
Mining Sequential Patterns of Event Streams in
a Smart Home Application

Marwan Hassani, Christian Beecks, Daniel Töws, and Thomas Seidl

Data Management and Data Exploration Group
RWTH Aachen University, Germany

{hassani,beecks,toews,seidl}@cs.rwth-aachen.de

Abstract. Recent advances in sensing techniques enabled the possibil-
ity to gain precise information about switched-on devices in smart home
environments. One is particularly interested in exploring different pat-
terns of electrical usage of indoor appliances and using them to predict
activities. This in turns results with many useful applications like in-
ferring effective energy saving procedures. The necessity to derive this
knowledge in the real time and the huge size of generated data initiated
the need for a precise stream sequential pattern mining approach. Most
available approaches are less accurate due to their batch-based nature.
We present a smart home application of the PBuilder algorithm which
uses a batch-free approach to mine sequential patterns of a real dataset
collected from appliances. Additionally, we present the StrPMiner which
uses the PBuilder to find sequential patterns within multiple streams. We
show through an extensive evaluation over a smart home real dataset the
superiority of the StrPMiner algorithm over a state-of-the-art approach.

1 Introduction

Careful usage of indoor electrical devices is an important topic in the field of
energy saving and sustainability. Understanding the usage patterns of appliances
during a typical day is the key to induce savings of electrical energy. If a domain
expert finds anomalies in the electricity usage of one house, which consumes a lot
of energy, he can help the householder by suggesting lesser consuming patterns.
Recent advances in sensing techniques enabled the possibility to gain precise
information about different switched-on devices in a smart home environment.
This information contains the time and the duration when a particular appli-
ance was turned on. Gaining knowledge about correlation patterns between the
activation of different devices is possible with an offline visualization of a small-
sized data collected from a limited number of appliances (cf. Figure 1). This
tends to be sophisticated when one requires an instant knowledge about the us-
age needed during the collection time. Additionally, the number of devices and

Copyright c© 2015 by the paper’s authors. Copying permitted only for private and
academic purposes. In: R. Bergmann, S. Görg, G. Müller (Eds.): Proceedings of
the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9.
October 2015, published at http://ceur-ws.org

159

even the houses should usually be big enough to gain useful patterns. This signals
the necessity to apply data mining methods to collect handy usage patterns.

A data stream produces an infinite and continuous flow of data. Regularities
can often be found in those streams, which give information about the connec-
tion between the events in the data. To find this hidden information, sequential
pattern mining algorithms can be used over the data stream. A suitable algo-
rithm is able to reveal electric devices that are often used with or implied by each
other. Sequential pattern mining is a special case of frequent item set mining,
where patterns have to be frequent subsequences of the stream. Each pattern has
to appear a certain number of times within a part of the stream (called batch)
to count as a sequential pattern.

Additional challenges arise when looking at multiple streams at once, as
patterns can be part of one or multiple streams. This is the case in a smart home
environment, as each electric device provides a different data stream, feeding us
with new information. For this a special treatment of data is needed, so that a
useful connection among multiple electric devices can be found.

Alarm

Coffee machine

Light

TV

Fig. 1. If a person drinks a coffee every morning, the data would contain a connection
between the alarm clock and the coffee machine. In particular the alarm would imply
the coffee machine. In the second example the time frame, in which the TV is used,
would be contained by the time frame, in which the light is used.

Multiple algorithms were proposed in the literature to mine sequential pat-
terns from data streams. Most of them use a batch approach, like the SS-BE
algorithm [11]. The batch approach is a simple and efficient solution to mine
sequential patterns in a stream. However, it leaves a room for errors. Sequen-
tial patterns are, by definition, very sensitive to the order of items. This order
can not be found when searched patterns are located between two consecutive
batches. A batch-based algorithm will fail to detect such patterns. Moreover,
single items might have a duration as in the case of the interval-based events in
our smart home application (cf. Fig. 1). These items might also span multiple
batches.

In this work, we present an application over a real smart home dataset using
two algorithms [14] that avoid the above mentioned errors. The first algorithm
is the Pattern Builder PBuilder which mines sequential patterns for given data
using a batch-free approach. The second algorithm is the Streaming Pattern
Miner StrPMiner which uses the PBuilder to find sequential patterns within

160

multiple streams arriving from multiple indoor appliances and keeps track of
their quality.

The remainder of this paper is organized as follows: Section 2 presents some
related work. Section 3 looks at the preliminaries of sequential pattern mining.
Additionally it will highlight the problem with the batch approach. In Section 4
two algorithms are presented. The algorithm StrPMiner is then tested against
the SS-BE algorithm in Section 5, where we will also prove its superior accuracy.
The paper is concluded with a summary and an outlook in Section 6.

2 Related Work

Optimizing sequential pattern mining is an important task in the streaming data
mining field, which leads to a lot of different algorithms. A base algorithm for
many approaches [11],[13],[15],[2], is the PrefixSpan algorithm [12]. The PrefixS-
pan algorithm was designed for a static data environment. Because of this it can
use the apriori assumption [1], that every part of a frequent pattern also has to
be frequent. In the PrefixSpan patterns are generated bottom up. Starting with
a frequent item, each pattern will be checked for its frequency. If it is frequent,
it will be used as a prefix for other frequent items to generate longer patterns.
All algorithms using the PrefixSpan in a stream environment collect data in a
batch instead of evaluating each item as soon as it arrives.

Since the streaming approach allows to only look at data once, algorithms
have to make compromises in order to provide fast results. [11] proposes two
algorithms with different pruning strategies, the SS-BE and SS-BM algorithms.
These algorithms restrict memory usage but are able to find all true sequential
patterns and allow an error bound on the false positives. The patterns are saved
in a new designed tree structure, the T0 tree. The tree will be frequently checked
and pruned. Patterns that did not reappear frequently in the past will be deleted,
so that only current frequent items are contained in the tree.

In a static data set, all information needed for the algorithm is provided from
the beginning, while in the streaming approach new data arrives every second,
thus, patterns that were not frequent in the beginning may become frequent later
on. Yet, it is impossible to save every pattern and its information. The FP-stream
[3] solves this issue by saving information in different time granularities. The
newer the information, the more accurate it will be displayed. Another way to
solve the memory problem is by using a sliding window model, in which only the
most recent data is being looked at. The MFI-TransSW algorithm [10] optimizes
this concept. The algorithm works in three steps: window initialization, window
sliding and pattern generation. Previously described algorithms only provide
solutions for one stream. In cases of multiple streams in parallel, the MSS-
BE algorithm [8] is an idea to find sequential patterns in an multiple-stream
environment, where pattern elements can be part of different streams.

The algorithms mentioned above only provide solutions for frequent pattern
mining or find sequential patterns by using batches. The stream pattern miner
(StrPMiner) algorithm which uses the PBuilder was first introduced in [14]. It
uses a sliding window approach instead of the batch method while efficiently

161

mining sequential patterns of the streams. The algorithm was successfully used
in an application within the humanities domain, for analysis of translation data,
where subjects are translating English texts into German. The two streams in
that case were the eye gazes of the translators and their collected keystrokes
during the translation session [4,5,14].

3 Preliminaries: Sequential Pattern Mining

We are given a set S = {S1, S2, . . . , S|S|} of |S| different streams arriving from
different observed parameters collected from the smart home. Each stream Sk

is represented by streaming, time-stamped interval-based events that evolve
over the time. Thus, the first n items of stream Sk are represented as Sk =
{sk1 , sk2 , . . . , skn} where ski is an observed event that occurs at time ti where
ti < t(i+1) for all i = 1, . . . , n. Each event is additionally described by its la-
bel. A sequential pattern is a combination of multiple events that follow each
other. These patterns can be used to find correlations in the data.

We are asked to obtain the different frequent patterns that appear within
a single stream Sk and also within multiple streams from S (also called mul-
timodal streams). The sequential pattern mining problem differs from the nor-
mal frequent item set mining in the fact that the order of items (events) mat-
ters. The problem of mining sequential patterns is defined as follows: Let I =
{i1, i2, . . . , i|I|} be a set of |I| items, each item consists of a timestamp and a
duration. A pattern is represented here by a sequence, which is an ordered list of
items from I denoted by 〈p1, p2, . . . , pk〉. Thus, a sequence p = 〈a1, a2, . . . , aq〉 is
a subsequence of a sequence p′ = 〈b1, b2, . . . , br〉 if there exists integers i1 < i2 <
· · · < iq such that a1 = bi1 , a2 = bi2 , . . . , aq = biq .
This definition of sequential pattern mining is very feasible for the continuously
emerging characteristics of stream data. A stream Sk in this context is an arbi-
trarily large list of sequences pi. A sequence p in the data stream Sk contains
another sequence p′ from Sk if p′ is a subsequence of p. The count of a sequence
p, denoted as count(p), is defined by the number of sequences that contain p in
the stream Sk. If the frequency of a pattern (p) within a window w of the stream
Sk is greater or equal to a user defined threshold min supp, then the sequence
p is a frequent sequence or a sequential pattern in that window of Sk.

Following the apriori principle [1], given two subsequences p = {p1, p2, ..., pn}
and p′ = p\{pn}, it holds that supp(p′) ≥ supp(p) due to the anti-monotonicity
property. Thus, if p is a sequential pattern, p′ is also a sequential pattern.

To provide different views on the data, three different window concepts are
used by the StrPMiner. The algorithm works with the Landmark Window, the
Sliding Window and the Damped Window concept. In the Landmark Window, a
point in time is defined as the landmark. All data is then collected starting from
the landmark. This concept allows to look at big parts of the data. The Sliding
Window concept uses a fixed window size and slides it over the data. Thus, only
a snapshot of the data will be monitored at any given time. An advantage is that
old patterns will be forgotten eventually, which leaves only current information.
The Damped Window weights the objects to reflect their age. New items will be

162

more important than old ones. This allows a compromise between the Landmark
Window and the Sliding Window concept. A good solution to find sequential
patterns in a streaming environment is the batch approach. It allows to use the
Apriori principle, since each batch provides a static data set. However it comes
at a cost. Given a support threshold of 2, meaning a pattern has to appear two
times within one batch to be counted as frequent, a batch size of 3 and following
sequence: (A,B,C,A,C,C,A,D,C,A...) with A, B, C, D being items of a stream.
The online component would cut the data stream in following batches:
1. (A, B, C) 2. (A, C, C) 3. (A, D, C) 4. (A, ...) 5. ...

In this case, no pattern would be frequent. Looking at the whole data without
cutting it into batches would reveal that the pattern C,A appears three times,
which is over the support threshold of 2. This would lead to a frequent pattern.
Additionally, all items except for C in the second batch, would be pruned away,
although the item A and C appear in every batch. This leads to two reasons for
errors through the batch approach: First: Patterns that appear between batches
will not be found. Second: Items and patterns that do not appear often in one
batch will be pruned, although they are frequent in the whole data set. The StrP-
Miner was designed to avoid the batch approach because of these two reasons
which result into false statistics for sequential patterns.

4 The StrPMiner and the PBuilder Algorithms

Since the PrefixSpan algorithm only scales well when the candidates for sequen-
tial patterns can be pruned, the StrPMiner reverses the idea of the PrefixSpan
and uses a new algorithm called the Pattern Builder (PBuilder). This allows the
StrPMiner to work on each data item step by step as it comes in.

To provide a more focused view on the order of the items, the definition of se-
quential patterns was changed slightly. As stated previously, a sequential pattern
is a frequent subsequence. We redefine subsequences, and sequential patterns, as
only allowed to be a list of ordered items that directly follow each other. Thus,
p is considered a subsequence of q if p = (p1, p2, ..., pn), q = (q1, q2, ..., qm) and
there exist integers i1 < i2 < ... < im such that p1 = qi1 , p2 = qi2 , ..., pn = qin
for n < m and for all k, l with l, k < m and l = k + 1.

The StrPMiner handles arriving data from multiple streams at once. For
this, we assume that at each point in time only one item can arrive per stream.
If multiple items from multiple streams arrive at the same time, they will be put
into an ordered list and the algorithm handles each item after another. First an
item will be compressed, as only the label and the timestamp are relevant for cre-
ating sequential patterns. Then the StrPMiner passes the item to the PBuilder.
The PBuilder then uses this data to create sequential pattern candidates. Af-
ter this, the StrPMiner saves the candidates in the T0 tree structure and keeps
track of those candidates and their corresponding statistics. Currently this is
the count value, which allows to calculate the support and confidence value of
a pattern. The tree will be updated with the new count values and if a pattern
was not part of the tree a new node will be created. This approach allows full
accuracy, and flexibility in the output, as the support threshold can be changed

163

at every output request. This is not possible when using the PrefixSpan, since
the threshold has to be previously set.

4.1 The PBuilder

The PBuilder creates only patterns that contain the newly arrived item. Since
it is the last arrived item, all created patterns will end with this item. Given
an item A as the newly arrived item, the PBuilder starts with this item as a
pattern of length one. After this, the algorithm recursively adds older items as
a prefix to the previously created postfix. To ensure that the StrPMiner only
finds direct sequential patterns, the prefix is a direct predecessor of the postfix.
As visible in the pseudocode, visible in Agorithm 1, the ItemList only contains
the latest items ordered by their appearance. The newest item is the last item
in the list. In the first iteration, the currentPattern parameter is empty. Line 7
will then recursively add a prefix to our current pattern. The resulting pattern
will be inserted into the tree, as visible in Line 9. This will be repeated, until
the complete ItemList was included.

For each created pattern, the PBuilder algorithm calls the update function
of the T0 tree. An example of the tree can be seen in Figure 2.

Algorithm 1: The PBuilder explained with pseudo code

1 PBuilder
Data: ItemList, currentPattern

2 //ItemList contains the latest compressed items and is limited by
maxPatternLength. The newly arrived item is at the last position
Result: The new patterns that can be created with the new item

3 int index = ItemList.length;
4 //create patterns until maxPatternLength is reached
5 while currentPattern.length ≤ ItemList.length do
6 //add the next item to the pattern
7 currentPattern = ItemList.get(index-currentPattern.length) +

currentPattern;
8 //update the tree with the new pattern
9 updateTree(currentPattern);

10 end

4.2 Maximum Pattern Length as a Solution for Exponential Growth

In contrast to a static database, where all information is available from the
beginning, the streaming approach does not have any information on what future
items and their frequency might look like. This means that any item and pattern
that is currently not frequent in a stream, can become frequent at any later point
in time. The support of every pattern changes with every new arriving item. To

164

ensure that at every time the user requests an output all sequential patterns are
part of the output, every possible pattern and its information have to be saved.
This causes an exponential increase of the calculation time, as with every new
arriving item more patterns can be created. Additionally, the memory space will
eventually collapse, as the amount of data that has to be saved also increases
exponentially.

To stop the exponential growth, the StrPMiner introduces a parameter called
maxPatternLength, as an upper Bound for the pattern length. This variable re-
stricts the PBuilder to only look at the last maxPatternLength items. A maxPat-
ternLength of five, will cause patterns to maximally contain five items, as only
those are given to the algorithm. Given this bound, the calculation time in each
step only scales with the size of the maxPatternLength parameter. Additionally
this parameter bounds the maximum growth of the required memory space. On
the one hand, as the parameter will not change over the time, the calculation
time for each new arriving item will be constant. On the other hand this upper
bound filters patterns, before they have been created. Sequential patterns that
have a length higher than the given bound, will not be found. With this in mind,
a careful selection of the upper bound is important, as it provides a trade off
between the calculation time and accuracy.

4.3 Different Window Models

As previously mentioned, the StrPMiner uses the T0 tree introduced by [11].
For the algorithm slight adaptations were made, regarding the saved informa-
tion. The StrPMiner saves the label of the item and the time stamps, at which
it appeared, of the pattern in each node. The count of each pattern is then de-
termined by the number of time stamps saved in the corresponding node. An
example is shown in Figure 2.

The sliding window model helps to provide another view on the data, as it
only contains knowledge of recent data and forgets old data. This helps in cases,
where the data changes drastically over the duration of the stream. The land-
mark window would still show old patterns even though they did not reappear
for a long time. In general, the whole algorithm works the same, as in the land-
mark window, except for an extra pruning step. For this the time stamp of the
corresponding item and the patterns created with it have to be deleted from the
T0 tree, which is one path.

5 Experimental Results

Because of the problems that come with the batch approach, the StrPMiner,
unlike the SS-BE algorithm, does not use the PrefixSpan. Instead it uses the
PBuilder, which handles each newly arriving item immediately, without using
the batch approach. In this section we compare the presented algorithm to the
SS-BE, since it is a current state of the art algorithm that finds sequential
patterns in a stream environment. Other algorithms we looked at did not fulfill
both of these criteria.

165

a b c

c

c

1,4,6

3,8

3, 8

5

b

2,7 3,5,8

 Items: a, b, c, a, c, a, b, c
Time stamps: 1, 2, 3, 4, 5, 6, 7, 8

2,7
a

4,6

Fig. 2. An example of the T0 tree. The dotted node represents the pattern (c,a).

For the experimental evaluation of both algorithms we used the REDD
dataset [9]. This dataset contains information about the usage of electric devices
in Smart Homes. For analyzing those information we preprocessed the data to
an event stream. Each stream represents one electronic device, where the items
contain the information about the on and off time of the objects. For example, if
the oven is turned on at time t, the corresponding item at time t will be labeled
oven + and oven - if it is turned off. Following this code, the patterns of the
examples in Figure 1 would be alarm +, alarm -, coffee +, coffee - and light +,
tv +, tv -, light -.

Since we are only interested of direct sequential patterns, we adapted the
PrefixSpan in such a way that it will only create direct sequential patterns. The
adaption will additionally effect the results output by the SS-BE algorithm, as
it is dependent on the results produced by the PrefixSpan.

The support threshold, the only parameter used by both algorithms, was set
to 1%.

For the StrPMiner we set the maximum pattern length at 200. As explained
in 4.2, this parameter strongly influences the patterns that we find and our
runtime. The runtime of the StrPMiner is slower than the runtime of the SS-BE,
but with this parameter setting we still ensure real time results. Our assumption
is, that, with this setting, the PBuilder will find every pattern that is shorter
than 200. This result into full accuracy for those patterns. In this evaluation we
only want to look at the strong accuracy of the StrPMiner, we will only use the
Landmark Window here. The Sliding Window and the Damped Window show
similar results.

The parameters we set for the SS-BE algorithm were the significance thresh-
old ε with 0.0099 and the pruning period δ to 10. Those settings are close to
those used by the authors [11]. This means, that after ten batches the algorithm
will prune the t0 tree. The batch length is either set to 200 or to 300. Those
settings ensure that we will compare both algorithms to similar patterns and
similar output.

In a first evaluation we compared both algorithms against a ground truth,
which contains all patterns with a support of at least 1%. As the SS-BE al-
gorithm uses the batch approach, an output can only be generated after batch

166

(a) Comparing each time stamp. (b) The evaluated time stamps were
binned and then compared.

Fig. 3. A comparison of the StrPMiner to the SS-BE algorithm after evaluating one
house. The y-axis displays the accuracy, while the x-axis shows the time. The batch
length was set to 200.

length amount of items were evaluated. This means in our case, that only after
each 200 or 300 items, an output is available. In contrast to this, the StrPMiner
can produce a valid output after each item, as it will treat each item directly. In
Figure 3 we compared the result of both algorithms to the output after each 200
items. Additionally another comparison is created, where we bin the single time
steps. As visible in this figure, the StrPMiner has a significantly higher accuracy,
which is 30% points higher at each single time step for the given data. Two other
things are also visible in this figure. First, the accuracy of the StrPMiner stays
100% for the first few time steps, as long as there are no frequent patterns found
with a higher length than 200. Second, there is a noticeable drop in the accuracy
during the first third of the evaluation. A closer look into the data reveals, that
during this time the amount of patterns, that have a higher length than 200,
is rising. But, all of those patterns are single stream patterns, with a switching
on and off event of one single device, happening in a few seconds. The binning
is used to smooth out those abrupt changes and provide a focused view on the
general direction of the results.

Although the accuracy of the SS-BE algorithm rises with a higher batch
length, all three observations are still visible in Figure 4. We tested the algorithms
against multiple houses, in which the accuracy of the algorithms changed slightly,
but the general direction was the same, revealing the higher accuracy of the
StrPMiner. In houses with less noisy data, we were even able to maintain full
accuracy with the StrPMiner, as there were no frequent patterns with a high
batch length.

In most of the evaluation the higher batch length setting shows to be more
accurate, but still has a lower accuracy of nearly 20% points.

In a next step we wanted to prove our assumption. Only looking at the most
important patterns, meaning the top 100 patterns with the highest support,
reveals that the PBuilder has a full accuracy for all patterns with a length lower
than the maximum pattern length. A comparison to the SS-BE algorithm is
visible in Figure 5. This figure shows, how many of the hidden patterns in the
data could be found. In this case, the SS-BE algorithm has a high accuracy of
over 90%, but is still beaten by the full accuracy of the StrPMiner.

167

(a) (b)

Fig. 4. A similar comparison as in Figure 3, but with a batch length of 300 for the
SS-BE algorithm.

Taking a closer look at the order of the top 100 reveals, that, due to the full
accuracy, the StrPMiner is able to show all important patterns in the correct
order, sorted by their support value. The SS-BE algorithm is not able to keep
the correct position of the patterns. Figure 6 shows the deviation of the patterns
at each time step. The figure shows the mean deviation over all patterns, and
the maximal deviation of one pattern.

Although these results show the higher accuracy for the StrPMiner, they only
represent the average case, formed by looking at all patterns. The open question
is, how can these results help in an application case, where we want to find and
keep track of specific interesting patterns? The open assumption we want to
test is, that both algorithms are able to find meaningful patterns. This means,
patterns that show an existing connection between the items contained in it. To
test this assumption, we created a correlation matrix for the devices in the data
set. A snapshot of it is shown in Table 1, which gives information about how
often the items were turned on or off together. A higher value means that the
on and off time of those two items is close to each other. With this correlation
matrix we may not gain information about the specifics of the connection of two
items, but we can safely say, that there is a connection between those items.

(a) (b)

Fig. 5. For the most important patterns, the top 100, both algorithms show a higher
accuracy. Notable is, that the StrPMiner provides full accuracy.

168

(a) The deviation for a batch length of 200
reaches up to 60.

(b) The deviation for a batch length of 300
reaches only to 20.

Fig. 6. This figure shows the deviation between the top 100 patterns created by the SS-
BE algorithm, compared to the ground truth. A maximal deviation of 10 means, that
a pattern a, that appeared at position x in the ground truth, will appear at position
x + 10 or x− 10 in the results of the SS-BE algorithm.

oven oven refrigerator dishwasher k outlets k outlets lighting

oven 1 0.828 0.046 0.387 0 0 0.006
oven 0.828 1 0.051 0.307 0 0 0.005

refrigerator 0.046 0.051 1 0.022 0 0 0.011
dishwasher 0.387 0.307 0.022 1 0 0 0

k outlets 0 0 0 0 1 0 0
k outlets 0 0 0 0 0 1 0
lighting 0.006 0.005 0.011 0 0 0 1
Table 1. A part of the correlation matrix between some appliances.

This is also reflected in the results of the StrPMiner, as patterns between
two items with a high correlation, are the multimodal patterns with the highest
support. Item combinations with a correlation of over 0.6 are part of the frequent
patterns. These patterns, like oven 3+, oven 4+ and oven 3-, oven 4- show that
both items are often used with each other. Six of those multimodal patterns have
a higher support than 1% in the ground truth and can be found with full accuracy
in the results of the StrPMiner. In contrast to this, the SS-BE algorithm can
find three of those with an error rate of over 5%. The other 3 items are not part
of the results at all, as they were pruned out of lost between batches of SS-BE.

6 Conclusion and Future Work

In this paper we have presented a smart home application over a recent algo-
rithm, the PBuilder [14], that is able to mine sequential patterns in data streams.
The StrPMiner [14] uses the PBuilder for the pattern calculation in multiple
streams. The results are saved in the T0 tree. Three different window concepts
allow to present the data in different perspectives, which helps users to analyze
the data more effectively. Additionally the algorithm can create the output in a
much more flexible way than other algorithms, that use the PrefixSpan. For each
output request any support threshold can be given and the output can be cre-
ated correctly. The usefulness of the algorithm is tested with the big smart home

169

REDD dataset. We compared the StrPMiner against the SS-BE algorithm. In
our experimental evaluation we showed, that our algorithm has a significantly
higher accuracy than the competitor. Additionally, we showed that the algorithm
is capable of running over big real datasets.

In the future we plan to improve the time efficiency of our algorithm. Al-
though our algorithm is able to calculate the results in real time, it is slower
than the SS-BE algorithm. We found the bottleneck in the insertion step of the
data into the T0 tree. First changes could improve the runtime significantly. We
would like additionally to test our approach in distributed, multi-source sensor
streaming environments [7] and in anytime environments [6].

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB, pages 487–499, 1994.

2. Y.-C. Chen, C.-C. Chen, W.-C. Peng, and W.-C. Lee. Mining correlation patterns
among appliances in smart home environment. In PAKDD, pages 222–233. 2014.

3. C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining frequent patterns in
data streams at multiple time granularities. Next gen. DM, 212:191–212, 2003.

4. M. Hassani. Efficient Clustering of Big Data Streams. PhD thesis, RWTH Aachen
University, 2015.

5. M. Hassani, C. Beecks, D. Töws, T. Serbina, M. Haberstroh, P. Niemietz,
S. Jeschke, S. Neumann, and T. Seidl. Sequential pattern mining of multimodal
streams in the humanities. In BTW, pages 683–686, 2015.

6. M. Hassani, P. Kranen, and T. Seidl. Precise anytime clustering of noisy sensor
data with logarithmic complexity. In SensorKDD Workshop @KDD, pages 52–60,
2011.

7. M. Hassani, E. Müller, P. Spaus, A. Faqolli, T. Palpanas, and T. Seidl. Self-
organizing energy aware clustering of nodes in sensor networks using relevant at-
tributes. In SensorKDD Workshop @KDD, pages 39–48, 2010.

8. M. Hassani and T. Seidl. Towards a mobile health context prediction: Sequential
pattern mining in multiple streams. In MDM, pages 55–57. IEEE, 2011.

9. J. Z. Kolter and M. J. Johnson. Redd: A public data set for energy disaggregation
research. In SustKDD Workshop @KDD, 2011.

10. H.-F. Li and S.-Y. Lee. Mining frequent itemsets over data streams using efficient
window sliding techniques. Expert Sys. w. App., 36(2):1466–1477, 2009.

11. L. F. Mendes, B. Ding, and J. Han. Stream sequential pattern mining with precise
error bounds. In ICDM., pages 941–946, 2008.

12. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In ICDE, pages 0215–0215, 2001.

13. A. F. Soliman, G. A. Ebrahim, and H. K. Mohammed. Speds: A framework for
mining sequential patterns in evolving data streams. In Communications, Com-
puters and Signal Processing (PacRim), 2011, pages 464–469. IEEE, 2011.

14. D. Töws, M. Hassani, C. Beecks, and T. Seidl. Optimizing sequential pattern
mining within multiple streams. In BTW, pages 223–232, 2015.

15. S.-Y. Wu and Y.-L. Chen. Mining nonambiguous temporal patterns for interval-
based events. KDE, pages 742–758, 2007.

170

	Mining Sequential Patterns of Event Streams in a Smart Home Application

