DIO: A pattern for capturing the intents
underlying designs

Monika Solanki

Department of Computer Science,
University of Oxford, UK
monika.solanki@cs.ox.ac.uk

Abstract. A critical and often overlooked aspect underlying the design
and consequent realisation of an artifact is its design intent. Given the
highly distributed and diverse nature of workflows in today’s design envi-
ronments, the need to have a shared understanding of the design intent,
to enable effective communication and coordination between the devel-
opment teams is crucial. In this paper we present DIO: a generic content
ontology design pattern that provides the much required conceptualisa-
tion needed to capture the knowledge generated during design phases.
We further show, how DIO can be specialised to generate a pattern -
SDI (Software Design Intent) that enables the capturing of knowledge
during Software design phases.

1 Introduction

The process of systematically designing an artifact is a time-consuming and labo-
rious task. Typically, several iterations, deliberations and informal discussions
are undertaken before a final agreement can be reached, on the features and
attributes that need to be included in the concrete realisation of the artifact.

This has huge repercussions as design reuse becomes confined to the scope
of the agents involved in the core design process. The arguments raised against
specific potential solutions and the justifications supporting several rejected so-
lutions cannot be exploited to inform future designs. The knowledge engineering
that encompasses the capturing of the “Design Intent” or the “Design rationale”
is therefore now a core requirement for most design environments. While several
efforts in the past have focused on representing design intents, many of them
are informal specification, developed for specific domains such as product de-
sign [2] or software models [1]. Further, in Software design, for the few scenarios
where the intent is recorded, it is simply expressed as an informal comment,
sometimes voluminous, verbose and on most occasions, out-of-sync with the fi-
nally approved design. This is clearly not enough from atleast two perspectives:
(1) Informal comments do not allow us to take advantage of logical theories for
detecting inconsistencies and errors in the design deliberations. (2) There are
no implementation details available during the design phase. The intent is the
only authoritative and unambiguous source of information that the development
teams can exploit.

In this paper we present a generic content ontology design pattern, DIO
(Design Intent Ontology)! for formally harnessing the intents or the rationales
that emerge or are generated during the processes that underlie modern design
decision phases. DIO is a domain agnostic pattern and most domain specific
design rationale models will specialise from DIO. It provides a high level con-
ceptualisation of the typical entities that designers encounter during the phases
of designing artifacts. A significant advantage of DIO over existing design intent
frameworks is its direct mapping to PROV?Z.

2 Pattern description and Graphical representation

2.1 Intent

DIO provides a minimalistic abstraction and defines conceptual, generic entities
for the modelling of semantically enriched knowledge required to capture the in-
tents or rationale behind the design of an artifact. The pattern can be specialised
to define domain specific design intents.

2.2 Competency questions

Given the requirements above, we define competency questions that motivate
the design of a pattern-oriented conceptualisation for design intents.

— What are the solution choices for a design problem?

— Which functional requirements are being fulfilled by the accepted design
solution?

What are the alternative solutions to an accepted solution?

— What are the arguments against a proposed solution?

What are the justifications for a proposed solution?

— Which agent has corroborated a solution?

What assumptions have been made in arriving at a specific solution?

— What is the status of a design issue?

2.3 Conceptual Entities

Some of the key concepts and relationships encapsulating the data model defined
by the pattern are described below. Note that several entities in DIO extend from
or exploit concepts and relationships defined in PROV-O as further illustrated
in Figure [T}

— Design: An entity representing the specification of an object, manifested by
one or more agents, intended to accomplish goals, in a particular environ-
ment, using a set of components, satisfying a set of requirements, subject to
constraints.

"http://www.essepuntato.it/lode/owlapi/http://purl.org/dio/
*nttp://w3.org/ns/prov#

http://www.essepuntato.it/lode/owlapi/http://purl.org/dio/
http://w3.org/ns/prov#

— DesignIntent: An entity representing the notion of a design intent, i.e.,
the rationale underpinning the choices that are made from the alternatives
available during various phases of the overall design lifecycle.

— DesignIssue, DesignProblem, DesignGoal, DesignQuestion: An entity rep-
resenting the problem, goal, question or issue the design intent aims to ad-
dress.

— MandatedSolution: An entity representing the solution accepted as a result
of the design deliberation process.

— Argument: An entity representing the argument presented against a potential
solution.

— Justification: An entity representing the justification presented in support
of a potential solution.

— fulfillsRequirements: arelationship that identifies the design requirement
being fulfilled by the design.

— hasStatus: a relationship that identifies the status of the design issue. Typ-
ically values are, active, terminated, onHold and resolved.

— usesAssumption: a relationship that identifies the assumptions that form
the basis of a solution.

2.4 Graphical representation

Figure [I] illustrates the graphical representation of DIO. It depicts the entities
defined for the pattern and their relationships with entities from PROV-O.

3 The DIO Axiomatisation

— One of the most significant entities in DIO is the DesignIntentArtifact.
A design intent artifact is an argument, justification, evidence, assumption
or heuristic among others which is generated as part of the design decision
process. It is required to have certain mandatory properties and relationships
as part of its definition. It must include a description, a version number and
the time at which it was generated.

Class: DesignlIntentArtifact
SubClassOf:
(description some xsd:string)
and (version some xsd:string)
and (prov:generatedAtTime some xsd:dateTime)
Class: dio:Argument
SubClassOf:
dio:DesignIntentArtifact

— A design intent artifact is related to the agent, prov:Agent, that created or
generated it using prov:wasAttributedTo.

Class: DesignIntentArtifact
SubClassOf:
prov:wasAttributedTo some prov:Agent

provwasAttributedTo some_prov:Agent
g

rafssubCassOf rds subCSSOF

O onHold / Datatype xsd:sting |
o ® / /

s[4 otype — O Resove

ep purlorgdio)
v g jw3.org/ms prove

Fig. 1: Graphical Representation of DIO

— A design intent artifact is also attributed to the DesignIntent against which
it was created.

Class: DesignIntentArtifact
SubClassOf:
prov:wasAttributedTo some dio:DesignIntent

4 Specialising DIO

The Software Design Intent (SDI) ontology is a minimalistic specialisation of DIO
to capture the design intent during the Software design phases. As illustrated
in Figure [2] SDI specialises DIO by extending the class Design. It associates
the activity of software development, SoftwareDevelopment, with the design by
using prov:used. Finally the software that is produced is related to the software
development activity using prov:wasGeneratedBy.

5 Conclusions

The need for the representation of design intents, that originate to solve a typ-
ical design problem or a design issue, in order to fulfill a design requirement is
universal across all domains. It is extremely critical to curate this knowledge

Fig. 2: Graphical Representation of SDI

for posterity and inform future generations of designs. In this paper, we have
proposed a generic content ontology design pattern, DIO, that can be applied
in a domain agnostic way in various design decision phases. We have shown how
a minimalistic extension of DIO for the domain of Software Engineering can be
utilised to associate software design rationales with the accepted software design.
The work is currently in its initial stages and much still needs to be done. In
future we aim to apply the pattern, for querying and deriving inferences over the
knowledge curated from several design projects which are currently in various
phases of making design decisions.

Acknowledgments

The research presented in this paper has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement

No 644055.

References

1. A. P. de Medeiros, D. Schwabe, and B. Feij6. Kuaba ontology: Design rationale
representation and reuse in model-based designs. In Proceedings of the 24th Inter-
national Conference on Conceptual Modeling, ER’05, pages 241-255, Berlin, Heidel-
berg, 2005. Springer-Verlag.

2. Y. Zhang, X. Luo, J. Li, and J. J. Buis. A semantic representation model for design
rationale of products. Adv. Eng. Inform., 27(1):13-26, Jan. 2013.

	DIO: A pattern for capturing the intents underlying designs

