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Abstract. The parametric expressibility of functions is a generalization
of the expressibility via composition. All parametrically closed classes
of functions (p-clones) form a lattice. For finite domains the lattice is
shown to be finite, however straight-forward iteration over all functions
is infeasible, and so far the p-indecomposable functions are only known
for domains with two and three elements. In this work we show how p-
indecomposable functions can be computed more efficiently by means of
an extended version of attribute exploration (AE). Due to the growing
number of attributes standard AE is not able to guarantee the discovery
of all p-indecomposable functions. We introduce an extension of AE and
investigate its properties. We investigate the conditions allowing us to
guarantee the success of exploration. In experiments the lattice of p-
clones on three-valued domain was reconstructed.
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1 Introduction

The expressibility of functions is a major topic in mathematics and has a long
history of investigation. The interest is explainable: when one aims at investi-
gating any kind of functional properties, which classes of functions should one
consider? If a function f is expressible through a function h then it often means
that f inherits properties of h and should not be treated separately. Moreover,
if h in turn is expressible through f then both have similar or even the same
properties. Therefore, partition with respect to expressibility is meaningful and
can be the first step in the investigation of functions.

With the development of electronics and logical circuits a new question arises:
if one wants to be able to express all possible functions which minimal set of
functions should one have at hands? One of the first investigations in this direc-
tion was carried out in [Pos42]; in this work all the Boolean classes of functions
closed under expressibility are found and described. Afterwards many important
works were dedicated to related problems such as the investigation of the struc-
ture of the lattice of functional classes, for example, [Yab60,Ros70]. However, it
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is known that the lattice of classes of functions closed under expressibility is in
general uncountably infinite. In [Kuz79] a more general type of functional ex-
pressibility was introduced – parametric expressibility. A significant advantage
of this type of expressibility is that for any finite domain Ak, |A|= k the lattice of
all classes closed under parametric expressibility classes of functions (p-clones)
is finite [BW87]. However, finding this lattice is a complex task. For k = 3 in
a thorough and tedious investigation [Dan77] it was proved that a system of
197 functions forms the lattice of all p-clones. The investigation was carried out
without the use of computers.

In this paper we introduce, develop, and investigate the methods and tools
for automation of the exploration of the lattice of p-clones. Therefore, this paper
“applied” to A3 can be seen as complementing the work [Dan77] where a proof
of the correctness of the results obtained using the elaborated in this paper tools
can be found. Namely, in this paper we answer the question how to find all
the p-clones, whereas in [Dan77] it is proved that certain functions allow us to
construct the desired lattice. The presented methods and tools are extensible to
larger domains as well.

Contributions

– New original approach to exploring the lattice of p-clones introduced;
– An extension of the standard exploration procedure is introduced and inves-

tigated;
– The whole procedure is implemented and executed; the obtained results con-

firm with the previously known results;
– It is proved that for certain starting conditions the desired lattice will nec-

essarily be eventually discovered.

2 Formal Concept Analysis

In what follows we keep to standard definitions of FCA [GW99]. Let G and
M be sets and let I ⊆ G × M be a binary relation between G and M . The
triple K := (G,M, I) is called a (formal) context. The set G is called the set of
objects. The set M is called the set of attributes. A context (G∗,M∗, I∗) such
that G∗ ⊆ G, M∗ ⊆M , and I∗ = I ∩G∗ ×M∗ is called a subcontext of K.

Consider mappings ϕ: 2G → 2M and ψ: 2M → 2G:

ϕ(X) := {m ∈M | gIm for all g ∈ X},

ψ(A) := {g ∈ G | gIm for all m ∈ A}.
Mappings ϕ and ψ define a Galois connection between (2G,⊆) and (2M ,⊆), i.e.
ϕ(X) ⊆ A ⇔ ψ(A) ⊆ X. Usually, instead of ϕ and ψ a single notation (·)′ is
used.

Let X ⊆ G, A ⊆ M . A formal concept C of a formal context (G,M, I) is a
pair (X,A) such that X ′ = A and A′ = X. The subset of objects X is called the

36 Artem Revenko



extent of C and is denoted by ext(C), and the subset of attributes A is called
the intent of C and is denoted by int(C). For a context (G,M, I), a concept
C1 = (X,A) is a subconcept of a concept C2 = (Y,B) (C1 ≤ C2) if X ⊆ Y or,
equivalently, B ⊆ A. This defines a partial order on formal concepts. The set of
all formal concepts of (G,M, I) is denoted by B(G,M, I).

An implication of K = (G,M, I) is defined as a pair (A,B), where A,B ⊆M ,
written A → B. A is called the premise, B is called the conclusion of the
implication A → B. The implication A → B is respected by a set of attributes
N if A * N or B ⊆ N . We say that the implication is respected by an object g
if it is respected by the intent of g. If g does not respect an implication then g
is called a counter-example. The implication A → B holds (is valid) in K if it
is respected by all g′, g ∈ G, i.e. every object, that has all the attributes from
A, also has all the attributes from B (A′ ⊆ B′). A unit implication is defined
as an implication with only one attribute in its conclusion, i.e. A → b, where
A ⊆ M, b ∈ M . Every implication A → B can be regarded as a set of unit
implications {A→ b | b ∈ B}.

An implication basis of a context K is defined as a set LK of implications of
K, from which any valid implication for K can be obtained as a consequence and
none of the proper subsets of LK has this property. We call the set of all valid
in K the implicative theory of K. A minimal in the number of implications basis
was defined in [GD86] and is known as the canonical implication basis.

An object g is called reducible in a context K := (G,M, I) iff ∃X ⊆ G \ g :
g′ = X ′. Note that a new object is going to be reducible if in the context there
already exists a formal concept with the same intent as the intent of the new
object. Reducible objects neither contribute to any implication basis nor to the
concept lattice [GW99], therefore, if one is only interested in the implicative
theory or in the concept lattice of the context reducible objects can be eliminated.
In what follows we introduce other types of reducibility, therefore, we refer to
this type of reducibility as plain reducibility.

In what follows the canonical implication basis is used, however, the investi-
gation could be performed using another implication basis.

Attribute Exploration (AE) consists in iterations of the following steps until
stabilization: computing the implication basis of a context, finding counterexam-
ples to implications, updating the context with counterexamples as new objects,
recomputing the basis. AE has been successfully used for investigations in many
mostly analytical areas of research. For example, in [KPR06] AE is used for
studying Boolean algebras, in [Dau00] lattice properties are studied, in [Rev14]
algebraic identities are studied.

3 Expressibility of Functions

Consider a set Ak, |A|= k, k ∈ N. Consider a function f : Aar(f) → A (ar(f)
denotes the arity of f), the set of all possible functions over Ak of different
arities is denoted by Uk. The particular functions pin(x1, . . . xn) = xi are called
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the projections. The set of all projections is denoted by Pr. In what follows
instead of writing (x1, . . . xn) we use a shorter notation (x).

Let H ⊆ Uk. We say that f is compositionally expressible through H (denoted
f ≤ H) if the following condition holds:

f(x) ≡ h(j1(x), . . . , jar(h)(x)), (1)

for some h, j1, . . . jm ∈ H ∪ Pr.
A functional clone is a set of functions containing all projections and closed

under compositions. The set of all functional clones over a domain of size k = 2
forms a countably infinite lattice [Pos42]. However, if k > 2 then the set of all
functional classes is uncountable [YM59].

Let H ⊆ Uk and for any i ∈ [1,m] : ti, si ∈ H ∪Pr. We say that f, f ∈ Uk is
parametrically expressible throughH (denoted f ≤p H) if the following condition
holds:

f(x) = y ⇐⇒ ∃w
m∧

i=1

ti(x,w, y) = si(x,w, y). (2)

The notation J ≤p H means that every function from J is parametrically ex-
pressible through H. A parametric clone (or p-clone) is a set of functions closed
under parametric expressibility and containing all projections. We consider a spe-
cial relation f• of arity ar(f)+1 on Ak called the graph of function f . f• consists
of the tuples of the form (x, f(x)). If function h is compatible with f•, i.e. if for
all valuations of variables xij in Ak holds the identity (ar(f) = n, ar(h) = m)

f(h(x11, . . . , x1m), . . . h(xn1, . . . , xnm)) ≡ h(f(x11, . . . , xn1), . . . f(x1m, . . . , xnm)),

then we say that functions f and h commute (denoted f ⊥ h). For a set of
functions H we write f ⊥ H to denote that for all h ∈ H : f ⊥ h. The
commutation property is commutative, i.e. f ⊥ h iff h ⊥ f .

The centralizer of H is defined by H⊥ = {g ∈ Uk | g ⊥ H}. In [Kuz79] it is
shown that if f ≤p H then f ⊥ H⊥.

x1 x2 f(x1, x2)

0 0 1

0 1 0

1 0 0

1 1 1

f f f
h 0 1 1
h 0 0 1

h 1 0 6=

h(x1, x2) x1 x2

1 0 0

1 0 1

0 1 0

1 1 1

Fig. 1. Functions f and h do not commute

A function f is called p-indecomposable if each system H parametrically
equivalent to {f} (i.e. f ≤p H and H ≤p f) contains a function parametrically
equivalent to f . Hence, for each p-indecomposable function there exists a class of
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p-indecomposable functions that are parametrically equivalent to it. From each
such class we take only one representative (only one p-indecomposable function)
and gather them in a set of p-indecomposable functions denoted by F pk . A p-
clone H cannot be represented as an intersection of p-clones strictly containing
H if and only if there exists a p-indecomposable function f such that H = f⊥⊥.
Hence, in order to construct the lattice of all p-clones it suffices to find all p-
indecomposable functions. The lattice of all p-clones for any finite k is finite
[BW87], hence, F pk is finite.

In [BW87] it is proved that it suffices to consider p-indecomposable functions
of arity at most kk, however, the authors conjecture that the actual arity should
be equal to k for k ≥ 3. The conjecture is still open. Nevertheless, thanks to
results reported in [Dan77], we know that the conjecture holds for k = 3.

4 Exploration of P-clones

The knowledge about the commutation properties of a finite set of functions
F ⊆ Uk can be represented as a formal context KF = (F, F,⊥F ), where ⊥F⊆ F 2,
a pair (f1, f2) ∈ F 2 belongs to the relation ⊥F iff f1 ⊥ f2. Note that the relation
⊥F is symmetric, hence, the objects and the attributes of the context are the
same functions.

The goal of this paper is to develop methods for constructing the lattice
of all p-clones on A3. As already noted, for the purpose of constructing the
lattice of p-clones it suffices to find all p-indecomposable functions F pk . The set
of supremum-irreducible elements of the lattice of p-clones is exactly the set
{f∗∗ | f ∈ F pk }.

For any domain of size k there exist kk
k

functions of arity k. Therefore,
to compute the context of all commuting functions KUk

one has to perform

O(kk
k ∗ kkk ∗ kk2) operations (taking into consideration only functions of arity k

and the cost of commutation check in the worst case). For k = 3 we count about
1030 operations. Therefore, already for k = 3 a brute-force solution is infeasible.3

We intend to apply AE to commuting functions. For this purpose we de-
veloped and implemented methods for finding counter-examples to implications
over functions from Uk [Rev15]. These methods are not presented in this paper
for the sake of compactness. However, as the number of attributes is not fixed,
the success of applying AE is not guaranteed, i.e. it is not guaranteed that the
complete lattice of p-clones will eventually be discovered using AE.

4.1 Object-Attribute Exploration

We now describe which commuting properties a new function g 6∈ F should
possess in order to alter the concept lattice of the original context K = (F, F,⊥)
despite the fact that the intent of g is equal to an intent from B(F, F,⊥F ).

3 Of course one can use dualities, but it does not give a feasible solution as well as
there exist only k ∗ (k − 1) dualities.
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To distinguish between binary relations on different sets of functions we use
subscripts. The commutation relation on F is denoted by ⊥F , i.e. ⊥F= {(h, j) ∈
F 2 | h ⊥ j}. The context with the new function (F ∪ g, F ∪ g,⊥F∪g) is denoted
by KF∪g. The derivation operator for the context KF∪g is denoted by (·)⊥F∪g .

Proposition 1. Let C ∈ B(F, F,⊥) such that ext(C) * int(C). Let g ∈ Uk, g /∈
F be a function such that g⊥F∪g ∩ F = int(C) (g is reducible in KF ).

g is irreducible in KF∪g ⇔ g ⊥ g.

Proof. As ext(C) * int(C) and for all f ∈ F \ int(C) : g 6⊥ f it follows that
g 6⊥ ext(C). We prove the contrapositive statement: g is reducible in KF∪g ⇔
g 6⊥ g.

⇐ As g 6⊥ g we have g⊥F∪g = int(C) = ext(C)⊥F∪g . Therefore, g is reducible.
⇒ As g is reducible we obtain g⊥F∪g = H⊥F∪g for some H ⊆ F . Fix this H.

As H⊥F∪g = int(C) we have H⊥F∪g⊥F∪g = ext(C). Suppose H ⊆ int(C),
then H⊥F∪g⊥F∪g ⊆ int(C)⊥F∪g⊥F∪g = int(C). As H⊥F∪g⊥F∪g = ext(C) and
ext(C) * int(C) we arrive at a contradiction. Therefore, H * int(C). Hence,
g 6⊥ H, therefore, g 6∈ H⊥F∪g , hence, g 6∈ g⊥F∪g .

Corollary 1. If g is reducible in KF , but irreducible in KF∪g and g ⊥ g then
ext(C)→ g holds in KF∪g.

Proof. As g⊥F∪g = int(C)∪{g} and ext(C)⊥F∪g = int(C) we have ext(C)⊥F∪g ⊂
g⊥F∪g , therefore, ext(C)→ g.

The statement dual to Proposition 1 holds as well.

Proposition 2. Let C ∈ B(F, F,⊥F ) such that ext(C) ⊆ int(C). Let g ∈
Uk, g /∈ F be a function such that g⊥F∪g ∩ F = int(C) (g is reducible in KF ).

g is irreducible in KF∪g ⇔ g 6⊥ g.

Proof. As ext(C) ⊆ int(C) and g ⊥ int(C) then g ⊥ ext(C). We prove the
contrapositive statement: g is reducible in KF∪g ⇔ g ⊥ g.

⇐ As g ⊥ g and g ⊥ ext(C) we have ext(C)⊥F∪g = int(C) ∪ {g} = g⊥F∪g .
Hence, g is reducible.

⇒ As g is reducible we obtain g⊥F∪g = H⊥F∪g for some H ⊆ F . Fix this H.
As g ⊥ int(C) we have H ⊥ int(C), hence, H ⊆ ext(C). As g ⊥ ext(C) we
have g ⊥ H, hence, g ∈ H⊥F∪g , therefore, g ∈ g⊥F∪g and g ⊥ g.

Corollary 2. If g is reducible in KF , but irreducible in KF∪g and g 6⊥ g then
g → ext(C) holds in KF∪g.

Proof. As g⊥F∪g = int(C) and ext(C)⊥F∪g = int(C) ∪ {g} we have g⊥F∪g ⊂
ext(C)⊥F∪g , therefore, g → ext(C).

In order to distinguish reducibility in the old context KF and in the new
context KF∪g we introduce a new notation.
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Definition 1. We call a function g that is reducible in KF , but irreducible in
KF∪g, first-order irreducible for KF . If g is reducible for KF and reducible in
KF∪g we call it first-order reducible for KF .

We remind that if g is irreducible in (F∪g, F,⊥F ∪{(g, f) ∈ {g}×F | f ⊥ g})
we call it plainly irreducible. Hence, if function is first-order reducible for KF
then it is also plainly reducible in KF . Note that g is plainly irreducible in KF
iff g is a counter-example to some valid in KF implication.

Next we present an example with functions from U3, in order to explicitly
show this we add 3 in the subscript of every function. The numbering of the
functions is induced by the lexicographic ordering on the outputs of the func-
tions [Rev15]. We use superscripts ·u for unary, ·b for binary, and ·t for ternary
functions.

Example 1. The context under consideration K(3)
0 is presented in Figure 2. The

implication basis of K(3)
0 is empty, therefore, there exist no plainly irreducible

functions. The function f b3,756 has the following commuting properties: f b3,756 ⊥
{fu3,0, f b3,12015} and f b3,756 6⊥ fu3,1. Moreover, f b3,756 6⊥ f b3,756 and for the corre-

sponding concept C holds ext(C) = {fu3,0} ⊂ {fu3,0, f b3,12015} = int(C). As follows

from Proposition 2, the function f b3,756 is first-order irreducible for K(3)
0 .

fu
3,0 fu

3,1 fb
3,12015

fu
3,0 × ×
fu
3,1 × ×
fb
3,12015 × ×

Fig. 2. Context K(3)
0 of functions on domain A3 containing fu

3,0, f
u
3,1, f

b
3,12015

Corollary 3. Let C ∈ B(F, F,⊥F ), g ∈ Uk, g /∈ F , and g be first-order reducible
for KF .

ext(C) ⊥ g ⇔ g ⊥ g.

Proof. Follows from Propositions 1 and 2 and the fact that ext(C) ⊥ g ⇔
ext(C) ⊆ int(C).

There remains a possibility that a union of sets of reducible functions is
irreducible. We proceed with the simplest case when there are only two sets
each containing a single first-order reducible function for the current context.
We prove several propositions about such pairs of first-order reducible functions.
The consequences of these propositions are deeper investigated in Section 4.2.

We consider a context KF and new functions g1, g2 ∈ Uk, g1, g2 6∈ F . We
denote {g1, g2} by G, ⊥F∪G= {(h, j) ∈ (F ∪ G)2 | h ⊥ j}, the context (F ∪
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G,F ∪G,⊥F∪G) is denoted by KF∪G, the corresponding derivation operator is
denoted by (·)⊥F∪G . As in the case with one function, for i ∈ {1, 2} : gi is not a
counter-examples to a valid implication iff g⊥F∪G

i ∩F ∈ int(G,M, I). We denote
the corresponding intents by int(C1) and int(C2), respectively.

Proposition 3. Let C1, C2 ∈ B(F, F,⊥F ) and g1, g2 /∈ F be first-order re-
ducible for KF . Suppose g1 ⊥ g2.

Both g1, g2 are irreducible in KF∪G ⇔ ext(C1) * int(C2).

Proof. As g1 is irreducible it holds that g⊥F∪G
1 6= ext(C1)⊥F∪G . From Corollary

3 follows that g1 ∈ ext(C1)⊥F∪G iff g1 ∈ g⊥F∪G
1 . Therefore, ext(C1)⊥F∪G =

g⊥F∪G
1 \ {g2}. Hence, ext(C1) 6⊥ g2, hence, ext(C1) * int(C2). Similarly for g2,

ext(C2) * int(C1).

Proposition 4. Let C1, C2 ∈ B(F, F,⊥F ) and g1, g2 /∈ F be first-order re-
ducible for KF . Suppose g1 6⊥ g2.

Both g1, g2 are irreducible in KF∪G ⇔ ext(C1) ⊆ int(C2).

Proof. As g1 is irreducible it holds that g⊥F∪G
1 6= ext(C1)⊥F∪G . From Corollary

3 follows that g1 ∈ ext(C1)⊥F∪G iff g1 ∈ g⊥F∪G
1 . Therefore, ext(C1)⊥F∪G =

g⊥F∪G
1 ∪ {g2}. Hence, ext(C1) ⊥ g2, hence, ext(C1) ⊆ int(C2). By the properties

of derivation operators, ext(C2) ⊆ int(C1).

The functions mentioned in Propositions 4 and 3 can be called second-order
irreducible for KF . In the next proposition we show that it is not necessary to
look for three functions at once in order to find all p-indecomposable functions.
Therefore, we do not need to define third-order irreducibility.

Here we use the notation: for I ⊆ {1, 2, 3} : LI = {gi | i ∈ I}. We omit the
curly brackets in I, i.e. L{1,2} = L12 = {g1, g2}.

Proposition 5. Let G = {g1, g2, g3} be a set of functions such that G ∩ F = ∅
and for i ∈ {1, 2, 3} : g⊥F∪G

i ∩ F = int(Ci). If not all functions from G are
reducible in KF∪G then there exists L ⊂ G such that not all functions from L
are reducible in KF∪L.

Proof. Let g1 be reducible in KF∪L12
and in KF∪L13

. Then there exists H ⊆
F ∪ {g2} : H⊥F∪L12 = g

⊥F∪L12
1 and J ⊆ F ∪ {g3} : J⊥F∪L13 = g

⊥F∪L13
1 . Fix

these H and J . If either g2 is irreducible in KF∪L2 or g3 is irreducible in KF∪L3

then the proposition is proved. Therefore, we can assume that they are reducible
in corresponding context. Hence, without loss of generality, we can assume that
H,J ⊆ F (i.e. H ∩G = J ∩G = ∅). Note that

g⊥F∪G
1 = g

⊥F∪L13
1 ∪ g⊥F∪L12

1 = J⊥F∪L13 ∪H⊥F∪L12 . (3)

Let g3 ∈ H⊥F∪G . Then g3 ⊥ H. As g⊥F∪G
3 ∩ F = int(C3) we obtain H ⊆

int(C3). Moreover, as int(C3) is an intent in KF we have H⊥F⊥F ⊆ int(C3).
As g⊥F∪G

1 ∩ F = H⊥F = J⊥F = int(C1) we have J⊥F⊥F ⊆ int(C3) and, by

42 Artem Revenko



properties of closure operators, J ⊆ int(C3). Therefore, g3 ⊥ J and g3 ∈ J⊥F∪G .
Similarly, if g2 ∈ J⊥F∪G then g2 ∈ H⊥F∪G . Hence,

H⊥F∪L12 ∪ J⊥F∪L13 = H⊥F∪G ∪ J⊥F∪G . (4)

Combining (3) and (4) we obtain g⊥F∪G
1 = H⊥F∪G ∪ J⊥F∪G . Therefore,

g⊥F∪G
1 = (H ∩ J)⊥F∪G . Hence, g1 is reducible in KF∪G and we arrive at a

contradiction with initial assumption.
Therefore, if g1, g2 are in KF∪L12

then at least g1 is irreducible in KF∪L13
. If

g3 is reducible in KF∪L13 then g1 is reducible in KF∪L1 . Otherwise, both g1, g3
are irreducible in KF∪L13 .

Suppose that a context KF contains all p-indecomposable functions, how-
ever, the task is to prove this fact, i.e. that no further p-indecomposable func-
tions exist. Suppose it has been checked that no counter-examples exist and
every single function g ∈ Uk is first-order reducible for KF . According to the
above propositions it is necessary to look for exactly two functions at once in
order to prove the desired statement. Therefore, in order to complete the proof
for every C1, C2 ∈ B(KF ) one has to find all the functions g1, g2 such that

g
⊥F∪g1
1 ∩ F = int(C1) and g

⊥F∪g2
2 ∩ F = int(C2) and then check if g1 commutes

with g2. Therefore, one has to check the commutation property between all func-
tions (if the context indeed contains all p-indecomposable functions). As already
discussed, this task is infeasible. This result is discouraging. However, having
the knowledge about the final result in some cases we can guarantee that all p-
indecomposable functions will be found even without looking for two functions
at once.

4.2 Implicatively Closed Subcontexts

During the exploration of p-clones one can discover such a subcontext of func-
tions that no further function is a counter-example to existing implications. We
shall say that such a subcontext is implicatively closed, meaning that all the valid
in this subcontext implications are valid in the final context as well. Analysis of
similar constructions can be found in [Gan07].

In order to guarantee the discovery of all p-indecomposable functions (suc-
cess of exploration) it would suffice to find such a subcontext that it is neither
implicatively closed nor contained in any other implicatively closed subcontext.
Suppose the context KF = (F, F,⊥F ), F ⊆ Uk is discovered. As earlier, we de-
note the context of all p-indecomposable functions on Uk by KFp

k
. Let S = F pk \F .

It would be desirable to be able to guarantee the discovery of functions S by con-
sidering only the discovered part of relation ⊥F and the part ⊥FS (=⊥−1SF ), see
Figure 3. Unfortunately, as the next example shows, in general it is not possible.

Example 2. Consider the context in Figure 4. The context contains all the p-
indecomposable functions from U2 and three additional objects g1, g2, g3. Func-
tions with commutation properties as of g1, g2, g3 do not exist. However, if func-
tions with commutation properties as of g1, g2, g3 existed then the functions g1, g2
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F S

F ⊥F ⊥FS

S ⊥SF ⊥S

Fig. 3. Partitioning of the context KF
p
k

of all p-indecomposable functions

would not be counter-examples to any valid in KFp
2 ∪g3 implication. Note that g3

is a counter-example to a valid in KFp
2

implication. Therefore, the subcontext

containing functions F p2 ∪ g3 would be implicatively closed. Moreover, it is even
closed with respect to finding first-order irreducible functions as g1 is reducible
in KFp

2 ∪{g1,g3} and g2 is reducible in KFp
2 ∪{g2,g3}.

However, if instead of g3 we consider the function g4, which differs from g3
only in that g4 commutes with both g1 and g2, then the subcontext containing
F p2 ∪ g4 is neither implicatively closed nor contained in any implicatively closed
subcontext of the context KFp

2 ∪{g1,g2,g4}. The difference between g3 and g4 is
contained in ⊥S in Figure 3. Therefore, in general it is not possible to guarantee
the discovery of functions S without considering ⊥S .

fu
0 fu

1 fb
14 fb

8 f t
212 f t

150 fu
3 g3 g4 g1 g2

fu
0 × × × × × × × ×
fu
1 × × ×
fb
14 × × × × ×
fb
8 × × × ×
f t
212 × × × × ×
f t
150 × × × ×
fu
3 × × × × × × × × ×
g3 × × × ×
g4 × × × × ××× ×××
g1 × × ××× ×
g2 × × ××× × ×

Fig. 4. Context KF
p
2 ∪{g1,g2,g3} from Example 2

Definition 2. Let KH be a context, KF ⊆ KH , S = H \ F . An object s ∈
S is called an essential counter-example for KF if there exists a valid in KF
implication Imp such that
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1. s is a counter-example to Imp;
2. there does not exist an object p ∈ S \ {s} such that p is a counter-example

to Imp.

It is clear that all the essential counter-examples will necessarily be added to
the context during the exploration. The next proposition suggests how one can
check if a counter-example is essential or not.

In the context KFp
3

there are several pairs of functions (f1, f2) such that they
commute with the same functions except for one commutes with itself and the
other does not commute with itself. These functions cannot be essential counter-
examples, because they are counter-examples to the same implications, if any.
However, if they are the only counter-examples to some valid implication then
these functions will eventually be discovered by object-attribute exploration.

Proposition 6. Let s1, s2 ∈ S such that s2 6⊥ s2 and s
⊥Uk
1 = s

⊥Uk
2 ∪ {s2}. If

there exists a valid in KF implication Imp such that the counter-examples are
exactly s1, s2 ∈ S then s1 is first-order irreducible for KF∪s2 and s2 is first-order
irreducible for KF∪s1 .

Proof. s1 in KF∪s2 . As Imp is valid inKF the set s
⊥F∪s1
2 is closed inKF . There-

fore, as follows from Proposition 1 for the object concept of s2 (ext(Cs2) *
int(Cs2)), the function s1 (s1 ⊥ s1) is first-order irreducible.

s2 in KF∪s1 . As Imp is valid in KF the set s
⊥F∪s2
1 is closed in KF . Therefore, as

follows from Proposition 2 for the object concept of s1 (ext(Cs1) ⊆ int(Cs1)),
the function s2 (s2 6⊥ s2) is first-order irreducible.

We have investigated different types of reducibilities, we have shown, that
there do not exist third-order irreducible functions. However, the task of finding
second-order irreducible functions is infeasible. Fortunately, it is possible to find
not only zero-order irreducible functions, but also first-order irreducible func-
tions. Moreover, if it would be possible to prove that the functions undiscovered
at the moment are not second-order irreducible then we can guarantee that all
the p-indecomposable functions will eventually be discovered.

5 Results

We take all unary functions as the starting point. Thanks to earlier investigation
in [Dan77] we know the final context. When we investigate all possible implica-
tively closed partitions such that the implicatively closed subcontext contains
all unary functions we find the following:

– We start with 27 unary functions, 26 of them are p-indecomposable;
– After adding all essential counter-examples we obtain 147 functions;
– After using Proposition 6 we obtain 155 functions;
– There remain 42 functions to be discovered. By direct check we find that

there does not exist an implicatively closed subcontext containing 155 men-
tioned above functions such that all the undiscovered functions are second-
order irreducible.
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Hence, if we start from all unary functions on A3 all the functions F p3 will
eventually be discovered.

The experiment was conducted three times starting from different initial
contexts, all three times the exploration was successful. The exploration stating
from a single constant function fu3,0 took 207 steps.
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