The GOBIA Method: Towards Goal-Oriented
Business Intelligence Architectures

David Fekete! and Gottfried Vossen!+?

L ERCIS, Leonardo-Campus 3, 48149 Miinster, Germany,
firstname.lastname@ercis.de
2 University of Waikato Management School, Private Bag 3105, Hamilton 3240,
New Zealand, vossen@waikato.ac.nz

Abstract. Traditional Data Warehouse (DWH) architectures are chal-
lenged by numerous novel Big Data products. These tools are typically
presented as alternatives or extensions for one or more of the layers
of a typical DWH reference architecture. Still, there is no established
joint reference architecture for both DWH and Big Data that is inher-
ently aligned with business goals as implied by Business Intelligence (BI)
projects. In this paper, a work-in-progress approach towards such cus-
tom BI architectures, the GOBIA method, is presented to address this
gap, combining a BI reference architecture and a development process.

1 Introduction

Big Data has generated widespread interest among both academia and prac-
titioners [9]. Several new products (such as Apache Hadoop) and approaches
have emerged that allow to store or process Big Data, which was not feasi-
ble or efficient before. Big Data is larger, more diverse, and speedier than it
was with data in established traditional technologies. Big Data challenges of-
ten exceed an organization’s capability to process and analyze data in a timely
manner for decision making [9]. On the other hand, traditional Data Warehouse
(DWH) architectures are an established concept for Business Intelligence based
on a common reference architecture (e.g., [8]). Nevertheless, with the plethora
of novel Big Data products, the question arises which impact these have on an-
alytic architectures and which form a reference architecture for both Big Data
and DWH could have. Especially Apache Hadoop distributions such as MapRE
offer so many products that building a customized architecture is rendered an
increasingly complex task. Thus, additional clarity on the process of deriving a
customized architecture from a reference architecture is required as well. The
goal of this work is to design artifacts that address these questions following a

Copyright © 2015 by the papers authors. Copying permitted only for private and
academic purposes. In: R. Bergmann, S. Gorg, G. Miiller (Eds.): Proceedings of
the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9.
October 2015, published at http://ceur-ws.org

! nttps://wuw.mapr.com/products/mapr-distribution-including-apache-hadoop

409


https://www.mapr.com/products/mapr-distribution-including-apache-hadoop

design science approach [6]. To this end, a theoretical background on the foun-
dations of the solution artifacts is given in Sec.[2] The various solution artifacts
are described in Sec.[3] Finally, the work is summarized and next research steps
are outlined in Sec. @

2 Fundamentals

The following fundamentals explain the basic concepts regarding architectures
and Business Intelligence required for the proposed solution and outline the
problem statement to be addressed. Definitions of and further reading on the
basic terms Data Warehouse and Big Data can be found in [BI4I8] and in [T0J9],
resp.

The term Business Intelligence (BI) is used to describe a holistic enterprise-
wide approach for decision support that integrates analytics systems (e.g., a
DWH), but also strategy, processes, applications, and technologies in addition
to data [2| p. 13]. Besides that, BI is also said to postulate the generation of
knowledge about business status and further opportunities [2, p. 13]. More im-
portantly, a crucial aspect of BI is its alignment to its business area of application
[2, p. 14]. This implies that BI and also its parts (including an analytics system)
should be aligned to the respective business in order to support decision making
for business operations.

While a traditional DWH architecture has well-defined layers such as the
staging area (Extract-Transform-Load, ETL) or data marts [8/4], several exam-
ples for Big Data attached to DWH architectures (e.g., with Big Data tools used
for ETL) can be found. Typically, these represent specific setups (e.g., [10, p.
23], |5, p. 18]), but cannot be generalized into a reference architecture. Other
attempts include more general (reference) architectures (e.g., [7, p. 62], [5, p.
12], [9]), yet the question remains of how to allocate (which) products to specific
roles in an architecture, especially with several alternatives to traditional DWH
architectures and products available. This is exacerbated by the fact that some
of these new product offerings can be used for multiple purposes inside such an
architecture. For example, MapReduce as a generic tool can be used for data
preprocessing (e.g., performing large-scale cleansing operations) as well as for an
actual analysis (e.g., basic word count statistics or sentiment analyses).

However, no BI reference architecture has been established yet that is in-
herently technology-independent, i.e., usable for both DWH and Big Data, and
addresses the business-alignment of BI. Such goal-orientation aids the selection
of customized architectures, since specific goals can be considered in the process.

As several combinations of technologies and products can be placed in an
analytics architecture nowadays, the potential complexity of architectures is in-
creased. For instance, certain Apache Hadoop distributions (e.g., by MapRE| or
Hortonwork{b present all of their offered product options in a single package,

2 http://doc.mapr.com/display/MapR/Architecture+Guide
3 http://hortonworks.com/building-an-enterprise-data-architecture/

410


http://doc.mapr.com/display/MapR/Architecture+Guide
http://hortonworks.com/building-an-enterprise-data-architecture/

where no process to a customized architecture is outlined and the necessary ar-
chitectural choices are left to the implementer. For instance, if a weather predic-
tion BI application should be implemented using these Hadoop distributions the
fitting products have to be chosen. While these choices could possibly be made
with certain effort, e.g., Apache Storm for streaming weather data processing
and MapReduce for batch analytics, the process of arriving at these decisions
cannot be supported best solely by considering a (simple) classical layered view
as with the DWH reference architecture before. Previously, this view was suffi-
cient as typical products were located mainly in the DWH sphere, but to match
todays complexity and heterogeneity from an architectural point of view, the
classical layered view needs to be further refined.

Reference architectures used in computer applications typically exhibit a lay-
ering of services [I]. The various layers interact through well-defined interfaces,
and their structure commonly follows an abstraction process. Indeed, the top
layer comprises the most coarse (high-level) services, which are refined at the
next lower layer, and this is often repeated until a layer of most basic functions is
reached. In other words, in a system representing a service hierarchy, higher-level
services are realized by lower-level services.

An example for a service hierarchy is a high-level telecommunication service
provided to an end-user that can be comprised of several lower-level services in
the back-end. In a data analytics scenario, high-level analytical services could be
placed in a core analytics layer (e.g., ”Cluster customer groups” or ”Sentiment
analysis of product-related tweets”) and be consumed by BI applications on
top, possibly supplied to by a middle-ware (e.g., data marts). These services are
provided for by data preprocessing services (such as ”Cleanse customer data”’
or "Filter tweets”) at a lower layer and are ultimately based on several data
sources (e.g., ”Twitter” or "ERP”). Each of these services can be allocated, re-
spectively be backed, by a novel or traditional product. However, the mentioned
challenge of actually allocating these heterogeneous products to layers or ser-
vices in a specific scenario remains and needs to be addressed (cf. Fig. We do
so using a service hierarchy within a layered architecture that serves as a guide
towards a final implementation of a customized architecture, since it allows for
a clear structuring of complex architectures in a modern heterogeneous product
landscape.

Abeck et al. see a layered architecture as a foundation for (software) reference
architectures, as software systems development would be based on layering [I].
Employing a layered architecture for a BI reference architecture could use these
properties during customization and place adequate Bl-related services at the
appropriate architectural layer, which adhere to the intended level of abstraction.
When Bl is seen in this way, a general reference architecture can individually be
customized and hence aligned to the goals and requirements of a specific business
scenario or application. Goal orientation and layered architecture should hence
be part of the solution artifacts to be designed, which will be elaborated upon
in the following.

411



MapReduce

Layer 2
Layer 1
Spark
Mahout
Layer 0

Fig. 1. A layered architecture with a service hierarchy (right) with the to be addressed
gap of allocating heterogeneous products and technologies to it.

3 Goal-Oriented Business Intelligence Architectures
(GOBIA)

The proposed approach is termed the ” Goal-oriented Business Intelligence Ar-
chitectures” (GOBIA) method and consists of a BI reference architecture (GO-
BIA.REF) and development process (GOBIA.DEV). In the following, both ar-
tifacts are briefly presented.

GOBIA.REF aims to address the architectural gap outlined above and is
intended as a layered, technology-independent BI reference architecture. It is
accompanied by a development process (GOBIA.DEV) that aids in its cus-
tomization, so that the outcome is aligned to the goals and requirements of
a specific scenario or application. This inherently supports the principle of BI to
be business-aligned. The resulting architecture is a high-level conceptual model
resembling a service hierarchy, which is not yet focused on technical details, but
aims to alleviate the challenge of implementing the architecture (i.e., assigning
specific products to the defined roles and functions).

3.1 BI reference architecture

The proposed BI reference architecture (see Fig. [2] on the right) as a layered
architecture generalizes DWH and Big Data in the analytics layer as ”BI func-
tionality” as common denominator. The customized architecture is built based
on this reference architecture and should be seen as a service hierarchy.

Data sources of the architecture reside at the bottom of the reference archi-
tecture. These can be located internally or externally (e.g., in a cloud). While

412



this is comparable to other architectures, no restrictions are imposed on data
formats or delivery and persistence modes. For instance, data source blocks could
simply be ”Mapping data” or ” Transportation routes”. The ”"Data Preparation
and Preprocessing” above it fulfills a similar purpose as the staging area in a
DWH, but the tasks should be more coarse-grained and mostly omit technical
details. For instance, a task in this layer could be to ” Transform mapping data”
or to ”Complete disease data”. Instead of having a DWH and/or Big Data tools
in the core analytics layer, this layer contains BI functionality in general, which
is technology-independent and focused on the results of BI. For instance, BI
functionality could include high-level functionalities such as ”Classify customer
into types” or ”Identify sales patterns”. Data marts, as in a DWH, can fulfill the
role to provide subsets of data to the Bl-specific applications. As the layers are
conceptual, a decision whether to materialize any of these subsets is not made
at this point.

Bl-specific applications consume the BI functionalities delivered through the
data mart layer to deliver applications to a client or end-user, much as in many
other architectures. The difference, however, is that GOBIA.REF aims to clarify
on the actually needed BI functionality so that the choice of selecting suitable
technological artifacts afterwards becomes less complex.

3.2 Development process

The proposed development process of the customized architecture, GOBIA.REF
(see Fig. , is designed so that actual goals and requirements on a target BI
system are derived from a more coarse-grained strategy, which is assumed to be
already defined. The latter, indicated as (0) in Fig. |2} allows to derive application
domain(s) and scenario(s) (use cases) from it in step (1). The underlying domain
should define the playing field laid out by the strategy (e.g., finance, health
care...). The scenarios, set in the domains, define the requirements and goals of
the customized architecture (2), and business-relevant information such as costs,
expected value, or revenue. A defined goal could, for example, be to ” Analyze
customer behavior to map his characteristics to products that the he might find
interesting”. At this point, the Bl-specific applications required at the top-most
layer are determined.

This is followed by a co-alignment step (3). The main outcomes are BI func-
tionalities to be placed in the architecture, as well as necessary data preparation
or preprocessing tasks, and data properties of suitable data. For this, require-
ments and goals are aligned together with BI functionality and data properties.
The result should be that, eventually, suitable BI functionalities realize the goals
and adhere to the requirements set before and that these BI functionalities and
data preparation tasks fit the data properties. If, e.g., a goal was to differentiate
groups of customers, BI functionality for a suitable clustering method must be
defined.

Data properties are characterized by using the ”V’s” [10/9], which are typi-
cally used in Big Data context, but should be applied to any data in this method.
For instance, if the quality of a data source is poor (e.g., low validity or high

413



vagueness), but the set goal is to work on higher quality data, proper data
cleansing or enrichment tasks have to be conducted.

Notably, co-alignment can also mean that requirements and goals are ad-
justed as well in the course of an iterative definition process. For example, if
data properties for an initial set of requirements and goals are characterized and
the data is of higher quality than expected , goals could be refined to explicitly
exploit this data. This refinement, then, could lead to a further adjustment of
BI functionality or data preprocessing tasks.

Input to the requirements and goals in step (2) is a BI reference architec-
ture (GOBIA.REF). Also, there can be a direct strategic impact on it, e.g., a
decision not to have any data marts in the final architecture. Moreover, domain-
specific template reference architectures could be possible like, e.g., a set of
typical finance-algorithms as BI functionality templates.

Finally, in step (4), the customized architecture is assembled by assigning the
outcomes of the co-alignment (e.g., BI functionalities) to the respective layers
and by building a service hierarchy. This high-level conceptual output can be
used further in the implementation of the target BI system.

0 Strategy ————drives selection—*
GOBIA Reference Architecture (GOBIA.REF)

decides on

Bl-specific Applications
1

o Domains & Scenarios Data Marts

BI Functionality

define

e Requirements & Goals

Data Preparation and Preprocessing

Internal and External Data Sources

oY )
\\,3J Co-alignment

BI functionality Data properties (V's)

v

/&\Customized Architecture
N (GOBIA output)

Fig. 2. Customized BI architecture development process proposal for the GOBIA
method (GOBIA.DEV) and the BI reference architecture proposal (GOBIA.REF) on
the right.

414



3.3 Sample case

For illustration purposes, a sample use case is briefly discussed and its outcome
presented (cf. Fig. . This fictitious case is tailored towards a global organiza-
tion concerned with the health of people, e.g. the World Health Organization
(WHO). Firstly, the GOBIA.DEV process is executed to determine the goals and
requirements and to present the functionality at the different architectural lay-
ers. Then, GOBIA.REF is used to assemble this into a layered and hierarchical
form that can be used as a blueprint for a subsequent implementation.

The set strategy (0) could be the objective of the WHO, which ”is the attain-
ment by all people of the highest possible level of health” ﬂ Naturally, health-
care is set as application domain (1). In this scenario, global disease management
should be the specific application that allows for disease monitoring and pattern
recognition to facilitate appropriate mitigation or containment procedures and
that supports the set objective of the WHO.

The goal (2) of the BI system should be recognizing disease patterns around
the globe to allow description and comparison of current disease spread patterns
to eventually allow for enhanced monitoring. To achieve this, several data sources
are required. These could be confirmed disease cases (”disease occurrence data”),
incoming reports of potential, unconfirmed diseases (”emergent disease informa-
tion”) and knowledge about diseases like symptoms (”disease data”). To create
a map and to predict endangered areas in the future location data — ranging
from basic maps to more refined data as health infrastructure and environmen-
tal data, which could influence disease spreadings and potential dangers — is
needed as well as, e.g., public and private transportation routes such as flight
routes or roads. Furthermore, appropriate algorithms are required to map health
dangers of certain levels to appropriate mitigation or containments procedures.

The results of the subsequent co-alignment lead to a service hierarchy or
layered architecture as shown in Fig. 8] To conduct co-alignment, the properties
of the required data sources should be assessed. For instance, because of the
extensive mapping data, potential data volumes could be regarded as ”high”.
Besides technical properties (volume, variety, velocity), qualitative properties as
”value” can be assessed. In this case, value could be rather low for unconfirmed,
emergent disease reports due to the uncertainty and poor initial data quality
and be potentially high for actually confirmed disease cases from, e.g., hospitals.
With this, the required Bl-specific functionality can be formulated that supports
the goals of the application as well as the necessary tasks that, e.g., deal with the
data properties (such as the cleansing of unconfirmed disease cases). These tasks
could include a classification of emergent disease information (i.e., if its actually a
confirmed case or an irrelevant report). By clustering the cleansed and completed
diseases occurrences, these can be integrated into the preprocessed mapping
data. Lastly, disease patterns could be recognized and eventually plotted on an
interactive map or assembled into regional health reports.

*http://apps.who.int/gb/DGNP/pdf_files/constitution-en.pdf

415


http://apps.who.int/gb/DGNP/pdf_files/constitution-en.pdf

Interactive maps

Bl-specific applications

Health reports by region

Further Bl-related apps

Classify emergent
disease information

Identify endangered

BI functionality

EIGEN

Enrich disease
occurences

Identify disease
patterns

Cluster disease
occurences

Cleanse & complete

Data preparation and preprocessing

disease cases

Preprocess &
transform mapping

data

i

Data sources

Emergent disease
information
(reports, calls ...)

Disease
information

Disease occurence

Basic mapping

data data

Transportation
routes

Environmental &
structural data

Fig. 3. GOBIA output example: Customized layered, hierarchical architecture for a
fictitious public health use case.

416



4 Summary and Future Work

This work has tried to outline gaps in "universal” reference architectures that
did arise as a result of moving into the age of Big Data. A proposal for a BI
reference architecture based on a basic concept in Computer Science was made.
A development process has been proposed to support a goal-oriented creation
of a customized BI architecture, yielding a possible prerequisite for choosing
suitable analytic tools.

Future work should address various parts of the proposed method. Firstly,
the proposal is to be refined. For example, the semantics in the development
process needs to be elaborated upon, and inputs and outputs be specified in
more detail.

Secondly, the steps following an execution of the development process are
to be elaborated, since the high-level conceptual model output cannot be di-
rectly operationalized. The challenge to select technological artifacts (e.g., from
a Hadoop distribution) and connect these to realize the concept is not resolved
yet. Here, best practices or generalizations of architecture setups could be derived
in order to address this challenge. It should also be elaborated how findings from
these can be generalized to templates to enhance the method itself. For instance,
best practices could be used to derive domain-specific reference architectures or
predefined building blocks for the co-alignment step in GOBIA.DEV (e.g., com-
mon data processing tasks that address certain data properties or specific BI
functionalities).

Thirdly, both reference architecture and development process should be eval-
uated empirically to test if they fit their intended usage. Such an evaluation
should build, for example, a customized architecture based on a Hadoop frame-
work (e.g., MapR) to verify whether the process is indeed less complex when
using the GOBIA method. Also, such evaluation should include a comparison
to other existing approaches (e.g., for reference architectures) to better assess
to which extent GOBIA.REF and GOBIA.DEV can utilize the proposed advan-
tages in practice.

References

1. Abeck, S., Lockemann, P.C., Schiller, J., Seitz, J.: Verteilte Informationssysteme:
Integration von Dateniibertragungstechnik und Datenbanktechnik. dpunkt, Hei-
delberg (2003)

2. Bauer, A., Giinzel, H.: Data Warehouse Systeme. dpunkt, Heidelberg, 3rd edn.
(2009)

3. Inmon, W.: Building the Data Warehouse. John Wiley & Sons Inc., New York,
New York, USA, 2nd edn. (1996)

4. Lehner, W.: Datenbanktechnologie fiir Data-Warehouse-Systeme. d.punkt Verlag,
Heidelberg (2003)

5. Oracle: Oracle Information Architecture: An Architect’s Guide to Big
Data (2012), http://www.oracle.com/technetwork/topics/entarch/articles/
oea-big-data-guide-1522052.pdf

417


http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf
http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-1522052.pdf

10.

Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science
Research Methodology for Information Systems Research. Journal of Management
Information Systems 24(3), 4577 (Dec 2007), http://www.tandfonline.com/doi/
full/10.2753/MIS0742-1222240302

Thiele, M., Lehner, W., Habich, D.: Data-Warehousing 3.0 Die Rolle von Data-
Warehouse- Systemen auf Basis von In-Memory-Technologie. In: Innovative Un-
ternehmensanwendungen mit In-Memory Data Management (IMDM). pp. 57-68.
Wolfgang Lehner, Gunther Piller, Mainz (2011)

Vossen, G.: Datenmodelle, Datenbanksprachen und Datenbankmanagementsys-
teme. Oldenbourg, Miinchen, 5th edn. (2008)

Vossen, G.: Big data as the new enabler in business and other intelligence. Vietnam
Journal of Computer Science 1(1), 3-14 (Feb 2014)

Zikopoulos, P., Eaton, C., DeRoos, D., Deutsch, T., Lapis, G.: Understanding Big
Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill,
New York, USA, 1st edn. (2012)

418


http://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
http://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302

	The GOBIA Method: Towards Goal-Oriented Business Intelligence Architectures 



