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Pavol Jozef Šafárik University in Košice
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Abstract. We describe properties of compositions of isotone bonds be-
tween L-fuzzy contexts over different complete residuated lattices and
we show that L-fuzzy contexts as objects and isotone bonds as arrows
form a category.

1 Introduction

In Formal Concept Analysis, bonds represent relationships between formal con-
texts. One of the motivations for introducing this notion is to provide a tool
for studying mappings between formal contexts, corresponding to the behavior
of Galois connections between their corresponding concept lattices. The notions
of bonds, scale measures and informorphisms were studied by [14] aiming at a
thorough study of the theory of morphisms in FCA.

In our previous works, we studied generalizations of bonds into an L-fuzzy
setting in [12, 11]. In [13] we also provided a study of bonds between formal
fuzzy contexts over different structures of truth degrees. The bonds were based
on mappings between complete residuated lattices, called residuation-preserving
Galois connections. These mappings were too strict and in [9] we proposed to re-
place them by residuation-preserving pl, kq-connections or residuation-preserving
dual pl, kq-connections between complete residuated lattices.

In the present paper we continue our study [12] of properties of bonds be-
tween formal contexts over different structures of truth degrees; this time we
concern with bonds mimicking isotone Galois connections between concept lat-
tices formed by isotone concept-forming operators. Particularly, we describe the
category of formal fuzzy contexts and isotone bonds between them. The paper
also extends [13, 9] as we consider a setting with fuzzy formal contexts over
different complete residuated lattices.
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The structure of the paper is as follows. First, in Section 2 we recall basic
notions required in the rest of the paper. Section 3.1 considers weak homoge-
neous L-bonds w.r.t. isotone concept-forming operators and their compositions.
Section 3.2 then generalizes the results to the setting of formal fuzzy contexts
over different structure of truth degrees. Finally, we summarize our results and
outline our future research in this area in Section 4.

2 Preliminaries

2.1 Residuated lattices, fuzzy sets, and fuzzy relations

We use complete residuated lattices as basic structures of truth degrees. A com-
plete residuated lattice is a structure L “ xL,^,_,b,Ñ, 0, 1y such that

(i) xL,^,_, 0, 1y is a complete lattice, i.e. a partially ordered set in which arbi-
trary infima and suprema exist;

(ii) xL,b, 1y is a commutative monoid, i.e. b is a binary operation which is
commutative, associative, and ab 1 “ a for each a P L;

(iii) b and Ñ satisfy adjointness, i.e. ab b ď c iff a ď bÑ c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted
by ď. Throughout this work, L denotes an arbitrary complete residuated lattice.

Elements a of L are called truth degrees. Operations b (multiplication) and
Ñ (residuum) play the role of (truth functions of) “fuzzy conjunction” and
“fuzzy implication”.

An L-set (or L-fuzzy set) A in a universe set X is a mapping assigning to
each x P X some truth degree Apxq P L. The set of all L-sets in a universe X is
denoted LX .

The operations with L-sets are defined componentwise. For instance, the
intersection of L-sets A,B P LX is an L-set AXB in X such that pAXBqpxq “
Apxq ^Bpxq for each x P X, etc.

An L-set A P LX is called crisp if Apxq P t0, 1u for each x P X. Crisp L-
sets can be identified with ordinary sets. For a crisp A, we also write x P A for
Apxq “ 1 and x R A for Apxq “ 0. An L-set A P LX is called empty (denoted
by H) if Apxq “ 0 for each x P X. For a P L and A P LX , the a-multiplication
abA and a-shift aÑ A are L-sets defined by

pabAqpxq “ abApxq,
paÑ Aqpxq “ aÑ Apxq.

Binary L-relations (binary L-fuzzy relations) betweenX and Y can be thought
of as L-sets in the universe X ˆ Y . That is, a binary L-relation I P LXˆY be-
tween a set X and a set Y is a mapping assigning to each x P X and each y P Y
a truth degree Ipx, yq P L (a degree to which x and y are related by I).

For an L-relation I P LXˆY we define its transpose as the L-relation IT P
LYˆX given by ITpy, xq “ Ipx, yq for each x P X, y P Y .
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Various composition operators for binary L-relations were extensively studied
by [6]; we will use the following composition operators, defined for relations
A P LXˆF and B P LFˆY :

pA ˝Bqpx, yq “
ł

fPF
Apx, fq bBpf, yq, (1)

pA ŻBqpx, yq “
ľ

fPF
Bpf, yq Ñ Apx, fq. (2)

Note also that for L “ t0, 1u, A˝B coincides with the well-known composition
of binary relations.

We will occasionally use some of the following properties concerning the
associativity of several composition operators, see [2].

Theorem 1. The operator ˝ from above has the following properties concerning
composition.

– Associativity:

R ˝ pS ˝ T q “ pR ˝ Sq ˝ T. (3)

– Distributivity:

p
ď

i

Riq ˝ S “
ď

i

pRi ˝ Sq, and R ˝ p
ď

i

Siq “
ď

i

pR ˝ Siq. (4)

2.2 Formal fuzzy concept analysis

An L-context is a triplet xX,Y, Iy where X and Y are (ordinary nonempty) sets
and I P LXˆY is an L-relation between X and Y . Elements of X are called
objects, elements of Y are called attributes, I is called an incidence relation.
Ipx, yq “ a is read: “The object x has the attribute y to degree a.”

Consider the following pair xX, Yy of operators X : LX Ñ LY and Y : LY Ñ LX

induced by an L-context xX,Y, Iy:
AXpyq “

ł

xPX
Apxq b Ipx, yq, BYpxq “

ľ

yPY
Ipx, yq Ñ Bpyq. (5)

for all A P LX and B P LY . When we consider concept-forming operators in-
duced by multiple L-relations, we write the inducing L-relation as the subscript
of the symbols of the operators. For example, the pair of concept-forming oper-
ators induced by L-relation I are written as xXI , YIy.
Remark 1. Notice that the pair of concept-forming operators can be interpreted
as instances of the composition operators between relations. Applying the iso-
morphisms L1ˆX – LX and LYˆ1 – LY whenever necessary, one could write
them, alternatively, as

AX “ A ˝ I and BY “ I ŽB p“ B Ż ITq.
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Furthermore, denote the set of fixed points of xX, Yy by BXYpX,Y, Iq, i.e.

BXYpX,Y, Iq “ txA,By P LX ˆ LY | AX “ B, BY “ Au. (6)

The set of fixed points endowed with ď, defined by

xA1, B1y ď xA2, B2y if A1 Ď A2 (equivalently B2 Ď B1)

is a complete lattice [5], called an attribute-oriented L-concept lattice associated
with I, and its elements are called (attribute-oriented) formal L-concepts (or just
L-concepts). For thorough studies of attribute-oriented concept lattices, see [5,
7, 15]. In a formal concept xA,By, the A is called an extent, and B is called an
intent. The set of all extents and the set of all intents are denoted by ExtXY and
IntXY, respectively. That is,

ExtXYpX,Y, Iq “ tA P LX | xA,By P BXYpX,Y, Iq for some Bu,
IntXYpX,Y, Iq “ tB P LY | xA,By P BXYpX,Y, Iq for some Au. (7)

Equivalently, we can characterize ExtXYpX,Y, Iq and IntXYpX,Y, Iq as follows

ExtXYpX,Y, Iq “ tBY | B P LY u,
IntXYpX,Y, Iq “ tAX | A P LXu. (8)

We will need the following lemma from [4].

Lemma 1. Consider L-contexts xX,Y, Iy, xX,F,Ay, and xF, Y,By.
(a) IntXYpX,Y, Iq Ď IntXYpF, Y,Bq if and only if there exists A1 P LXˆF such

that I “ A1 ˝B,
(b) ExtXYpX,Y,A ˝Bq Ď ExtXYpX,F,Aq.
Definition 1. An L-relation β P LX1ˆY2 is called a homogeneous weak L-bond3

from L-context xX1, Y1, I1y to L-context xX2, Y2, I2y if

ExtXYpX1, Y2, βq Ď ExtXYpX1, Y1, I1q,
IntXYpX1, Y2, βq Ď IntXYpX2, Y2, I2q.

(9)

In this paper we assume only weak homogeneous L-bonds w.r.t. xX, Yy. In
what follows, we omit the words ‘weak homogeneous’ and the pair of concept-
forming operators and call them just ‘L-bonds’.

We will utilize the following characterization of L-bonds.

Lemma 2 ([7]). An L-relation β P LX1ˆY2 is an L-bond from xX1, Y1, I1y to
xX2, Y2, I2y iff there is such L-relation Se that β “ Se ˝ I2 and YSe

maps extents
of BXYpX2, Y2, I2q to extents of BXYpX2, Y2, I2q.
Remark 2. Note that due to results on fuzzy relational equations we have that
the L-relation Se from Lemma 2 is equal to β Ż IT2 (see [2]).

3 The notion of L-bond was introduced in [12]; however we adapt its definition the
same way as in [8, 10] w.r.t. xX, Yy
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3 Results

Firstly, we describe compositions of L-bonds and show that they form a category.
Later we generalize the results to setting of isotone bonds between fuzzy contexts
over different complete residuated lattices.

3.1 Setting with uniform structures of truth degrees

We start with the notion of composition of L-bonds.

Definition 2. Let β1 be an L-bond from xX1, Y1, I1y to xX2, Y2, I2y and β2 be
an L-bond from xX2, Y2, I2y to xX3, Y3, I3y. Define composition of β1 and β2 as
the L-relation pβ1 Ż IT2 q ˝ β2 P LX1ˆY3 and denote it β1 ‚ β2.

Theorem 2. The composition of L-bonds is an L-bond.

Proof. Let β1 be an L-bond from xX1, Y1, I1y to xX2, Y2, I2y and β2 be an L-
bond from xX2, Y2, I2y to xX3, Y3, I3y. By Lemma 2 there are Se P LX1ˆX2 , Se

1 P
LX2ˆX3 such that β1 “ Se ˝ I2, β2 “ Se

1 ˝ I3. By Definition 2 and Remark 2 we
have

β1 ‚ β2 “ pβ1 Ż IT2 q ˝ β2
“ Se ˝ Se

1 ˝ I3.
Hence we have

IntXYpX1, Y3, β1 ‚ β2q Ď IntXYpX3, Y3, I3q (10)

by Lemma 1 (a). Note that the mapping YSe
maps extents of I2 to extents of I1

by Lemma 2 and that BYβ2 is extent of I2 for any B P IntXYpX3, Y3, I3q by (8).
Thus we have

BYβ1‚β2 “ BYβ2YSe P ExtXYpX1, Y1, I1q,
hence

ExtXYpX1, Y3, β1 ‚ β2q Ď ExtXYpX1, Y1, I1q. (11)

The equalities (10) and (11) imply that β1 ‚ β2 is an L-bond. [\
Lemma 3. Let β be an L-bond from L-context xX1, Y1, I1y to L-context xX2, Y2, I2y.
For any L-set A P LX1 we have that AXI1YI1Xβ “ AXβ .

Proof. Let A be an arbitrary L-set from LX1 . Then

AXI1YI1Xβ Ě AXβ since p´qXβ is isotone and AXI1YI1 Ě A

“ AXβYβXβ
“ AXβYβXI2YI2Xβ due to definition of L-bond

Ě AXI1YI1Xβ since the mapping p´qXI1YI1Xβ is isotone

Hence AXI1YI1Xβ “ AXβ . [\
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The equality from Lemma 3 written in relational form is A˝β “ pA˝I1qŻIT1 q˝β;
we use that to prove the following theorem.

Theorem 3. Composition of L-bonds is associative.

Proof. Let β1 be an L-bond from xX1, Y1, I1y to xX2, Y2, I2y, β2 be an L-bond
from xX2, Y2, I2y to xX3, Y3, I3y, and β3 be an L-bond from xX3, Y3, I3y to
xX4, Y4, I4y. We have

pβ1 ‚ β2q ‚ β3 “ pppβ1 Ż IT2 q ˝ β2q Ż IT3 q ˝ β3 by Definition 2

“ ppSe ˝ β2q Ż IT3 q ˝ β3 by Remark 2

“ ppSe ˝ pS1e ˝ I3qq Ż IT3 q ˝ β3 by Lemma 2

“ pppSe ˝ S1eq ˝ I3q Ż IT3 q ˝ β3 by (3)

“ pSe ˝ S1eq ˝ β3 by Lemma 3

“ Se ˝ pS1e ˝ β3q by (3)

“ Se ˝ pβ2 ‚ β3q “ β1 ‚ pβ2 ‚ β3q by Remark 2 and Definition 2.

[\
We obtain a category of L-contexts and L-bonds.

Theorem 4. The structure of L-contexts and L-bonds forms a category:

Objects are L-contexts,
Arrows are L-bonds where

identity arrow of any formal L-context xX,Y, Iy is its incidence relation I,4

composition of arrows β1 ‚ β2 is given by Definition 2.

Remark 3. The category is equivalent to category of attribute-oriented concept
lattices and isotone Galois connections. That is analogous to results in [12]. We
will bring more about is in full version of the paper.

3.2 Setting with different structures of truth degrees

In this section we generalize the previous results into a setting in which fuzzy con-
texts are defined over different complete residuated lattices. To do that we need
to explore compositions of underlying morphisms called residuation-preserving
pl, kq-connections between complete residuated lattices.

pl, kq-connections and their compositions
Firstly, let us recall definition and basic properties of the pl, kq-connections in-
troduced in [9].

Definition 3 ([9]). Let L1,L2 be complete residuated lattices, let l P L1, k P L2

and let λ : L1 Ñ L2, κ : L2 Ñ L1 be mappings, such that

4 Clearly, I is an L-bond from xX,Y, Iy to xX,Y, Iy.
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‚
1

‚
d

‚ c

‚b ‚
a

‚
0

‚ 1

‚ 0.75

‚ 0.5

‚ 0.25

‚ 0

b 0 a b c d 1

0 0 0 0 0 0 0
a 0 0 0 a 0 a
b 0 0 b 0 b b
c 0 a 0 c a c
d 0 0 b a b d
1 0 a b c d 1

Ñ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 d 1 1 1
b c c 1 c 1 1
c b d b 1 d 1
d a c d c 1 1
1 0 a b c d 1

Fig. 1. Six-element residuated lattice, with b and Ñ as showed in the bottom part
(011010:00A0B0BCAB in [3]), (top left), five-element  Lukasiewicz chain (111:000AB in
[3]), (top right), and pc, 0.5q-connection between them.

– xλ, κy is an isotone Galois connection between L1 and L2,
– κλpa1q “ lÑ1 pl b1 a1q for each a1 P L1,
– λκpa2q “ k b2 pk Ñ2 a2q for each a2 P L2.

We call xλ, κy an pl, kq-connection from L1 to L2. An pl, kq-connection from L1

to L2 is called residuation-preserving if

κpk b2 pλpaq Ñ2 λpbqqq “ κλpaq Ñ1 κλpbq (12)

holds true for any a, b P L2.

Theorem 5 ([9]). Let xλ, κy be a residuation-preserving pl, kq-connection from
L1 to L2. The algebra xfixpλ, κq,^,_,b,Ñ, 0, 1y where ^ and _ are given by
the order

xa1, a2y ď xb1, b2y if a1 ď1 b1,

(equivalently, if a2 ď2 b2)
(13)

and the adjoint pair is given by

xa1, a2y Ñ xb1, b2y “ xa1 Ñ1 b1, k b2 pa2 Ñ2 b2qy (14)

“ xa1 Ñ1 b1, k b2 ppk Ñ2 a2q Ñ2 pk Ñ2 b2qqy, (15)

xa1, a2y b xb1, b2y “ xlÑ1 pl b1 a1 b1 b1q, a2 b2 pk Ñ2 b2qy (16)

“ xlÑ1 pl b1 a1 b1 b1q, pk Ñ2 a2q b2 b2y (17)

is a complete residuated lattice.
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Figure 1 shows an example of pl, kq-connection. We refer the reader to [9] for
ideas behind pl, kq-connections, examples and further details.

Now we define composition of pl, kq-connections and show that it is an pl, kq-
connection as well. In addition, the composition preserves residuation-preservation,
that means that composition of residuation-preserving pl, kq-connections is a
residuation-preserving pl, kq-connection as well.

Theorem 6. Let xλ1, κ1y be an pl1, k2q-connection from L1 to L2 and xλ2, κ2y
be an pk2, j3q-connection from L2 to L3. Then the pair of mappings λ : L1 Ñ L3,
κ : L3 Ñ L1, defined by

λpa1q “ λ2pk2 Ñ2 λ1pa1qq,
κpa3q “ κ1pk2 b2 κ2pa3qq (18)

for each a1 P L1 and a2 P L2, is an pl1, j3q-connection from L1 to L3.

Proof. First, we prove that κλpa1q “ l1 Ñ1 pl1 b1 a1q for each a1 P L1 and
λκpa2q “ j3 b3 pj3 Ñ3 a3q for each a3 P L3. For each a1 P L1, we have

κλpa1q “ κ1pk2 b2 κ2pλ2pk2 Ñ2 λ1pa1qqqq
“ κ1pk2 b2 pk2 Ñ2 pk2 b pk2 Ñ2 λ1pa1qqqqq
“ κ1pk2 b2 pk2 Ñ2 λ1pa1qqq
“ κ1pλ1pκ1pλ1pa1qqqq
“ κ1pλ1pa1qq
“ l1 Ñ1 pl1 b1 a1q.

Similarly, we have for each a3 P L3

λκpa3q “ λ2pk2 Ñ2 λ1pκ1pk2 b2 κ2pa3qqqq
“ λ2pk2 Ñ2 pk2 b2 pk2 Ñ2 pk2 b2 κ2pa3qqqqq
“ λ2pk2 Ñ2 pk2 b2 κ2pa3qqqqq
“ λ2pκ2pλ2pκ2pa3qqqq
“ λ2pκ2pa3qq
“ j3 b3 pj3 Ñ3 a3q.

Since κλpa1q “ l1 Ñ1 pl1 b1 a1q ě1 a1 and λκpa3q “ j3 b3 pj3 b3 a3q ď3 a3 we
only need to show monotony to prove that xλ, κy is an isotone Galois connection:
For each a1, b1 P L1 we have

a1 ď1 b1 implies λ1pa1q ď2 λ1pb1q since λ1 is monotone,

implies k2 Ñ2 λ1pa1q ď2 k2 Ñ2 λ1pb1q since Ñ2 is monotone

in its second argument,

implies λ2pk2 Ñ2 λ1pa1qq ď3 λ2pk2 Ñ2 λ1pb1qq since λ2 is monotone.

Thus a1 ď1 b1 implies λpa1q ď3 λpb1q for each a1, b1 P L1. Similarly, one can
show that a3 ď3 b3 implies κpa3q ď1 κpb3q.

[\
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Theorem 7. Let xλ1, κ1y be a residuation-preserving pl1, k2q-connection from
L1 to L2 and xλ2, κ2y be a residuation-preserving pk2, j3q-connection from L2 to
L3. Then the pair of mappings λ : L1 Ñ L3, κ : L3 Ñ L1, defined by (18), is a
residuation-preserving pl1, j3q-connection from L1 to L3.

Proof. For each a1, b1 P L1 we have

κλpa1q Ñ1 κλpb1q “
“ pl1 Ñ1 pl1 b1 a1qq Ñ1 pl1 Ñ1 pl1 b1 b1qq
“ κ1λ1pa1q Ñ1 κ1λ1pb1q
“ κ1pk2 b2 pλ1pa1q Ñ2 λ1pb1qqq
“ κ1pk2 b2 pλ1κ1λ1pa1q Ñ2 λ1κ1λ1pb1qqq
“ κ1pk2 b2 ppk2 b2 pk2 Ñ2 λ1pa1qqq Ñ2 pk2 b2 pk2 Ñ2 λ1pb1qqqqq
“ κ1pk2 b2 ppk2 b2 pk2 Ñ2 pk2 b2 pk2 Ñ2 λ1pa1qqqqq Ñ2 pk2 b2 pk2 Ñ2 λ1pb1qqqqq
“ κ1pk2 b2 ppk2 Ñ2 pk2 b2 pk2 Ñ2 λ1pa1qqqq Ñ2 pk2 Ñ2 pk2 b2 pk2 Ñ2 λ1pb1qqqqq
“ κ1pk2 b2 pκ2λ2pk2 Ñ2 λ1pa1qq Ñ2 κ2λ2pk2 Ñ2 λ1pb1qqqq
“ κ1pk2 b2 κ2pj3 b3 pλ2pk2 Ñ2 λ1pa1qq Ñ3 λ2pk2 Ñ2 λ1pb1qqqqq
“ κ1pk2 b2 κ2pj3 b3 pλpa1q Ñ3 λpb1qqqq
“ κpj3 b3 pλpa1q Ñ3 λpb1qqq.

[\
We call xλ, κy from (18) a composition of xλ1, κ1y and xλ2, κ2y and we denote

it as xλ1, κ1y ‚ xλ2, κ2y “ xλ1 ‚ λ2, κ1 ‚ κ2y. Now we show, that the composition
of pl, kq-connections is associative.

Theorem 8. Let xλ1, κ1y be an pl1, k2q-connection from L1 to L2, xλ2, κ2y be
a pk2, j3q-connection from L2 to L3, and xλ3, κ3y be a pj3,m4q-connection from
L3 to L4. Then

xλ1, κ1y ‚ pxλ2, κ2y ‚ xλ3, κ3yq “ pxλ1, κ1y ‚ xλ2, κ2yq ‚ xλ3, κ3y.
Proof. We have for each a P L1

pλ1 ‚ pλ2 ‚ λ3qqpa1q “ pλ2 ‚ λ3qpk2 Ñ2 λ1pa1qq
“ λ3pj3 Ñ λ2pk2 Ñ2 λ1pa1qqq
“ λ3pj3 Ñ pλ1 ‚ λ2qpa1qq
“ ppλ1 ‚ λ2q ‚ λ3qpa1q

and similarly for the κ-part. [\
Theorem 9. The following structure forms a category.

Objects are pairs xL, ey, where L is a complete residuated lattices and e P L.
Arrows from xL1, ly to xL2, ky are pl, kq-connections from L1 to L2, where
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identity arrow on any xL, ey is pe, eq-connection xλ, κy where λpaq “ eba
and κpaq “ eÑ a for each a P L.

composition of arrows is as defined in (18).

If we use just residuation-preserving pl, kq-connections we obtain a sub-category.

Now, we can explore bonds based on residuation-preserving pl, kq-connections.

Definition 4. Let L1,L2 be complete residuated lattices, xλ, κy be residuation-
preserving pl, kq-connection from L1 to L2, and let xX1, Y1, I1y and xX2, Y2, I2y
be L1-context and L2-context, respectively. We call β P LX1ˆY2

xλ,κy a xλ, κy-bond

from xX1, Y1, I1y to xX2, Y2, I2y if the following inclusions hold.

ExtMOpX1, Y2, βq Ď ExtXYpX1, Y1, κλpI1qq, (19)

IntMOpX1, Y2, βq Ď IntXYpX2, Y2, λκpI2qq. (20)

The concept-forming operators xM,Oy induced by xλ, κy-bond β from xX1, Y1, I1y
to xX2, Y2, I2y are given by5

AMβ “ λpAqXproj2pβq ,

BOβ “ κpBqYproj1pβq .
(21)

Theorem 10. Let xX1, Y1, I1y be an L1-context, xX2, Y2, I2y be an L2-context,
and xλ, κy an pl, kq-connection from L1 to L2. Then β P Lxλ,κy is a xλ, κy-bond
from xX1, Y1, I1y to xX2, Y2, I2y if and only if it is a Lxλ,κy-bond w.r.t. xX, Yy from
xX1, Y1, xκλpI1q, λpI1qyy to xX2, Y2, xκpI2q, λκpI2qyy.
Proof. Directly from the definition and (21). [\

For what follows we will need the following product of fuzzy relations. Let
xλ1, κ1y be pl1, k2q-connection from L1 to L2, xλ2, κ2y be pk2,m3q-connection
from L2 to L3, and I P LXˆYxλ1,κ1y, J P LYˆZxλ2,κ2y. Then I b J P LXˆZxλ1‚λ2,κ1‚κ2y is

defined as

I b J “ xκ1pKq, λ2pk2 Ñ2 Kqy where K “ proj2pIq ˝2 proj1pJq (22)

and ˝2 is composition of L2-relations (1).

Lemma 4. Let xX1, Y1, I1y be an L1-context, xX2, Y2, I2y be an L2-context, and
xλ, κy an pl, kq-connection from L1 to L2.

(a) An Lxλ,κy-relation β for which exist Lxλ,κy-relations Se P LX1ˆX2

xλ,κy and Si P
LY1ˆY2

xλ,κy such that

β “ xκλpI1q, λpI1qyb Si “ Se b xκpI2q, λκpI2qy
is a xλ, κy-bond from xX1, Y1, I1y to xX2, Y2, I2y.

5 proj1, proj2 denote projection of first and second component of a pair, respectively.
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(b) Each xλ, κy-bond β from xX1, Y1, I1y to xX2, Y2, I2y satisfies that there is
Se P LX1ˆX2

xλ,κy such that

β “ Se b xκpI2q, λκpI2qy.
Proof. From Theorem 10 and Lemma 1. [\
Theorem 11. Let xλ1, κ1y be an pl1, k2q-connection from L1 to L2, xλ2, κ2y be
an pk2, j3q-connection from L2 to L3, β1 be xλ1, κ1y-bond from xX1, Y1, I1y to
xX2, Y2, I2y, and β2 be xλ2, κ2y-bond from xX2, Y2, I2y to xX3, Y3, I3y.

β “ Se b β2, (23)

where Se “ β1 Ż xκ1pIT2 q, λ1κ1pIT2 qy, is a xλ1 ‚λ2, κ1 ‚κ2y-bond from xX1, Y1, I1y
to xX3, Y3, I3y.

Let us denote β from (23) as β “ β1 ‚ β2 and call it a composition of isotone
xλ, κy-bonds. Now we show associativity of this composition.

Theorem 12. Let xλ1, κ1y be an pl1, k2q-connection from L1 to L2, xλ2, κ2y be
an pk2, j3q-connection from L2 to L3, xλ3, κ3y be an pj3,m4q-connection from L3

to L4, and βi be xλi, κiy-bond from xXi, Yi, Iiy to xXi`1, Yi`1, Ii`1y. Then

β1 ‚ pβ2 ‚ β3q “ pβ1 ‚ β2q ‚ β3.
Proof. Follows from Theorem 3, Theorem 8, and Theorem 10. [\

Finally, we can state that L-contexts over different structures of truth degrees
and bonds between them form a category.

Theorem 13. Objects are pairs xK, ey, where K is a L-context and e P L.
Arrows between xK1, ly and xK2, ky, where K1 is an L1-context, K2 is an

L2-context and l P L1, k P L2, are xλ, κy-bonds, where xλ, κy is an pl, kq-
connection.
identity arrow for a pair xK, ey of L-context xX,Y, Iy and e is xλ, κy-

bond I with xλ, κy are pe, eq-connections xλ, κy where λpxq “ eÑ a and
κpxq “ eb a for each a P L.

composition of arrows β1 ‚ β2 is given by (23).

4 Future Research

Our future research in this area includes addressing the following issues:

– Antitone bonds between fuzzy contexts over different complete residuated
lattices were studied in [9]; basics of Isotone bonds are presented in this
paper. We want to extend this study to heterogeneous bonds[11]. We will
bring results on them and their compositions in the full version of this paper.

– As block relations are a special case of bonds, they share many properties
(see [11]). It can be fruitful to study the compositions described in this paper
in context of block L-relations. In addition, the composition applied on block
(crisp) relations correspond with multiplication used in calculus studied in
[1]. This observation deserves deeper study; we believe that this can bring a
new interesting insight to the calculus.
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