a small sample of size n and order the subqueries by the size of the results
after binding relevant variables with the sample values. In this work, we simply
set the size of n to be 3. While it may be necessary to estimate the optimal
sample size, at this point, we assume that it is not a critical factor for the reason
noted above.

Instead of estimating the cost of expressions with VoID as SPLENDID, the
estimateResultsSize function actually sends the COUNT query to its relevant
data sources. Here, we note two important observations: (1) the performance cost

53

Dynamic join order optimization for SPARQL endpoint federation 7

of a COUNT query at its local endpoint is not very large and (2) a COUNT
query returns only one number, which is far less information than that if a full
result set was returned.

4 Evaluation

4.1 Evaluation of join optimization

We investigated how dynamic join optimization influences the query performance
in comparison with the static join. As we noted above, FedX is the fastest en-
gine among the current federated SPARQL endpoint query systems according
to recent benchmarks. We therefore implemented all the functions, including
source selection, on the basis of the FedX system, and compared the differences
before and after using dynamic join optimization in conjunction with the FedX
system. Further, we evaluated SPLENDID, which is expected to produce a good
join order plan using statistical information and optimizing plans on the basis
of dynamic programming techniques.

FedBench is a comprehensive benchmark suite for federated semantic data
that considers the evaluation of UNION, FILTER, and OPTIONAL clauses;
however, we note that almost all queries in this benchmark have a common
characteristic, i.e., they include a single triple pattern with two bound variables
and only one free variable, as shown in the query below from Cross Domain
evaluation CD6.

SELECT ?name ?location ?news
WHERE {
?artist <http://xmlns.com/foaf/0.1/name> ?name . (1)
?artist <http://xmlns.com/foaf/0.1/based_near> ?location . (2)
?location <http://www.geonames.org/ontology#parentFeature> ?germany . (3)
?germany <http://www.geonames.org/ontology#name> ’Federal Republic of Germany’ (4)
}

Triple pattern (4) with two bound variables usually has a higher selectivity. A
good join optimization plan should execute this type of triple pattern at an
earlier stage in a sequence of joins; however, this type of triple pattern can be
simply identified even with very simple optimization technologies, such as the
variable counting technique used in the FedX system to count the number of
bound variables. To better evaluate the influence of dynamic and static joins,
we designed a benchmark to evaluate join optimization for federated SPARQL
endpoint queries.

Benchmark setup For our benchmarks, we used five real biological SPARQL
endpoints from the Bio2RDF project [1], which is a different setup than Fed-
Bench [8], SP2Bench [9], and the fine-grained evaluation of SPARQL endpoint
federation systems [7], all of which use a simulated federated environment and
synthetic data or a subset of real data. For the life science field, FedBench uses
three biological datasets, namely KEGG, ChEBI, and Drugbank. Because the

54

8 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

SPARQL endpoint for CHEBI in the Bio2RDF project [1] is still under construc-
tion, we selected KEGG, Drugbank, SIDER, OMIM, and PharmGKB.

These datasets connect to one another closely by relationships between gene,
drug, disease, reaction, side effect, and others. Table 1 presents the details of each
dataset. The data are far more complicated than the FedBench life science data.
The largest biological dataset in FedBench is a subset of ChEBI that includes
7.33 million triples, 28 predicates, and a single type. In the Bio2RDF project, the
server of each endpoint is set to return a maximum of 10,000 results at a time,
regardless of the real result size. This restriction is commonplace to lessen the
burden on the server. Note that all settings in the Bio2RDF servers are beyond
our control.

Table 1. Bio2RDF dataset

Dataset Endpoint #Triples(M) #Pred #Types

Drugbank http://cu.kegg.bio2rdf.org/sparql 3.48 105 91

OMIM http://cu.drugbank.bio2rdf.org/sparql 8.35 101 34

SIDER http://cu.pharmgbk.bio2rdf.org/sparql 16.81 39 16

KEGG http://cu.sider.bio2rdf.org/sparql 47.87 141 63

PharmGKB http://cu.omim.bio2rdf.org/sparql 265.17 88 50

This benchmark focuses on testing the join operation in the SPARQL end-
point federation. We consider the following points in designing the queries: (1)
the number of triple patterns (#Tp) varies from two to nine; (2) the number
of queried endpoints (#Src) has a size ranging from two to five; and (3) the
number of returned results (#Res) ranges from 1 k to 109 k. Queries returning
large result set sizes are very useful when integrating data from multiple data
sources. Table 2 shows the query characteristics in detail.

Table 2. Bio2RDF query characteristics

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

#Tp 2 4 4 4 8 9 6 8

#Src 2 2 2 2 5 5 5 5

#Res 1 5 5 5 9492 132 32003 111962

In addition, the query set considers the numbers of variables in a triple
pattern. RDF data could connect to each other via different paths, which brings
about more free variables. The fewer bound variables, the more difficult it is
to estimate selectivity. Here Q2 and Q3 include one triple pattern in which all
variables are free, Q3 changes the position of the triple pattern, and Q4 increases
another such triple pattern. The rest of the queries consider the influence of the
triple pattern with two bound variables. In this case, Q5, Q7, and Q8 have
only one triple pattern with two bound variables, whereas Q6 has two such

55

Dynamic join order optimization for SPARQL endpoint federation 9

triple patterns. Next, Q7 is a variation of LS4 from FedBench, with Q7 obtained
by slightly modifying the bound variables, thereby increasing the result size.
Further, Q5 is a variation of Q7 obtained by changing the connected dataset and
constructing a more complicated star Q8 subquery. Here Q6 tests a query with
complicated star subqueries, evaluating the query connecting three datasets.
Finally, Q1 is designed to evaluate the extreme case with only two join triple
patterns.

We sequentially executed each query five times, removing the largest and
smallest values, calculating the mean value of the three remaining values.

Query performance Figure 3 summarizes query performance, and Table 3
shows how intermediate results changed. Dynamic join optimization outper-
formed the original static FedX system during all queries, except for Q5. As
for the time cost, for Q1, Q2, Q6, and Q8, the dynamic approach was faster
than the original FedX system. FedX failed on Q4, which has two triple pat-
terns in which all variables are free 1. With regard to the result completeness,
the dynamic approach returned all results for all queries, whereas Fedx returned
incomplete results for Q2, Q3, Q6, and Q7. Finally, SPLENDID returned all
results for Q1, Q2, and Q4, in which Q2 and Q4 were slower than the dynamic
join and Q1 was slightly faster; note that SPLENDID failed all other queries by
reaching the one-hour timeout limitation.

Intermediate results shown in Table 3 detail the query performance of both
FedX and our dynamic join approach. Intermediate results for the first step,
namely the results of the first subquery, show the selectivity of the first subquery.
In the table, the number outside the bracket shows the real intermediate result
size that the subquery should return, whereas the number inside the bracket
shows the actual intermediate size returned within the 10,000-result limitation
of the server.

The real intermediate result sizes of Q1, Q2, Q3, Q4, Q6, Q7, and Q8 of FedX
were far larger than those of the dynamic join optimization; therefore, FedX was
much slower for queries Q1, Q2, Q6, and Q8. For Q7, because of the restrictions
on the returned size, the returned intermediate results size was 10,000 (though
it should be 80,460), which was less than that of the dynamic join; therefore,
the query seemed faster; however, Fedx returned incomplete results, while our
dynamic approach returned all results. For Q3, Fedx failed in the second step
because this step returned zero results, while our dynamic join approach suc-
cessfully finished the query in the third step. For Q5, FedX and our dynamic
approach produced the same number of intermediate results and the same join
plan. In this case, the dynamic approach needed an additional join order opti-
mization cost and was therefore a little slower. We did not measure the details
of the intermediate results for SPLENDID.

1 A SPARQL compiler error occurs when FedX joins a certain intermediate result
with another subquery. The dynamic join avoids this problem because the number
of intermediate results is much less than that of FedX.

56

10 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

0.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

El
as
pe

d
tim

e(
se
c)
:
 lo
g
sc
al
e

FedX

SPLENDID

DynaJoin

time out time out time
out

time
out

result zero

result zero

result zero

result incom
plete

error

Fig. 3. Bio2RDF results

Table 3. Intermediate results of
the first two steps

1st step 2nd step

FedX Dyna Fedx Dyna

Q1
14609
(10000)

2 1 1

Q2
95443
(10000)

1
95443
(10000)

3

Q3
91656866
(10000)

1 0 10000

Q4
14609
(10000)

1
14609
(10000)

3

Q5 19 19 9492 9492

Q6
70115
(10000)

2 0 132

Q7
80406
(10000)

4323 >10000a 32077

Q8 36 36 60362 27

a The exact size could not be mea-
sured because its previous step
was not completely executed.

We investigated why Fedx returned no results for Q2. Figure 4(a) and 4(b)
illustrate the produced join plan of Q2. In the figures, the number inside the
bracket shows the intermediate result after executing the operation. The first
evaluation produced by FedX was the exclusive group. With the limitation of
the OMIM server, the evaluation returned 10,000 intermediate results that con-
tributed no final results; here the actually produced intermediate result size was
95,443. The dynamic join approach sends COUNT queries; thus, determining
the fourth triple pattern has the highest selectivity, thereby returning only one
result. It then binds the results of variable ?o2 to the other triple patterns, con-
structs the COUNT queries, and sends them to the relevant endpoints. In this
case, the dynamic approach judged the third triple pattern to have fewer results
and finally joined the exclusive group. The reason why Q3 and Q6 returned no
results is similar to that of Q2.

For Q7 and Q8, it was more difficult to make a join order plan. There is
a single triple pattern with two bound variables, which seemingly has higher
selectivity. For Q7, FedX first produced a larger initial search space of 80,406,
which partially contributed to the final results and therefore returned only part
of the results. The dynamic join first evaluated the group (i.e., 4323 results from
the fourth and sixth triple patterns), with the search space size being far less
than that of Fedx. Consequently, FedX returned only part of the results, whereas
the dynamic join returned all results.

57

Dynamic join order optimization for SPARQL endpoint federation 11

(?gene rdf:type
omim:Gene)

(?gene omim:refers‐to ?o1)

(pharm:PA446359
pharm:x‐snomedct ?o2)

⋈ (?o1 ?p2 ?o2)

(a) FedX for Q1

⋈

∑

(pharm:PA446359
pharm:x‐snomedct ?o2)

⋈

⋈

(b)DynaJoin for Q1

(?gene rdf:type
omim:Gene)

(?gene omim:refers‐
to ?o1)

∑

(?o1 ?p2 ?o2)

(10000)
(1)

(10000)

(1)

(3)

(5)
(0)

select ?gene ?o1 ?o2 where{
?gene rdf:type omim:Gene. (1)
?gene omim:refers‐to ?o1. (2)
?o1 ?p2 ?o2. (3)
pharm:PA446359 pharm:x‐snomedct ?o2 } (4)

Fig. 4. Join order and intermediate result sizes (inside the brackets) for Q2.

For Q8, 111,962 results were returned-the largest size in this group of queries.
The query was evaluated across three endpoints, as shown in Figure 5. Both FedX
and our dynamic join first evaluated the exclusive group (i.e., the first three
triple patterns) at the Drugbank endpoint. Next, FedX evaluated the second
exclusive group (i.e., the fourth and fifth triple patterns); however, the dynamic
join approach judged the second exclusive group to have more results than the
third exclusive group (i.e., the seventh and eighth triple patterns). Evaluating the
third exclusive group earlier substantially reduced the size of the intermediate
results, thereby accelerating the query.

⋈

(b) DynaJoin for Q8(the first two steps)

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
 x-pubchem.compound
?pathway)

(?drug
sider:side‐effect
?side)

(?drug
sider:pubchem‐flat‐
compound‐id ?cpd)

∑

(60362)

⋈

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
affected‐organism
?affected)

(?s2 kegg:x‐
pubchem.comp
ound ?cpd)

(?s2 kegg:pathway
?pathway)

∑

(27)

(a) FedX and SPLENDID for Q8(the first two steps)(a) FedX and SPLENDID for Q8.

⋈

(b) DynaJoin for Q8(the first two steps)

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
affected‐organism
?affected)

(?drug
sider:side‐effect
?side)

(?drug
sider:pubchem‐flat‐
compound‐id ?cpd)

∑

(60362)

⋈

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
 x-pubchem.compound
?pathway)

(?s2 kegg:x‐
pubchem.comp
ound ?cpd)

(?s2 kegg:pathway
?pathway)

∑

(27)

(a) FedX and SPLENDID for Q8(the first two steps)

(b) DynaJoin for Q8.

Fig. 5. Join order and intermediate result sizes (inside the brackets) for Q8.

For Q5, FedX and our dynamic approach produced the same join plan. The
dynamic approach needed an additional join order optimization cost; therefore,
FedX was slightly faster. Table 4 shows the additional overhead and their corre-
sponding percentages accounting for the total query time in detail. The largest
overhead here was 3.74 seconds for Q5. Consequently, the size increased and the
query became heavier, thereby causing the optimization cost to no longer seem
insignificant.

In addition, our evaluation shows that SPLENDID cannot produce a bet-
ter join plan than our dynamic approach despite using pre-computed statistical
information. More specifically, we checked the join plan produced by SPLEN-
DID. For Q7 and Q8, SPLENDID produced the same join order as FedX, which
generated far larger intermediate results than our dynamic approach. For other
queries, SPLENDID produced the same join order plan as our dynamic join

58

12 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

Table 4. Additional overhead of our dynamic join approach

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

time(sec) 0.4 2.33 2.96 3.49 3.74 1.29 1.09 2.24

% 40.5 73.9 7.7 65.8 3.0 19.5 0.8 0.4

approach. The additional cost of the dynamic approach for Q1 resulted from
the two COUNT queries, while SPLENDID used pre-computed information to
evaluate the selectivity of the two triple patterns.

We also checked the difference when using an index cache; however, we do not
provide details here because the cache was not used in the dynamic join order
procedure. Here source selection was implemented in the same way as that in
case of FedX, which does not impact performance; therefore, the aforementioned
conclusions still hold.

4.2 Fedbench benchmark

As mentioned in the above section, the FedBench benchmark cannot measure
the performance of join optimization in the federated query well because of its
simplicity in producing a join plan; however, in this section, we still provide
evaluation results with the Fedbench benchmark as a reference.

Our experiments were conducted on the AWS platform, with five m3.2xlarge
instances for the Cross Domain dataset and four instances for life science data.
These instances were configured with Intel(R) Xeon(R) CPU E5-2670 v2 2.50
GHz 4 Core CPU with 30 GB RAM and high network performance property
(AWS standards) with a 64-bit GNU/Linux operating system and the 64-bit
Java VM 1.7.0 75. All datasets were stored with an 8 GiB general purpose SSD
EBS, except for the Geonames dataset, which used a 100 GiB one. Endpoints
used open-source Virtuoso 07.00.3203.

Table 5 summarizes the FedBench dataset, while Table 6 presents query
characteristics. #Tp., #Src, and #Res represent the number of triple patterns,
data sources, and results, respectively. Figure 6 presents our experimental results.

Except for query LS6, FedX was slightly faster than our approach, with a
maximum difference of less than 0.5 seconds. Our proposed dynamic join eventu-
ally generated the same join plan as FedX. Therefore, the cost difference mainly
came from the additional optimization cost of our proposed dynamic optimiza-
tion algorithm. Overall, the additional cost is not substantial. Further, as the
queries in the life science field become heavier than queries in the cross domain,
the additional cost will decrease.

CD1 shows an extreme case in which only two triple patterns were joined.
In this query, Fedx simply identified the triple pattern with higher selectivity.
Our dynamic join approach seemed to experience a large cost (0.5 seconds) for
optimization; however, the evaluation of Q1 in our designed benchmark, which
also joined two triple patterns, showed our dynamic join approach to be much
faster than FedX. In such cases, they applied different join order plans. LS6

59

Dynamic join order optimization for SPARQL endpoint federation 13

illustrated a special case in which our dynamic join outperformed FedX. The
results of this query are different from what was described in the FedX paper;
the FedX team has confirmed these results with our current dataset and settings.
We are jointly investigating the reasons why these inconsistencies exist.

Table 5. FedBench datasets

Dataset #Triples(M) #Pred #Types

DBpedia subset 43.6M 1063 248

GeoNames 108M 26 1
LinkedMDB 6.15M 222 53
Jamendo 1.05M 26 11
New York Times 335k 36 2

KEGG 1.09M 21 4
ChEBI 7.33M 28 1
Drugbank 767k 119 8

Table 6. Query characteristics

Cross Domain(CD) Life Science (LS)

Query #Tp. #Src #Res #Tp #Src #Res

1 3 2 90 2 2 1159

2 3 2 1 3 4 333

3 5 5 2 5 3 9054

4 5 5 1 7 2 3

5 4 5 2 6 3 393

6 4 4 11 5 3 28

7 4 5 1 5 3 144

0.01

0.1

1

10

CD1 CD2 CD3 CD4 CD5 CD6 CD7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

0.01

0.1

1

10

100

LS1 LS2 LS3 LS4 LS5 LS6 LS7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

0.01

0.1

1

10

CD1 CD2 CD3 CD4 CD5 CD6 CD7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

0.01

0.1

1

10

100

LS1 LS2 LS3 LS4 LS5 LS6 LS7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

Fig. 6. FedBench results

5 Conclusions

In this paper, we proposed a novel dynamic join order optimization technique.
Because the search space of SPARQL queries is always changing, we believe that
the join order should be dynamically optimized during query execution, con-
sidering the frequency and importance of the join operation in such SPARQL
queries. We perform a SPARQL query by executing a group of subqueries in
which we optimize the join order by binding the variable values from previous
subqueries to the remaining subqueries and then evaluating the next intermedi-
ate result size and selecting the plan with the minimum intermediate result size.
Both the Fedbench benchmark and our heavier federated biological benchmark
proved that in comparison with the static optimization approach, our proposed

60

14 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

dynamic approach engine can stably present an optimal join plan and therefore
improve the performance of a federated query, with the degree of improvement
becoming clearer as the query becomes more complex. Our dynamic approach
does introduce additional overhead with its multiple updates of the join plan,
with the overhead being significant in queries that return a small number of
results and therefore have join orders that are not complex; however, as queries
become more complex and result sizes increase, the optimization cost becomes
increasingly insignificant.

Note that the overhead of the COUNT queries could be further controlled
by parallelizing the COUNT queries and setting timeout limitations. For the
first returned COUNT query, we could assume that it has less of a join cost
because the amount of data, the scale of server computational ability, or the
degree of network cost is better than others. We plan to implement this in the
future to gain a better understanding here. In addition, although we implemented
selectivity estimation via COUNT queries in this paper, other approaches are
available. With fine-grained metadata, selectivity estimation could be estimated
with less cost, although previous results provide concrete instances.

Acknowledgements

This work was supported by the National Bioscience Database Center (NBDC)
of the Japan Science and Technology Agency (JST). We also thank the continued
support from the FedX team for evaluating FedBench.

References

1. Bio2rdf, http://bio2rdf.org/
2. Basca, C., Bernstein, A.: Avalanche: Putting the spirit of the web back

into semantic web querying. In: 9th International Semantic Web Confer-
ence (ISWC2010) (November 2010), http://data.semanticweb.org/conference/
iswc/2010/paper/527

3. Grlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void descrip-
tions. In: In Proceedings of the 2nd International Workshop on Consuming Linked
Data (2011)

4. Haas, P.J., Naughton, J.F., Seshadri, S., Swami, A.N.: Selectivity and cost estima-
tion for joins based on random sampling. Journal of Computer and System Sciences
52(3), 550 – 569 (1996), http://www.sciencedirect.com/science/article/pii/
S0022000096900410

5. Lynden, S.J., Kojima, I., Matono, A., Tanimura, Y.: Aderis: Adaptively in-
tegrating rdf data from sparql endpoints. In: Kitagawa, H., Ishikawa, Y., Li,
Q., Watanabe, C. (eds.) DASFAA (2). Lecture Notes in Computer Science,
vol. 5982, pp. 400–403. Springer (2010), http://dblp.uni-trier.de/db/conf/

dasfaa/dasfaa2010-2.html#LyndenKMT10

6. Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Pro-
ceedings of the 5th European Semantic Web Conference on The Semantic Web:
Research and Applications. pp. 524–538. ESWC’08, Springer-Verlag, Berlin, Hei-
delberg (2008), http://dl.acm.org/citation.cfm?id=1789394.1789443

61

Dynamic join order optimization for SPARQL endpoint federation 15

7. Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngonga Ngomo, A.C.: A fine-
grained evaluation of SPARQL endpoint federation systems. Semantic Web Journal
(2014), http://svn.aksw.org/papers/2014/fedeval-swj/public.pdf

8. Schmidt, M., Grlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: Fedbench:
A benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.F., Blomqvist,
E. (eds.) International Semantic Web Conference (1). Lecture Notes in Computer
Science, vol. 7031, pp. 585–600. Springer (2011), http://dblp.uni-trier.de/db/
conf/semweb/iswc2011-1.html#SchmidtGHLST11

9. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp2bench: A sparql performance
benchmark. CoRR abs/0806.4627 (2008)

10. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: A federation
layer for distributed query processing on linked open data. In: The Semanic Web:
Research and Applications - 8th Extended Semantic Web Conference, ESWC 2011,
Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part II. pp. 481–486
(2011), http://dx.doi.org/10.1007/978-3-642-21064-8_39

11. Steinbrunn, M., Moerkotte, G., Kemper, A.: Optimizing join orders. Citeseer
(1993)

12. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: Sparql basic
graph pattern optimization using selectivity estimation. In: Proceedings of the 17th
International Conference on World Wide Web. pp. 595–604. WWW ’08, ACM, New
York, NY, USA (2008), http://doi.acm.org/10.1145/1367497.1367578

13. Swami, A., Schiefer, K.: On the estimation of join result sizes. In: Jarke, M.,
Bubenko, J., Jeffery, K. (eds.) Advances in Database Technology EDBT ’94, Lec-
ture Notes in Computer Science, vol. 779, pp. 287–300. Springer Berlin Heidelberg
(1994), http://dx.doi.org/10.1007/3-540-57818-8_58

62

16 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

Appendix: Query Set

Q1: Find out the gene resource related to "ADRAR".
select ?gene ?p
where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene ?p "ADRAR"^^<http://www.w3.org/2001/XMLSchema#string>
}
Q2: Find out the genes related to diabetes.
select ?gene ?o1 ?o2 where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene <http://bio2rdf.org/omim_vocabulary:refers-to> ?o1.
?o1 ?p2 ?o2.
<http://bio2rdf.org/pharmgkb:PA446359> <http://bio2rdf.org/pharmgkb_vocabulary:x-snomedct> ?o2 }
Q3: Find out the genes related to diabetes.
select ?gene ?o1 ?o2 where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene ?p1 ?o1.
?o1 <http://bio2rdf.org/omim_vocabulary:x-snomed> ?o2.
<http://bio2rdf.org/pharmgkb:PA446359> <http://bio2rdf.org/pharmgkb_vocabulary:x-snomedct> ?o2 }
Q4: Find the genes related to diabetes.
select ?gene ?o1 ?o2 where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene ?p1 ?o1.
?o1 ?p2 ?o2.
<http://bio2rdf.org/pharmgkb:PA446359> <http://bio2rdf.org/pharmgkb_vocabulary:x-snomedct> ?o2}
Q5: Find out the generic name ,title, side effect for all the anti-allergic agents.
select * where{
?drug <http://bio2rdf.org/sider_vocabulary:generic-name> ?generic.
?drug <http://purl.org/dc/terms/:title> ?drug_name .
?drug <http://bio2rdf.org/sider_vocabulary:side-effect> ?side.
?drug <http://bio2rdf.org/sider_vocabulary:pubchem-flat-compound-id> ?cpd.
?generic <http://purl.org/dc/terms/title> ?generic_name.
?side <http://purl.org/dc/terms/title> ?side_effect.
?drug_drugbank <http://bio2rdf.org/drugbank_vocabulary:category>
<http://bio2rdf.org/drugbank_vocabulary:Anti-Allergic-Agents>.
?drug_drugbank <http://bio2rdf.org/drugbank_vocabulary:x-pubchemcompound> ?cpd }
Q6: Find out clinical phenotype features, general and specific functions, and omim articles about F8 gene.
select * where {
?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Phenotype> .
?s <http://www.w3.org/2000/01/rdf-schema#label> ?o.
?s <http://bio2rdf.org/omim_vocabulary:clinical-features> ?clinicFeature.
?s <http://bio2rdf.org/omim_vocabulary:article> ?article.
?s <http://bio2rdf.org/omim_vocabulary:x-uniprot> ?protein.
?drug <http://bio2rdf.org/drugbank_vocabulary:gene-name> "F8"^^<http://www.w3.org/2001/XMLSchema#string>.
?drug <http://bio2rdf.org/drugbank_vocabulary:x-uniprot> ?protein.
?drug <http://bio2rdf.org/drugbank_vocabulary:general-function> ?genFunction.
?drug <http://bio2rdf.org/drugbank_vocabulary:specific-function> ?speFunction }
Q7: Find out all the drugs, which are substrate of some enzyme, their category and reaction.
select * where {
?enzyme <http://bio2rdf.org/kegg_vocabulary:substrate> ?cpd.
?enzyme <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/kegg_vocabulary:Enzyme>.
?reaction <http://bio2rdf.org/kegg_vocabulary:enzyme> ?enzyme.
?drug <http://bio2rdf.org/drugbank_vocabulary:category> ?category.
?drug <http://purl.org/dc/terms:description> ?desc.
?drug <http://bio2rdf.org/drugbank_vocabulary:x-kegg> ?cpd }
Q8: Find out side effects and pathways of all the anticonvulsants medicine.
select * where{
?s1 <http://bio2rdf.org/drugbank_vocabulary:category>
<http://bio2rdf.org/drugbank_vocabulary:Anticonvulsants>.
?s1 <http://bio2rdf.org/drugbank_vocabulary:affected-organism> ?affected.
?s1 <http://bio2rdf.org/drugbank_vocabulary:x-pubchemcompound> ?cpd.
?drug <http://bio2rdf.org/sider_vocabulary:side-effect> ?side.
?drug <http://bio2rdf.org/sider_vocabulary:pubchem-flat-compound-id> ?cpd.
?side <http://purl.org/dc/terms/title> ?side_effect.
?s2 <http://bio2rdf.org/kegg_vocabulary:x-pubchem.compound> ?cpd.
?s2 <http://bio2rdf.org/kegg_vocabulary:pathway> ?pathway }

63

