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Abstract. We describe properties of compositions of isotone bonds be-
tween L-fuzzy contexts over different complete residuated lattices and
we show that L-fuzzy contexts as objects and isotone bonds as arrows
form a category.

1 Introduction

In Formal Concept Analysis, bonds represent relationships between formal con-
texts. One of the motivations for introducing this notion is to provide a tool
for studying mappings between formal contexts, corresponding to the behavior
of Galois connections between their corresponding concept lattices. The notions
of bonds, scale measures and informorphisms were studied by [14] aiming at a
thorough study of the theory of morphisms in FCA.

In our previous works, we studied generalizations of bonds into an L-fuzzy
setting in [12,11]. In [13] we also provided a study of bonds between formal
fuzzy contexts over different structures of truth degrees. The bonds were based
on mappings between complete residuated lattices, called residuation-preserving
Galois connections. These mappings were too strict and in [9] we proposed to re-
place them by residuation-preserving (I, k)-connections or residuation-preserving
dual (I, k)-connections between complete residuated lattices.

In the present paper we continue our study [12] of properties of bonds be-
tween formal contexts over different structures of truth degrees; this time we
concern with bonds mimicking isotone Galois connections between concept lat-
tices formed by isotone concept-forming operators. Particularly, we describe the
category of formal fuzzy contexts and isotone bonds between them. The paper
also extends [13,9] as we consider a setting with fuzzy formal contexts over
different complete residuated lattices.
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The structure of the paper is as follows. First, in Section 2 we recall basic
notions required in the rest of the paper. Section 3.1 considers weak homoge-
neous L-bonds w.r.t. isotone concept-forming operators and their compositions.
Section 3.2 then generalizes the results to the setting of formal fuzzy contexts
over different structure of truth degrees. Finally, we summarize our results and
outline our future research in this area in Section 4.

2 Preliminaries

2.1 Residuated lattices, fuzzy sets, and fuzzy relations

We use complete residuated lattices as basic structures of truth degrees. A com-
plete residuated lattice is a structure L = (L, A, v,®, —,0, 1) such that

(i) <L, n, v,0,1) is a complete lattice, i.e. a partially ordered set in which arbi-
trary infima and suprema exist;

(ii)) (L,®,1) is a commutative monoid, i.e. ® is a binary operation which is
commutative, associative, and a ® 1 = a for each a € L;

(iii) ® and — satisfy adjointness, i.e. a®b < ciff a < b — c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted
by <. Throughout this work, L denotes an arbitrary complete residuated lattice.

Elements @ of L are called truth degrees. Operations ® (multiplication) and
— (residuum) play the role of (truth functions of) “fuzzy conjunction” and
“fuzzy implication”.

An L-set (or L-fuzzy set) A in a universe set X is a mapping assigning to
each x € X some truth degree A(z) € L. The set of all L-sets in a universe X is
denoted L.

The operations with L-sets are defined componentwise. For instance, the
intersection of L-sets A, B € LX is an L-set An B in X such that (4 n B)(z) =
A(z) A B(x) for each z € X etc.

An L-set A € LX is called crisp if A(x) € {0,1} for each x € X. Crisp L-
sets can be identified with ordinary sets. For a crisp A, we also write x € A for
A(z) =1 and = ¢ A for A(z) = 0. An L-set A € L is called empty (denoted
by &) if A(x) = 0 for each € X. For a € L and A € LX, the a-multiplication
a® A and a-shift a — A are L-sets defined by

(a®A)(r) = a® A(z),
(a — A)(z) =a— Ax).

Binary L-relations (binary L-fuzzy relations) between X and Y can be thought
of as L-sets in the universe X x Y. That is, a binary L-relation I € LX*Y be-
tween a set X and a set Y is a mapping assigning to each x € X and each y e Y
a truth degree I(x,y) € L (a degree to which z and y are related by I).

For an L-relation I € LX*Y we define its transpose as the L-relation IT €
LY*X given by I (y,z) = I(z,y) for each z € X,y e Y.
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Various composition operators for binary L-relations were extensively studied
by [6]; we will use the following composition operators, defined for relations
Ae LX*F and Be LF*Y:

(Ao B)(z,y) = \/ Az, /) ® B(f.y), (1)
feF

(A v B)(xz,y) = /\ B(f,y) > A, f). (2)
feF

Note also that for L = {0, 1}, AoB coincides with the well-known composition
of binary relations.

We will occasionally use some of the following properties concerning the
associativity of several composition operators, see [2].

Theorem 1. The operator o from above has the following properties concerning
composition.

— Associativity:
Ro(SoT)=(RoS)oT. (3)
— Distributivity:

(URi)oS:U(RZ—oS), and Ro(USZ-):U(RoSZ-). (4)

%

2.2 Formal fuzzy concept analysis

An L-context is a triplet (X, Y, I) where X and Y are (ordinary nonempty) sets
and I € LX*Y is an L-relation between X and Y. Elements of X are called
objects, elements of Y are called attributes, I is called an incidence relation.
I(x,y) = a is read: “The object = has the attribute y to degree a.”

Consider the following pair {(n,v) of operators n: LX — LY and v: LY — LX
induced by an L-context (X,Y, I):

Ay) = \/ A@)®I(x,y), BY(z)= / I(z,y) > B(y). (5)

reX yeyY

for all Ae LX and B € LY. When we consider concept-forming operators in-
duced by multiple L-relations, we write the inducing L-relation as the subscript
of the symbols of the operators. For example, the pair of concept-forming oper-
ators induced by L-relation I are written as {ny,ur).

Remark 1. Notice that the pair of concept-forming operators can be interpreted
as instances of the composition operators between relations. Applying the iso-
morphisms L'*¥ >~ LX and LY*! >~ LY whenever necessary, one could write
them, alternatively, as

A"=Aol and BY=I1<B (=B-»I").
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Furthermore, denote the set of fixed points of (",Y) by B"V(X,Y,I), i.e.
BVY(X,Y,I)={{A,Bye L* x LY | A" = B, BY = A}. (6)
The set of fixed points endowed with <, defined by
(A1, B1) <{As2,By) if A1 © As (equivalently By € By)

is a complete lattice [5], called an attribute-oriented L-concept lattice associated
with I, and its elements are called (attribute-oriented) formal L-concepts (or just
L-concepts). For thorough studies of attribute-oriented concept lattices, see [5,
7,15]. In a formal concept (A, B), the A is called an extent, and B is called an
intent. The set of all extents and the set of all intents are denoted by Ext™ and
Int"Y, respectively. That is,

Ext™(X,Y,I) = {Ae L* | (A, B) e B"(X,Y, I) for some B},

7
Int"(X,Y,I) = {Be LY | {A,B)e BV (X,Y,I) for some A}. @)

Equivalently, we can characterize Ext"(X,Y,I) and Int"V(X,Y, I) as follows

Ext"V(X,Y,I) = {BY | Be LY},

Int"(X,Y,I) = {A" | Ae LX}. ®)

We will need the following lemma from [4].
Lemma 1. Consider L-contexts (X,Y, 1), (X, F, A), and {F,Y, B).

(a) Int"Y(X,Y,I) < Int"Y(F,Y, B) if and only if there exists A’ € LX*F such
that I = A’ o B,
(b) Ext"(X,Y, Ao B) € Ext"V(X, F, A).

Definition 1. An L-relation 8 € LX**Y2 is called a homogeneous weak L-bond?
from L-context (X1,Y1, 1) to L-context (Xo,Ys, I if

Ext™(X1,Ys, 8) € Ext™(Xy, Y1, I1),

9
Int™ (X1, Y5, B) € Int"Y (X5, Yo, I). ©)

In this paper we assume only weak homogeneous L-bonds w.r.t. {n,uv). In
what follows, we omit the words ‘weak homogeneous’ and the pair of concept-
forming operators and call them just ‘L-bonds’.

We will utilize the following characterization of L-bonds.

Lemma 2 ([7]). An L-relation 8 € LX*Y2 s an L-bond from {(X1,Y1,11) to
(Xa,Ys, Is) iff there is such L-relation S, that 8 = S 0 I and ug, maps extents
of BV (Xa,Ys, I5) to extents of BV (Xa,Ys, I).

Remark 2. Note that due to results on fuzzy relational equations we have that
the L-relation S, from Lemma 2 is equal to 8 > I3 (see [2]).

3 The notion of L-bond was introduced in [12]; however we adapt its definition the
same way as in [8,10] w.r.t. {n,u)
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3 Results

Firstly, we describe compositions of L-bonds and show that they form a category.
Later we generalize the results to setting of isotone bonds between fuzzy contexts
over different complete residuated lattices.

3.1 Setting with uniform structures of truth degrees
We start with the notion of composition of L-bonds.

Definition 2. Let 81 be an L-bond from (X1,Y1,11) to (X5,Ys, Is) and B2 be
an L-bond from {Xs,Ys, Is) to {(X3,Ys, I3). Define composition of 51 and B2 as
the L-relation (B > IF) o By € LX1*Ys and denote it 51 o Bo.

Theorem 2. The composition of L-bonds is an L-bond.

Proof. Let 31 be an L-bond from (X1,Y1,1;) to (X2,Ys, ) and 33 be an L-
bond from (Xo, Y5, I5) to (X3, Y3, I3). By Lemma 2 there are S, € LX1*X2 G/ e
LX2%Xs guch that B = Se 0 I, B2 = S.’ o Is. By Definition 2 and Remark 2 we
have

BreBr=(B1vI3)0ps
=S,08, ols.
Hence we have
Intmu(XhY?nﬁl .ﬂQ) < Inth(X?)a}/f}aI?») (10)

by Lemma 1 (a). Note that the mapping us, maps extents of Is to extents of I
by Lemma 2 and that BY%2 is extent of I for any B € Int" (X3, Y3, I3) by (8).
Thus we have

BYsiess = BYs2Yse e Ext™V (X1, Y1, 1),

hence
Ext™(X1,Y3,B1 e B2) € Ext" (X1, Y1, I1). (11)
The equalities (10) and (11) imply that 3; e 82 is an L-bond. o

Lemma 3. Let 8 be an L-bond from L-context (X1,Y1, 1) to L-context (X2, Y, I2).
For any L-set A e L*' we have that A"V = AN,

Proof. Let A be an arbitrary L-set from L*X*. Then

AMVnls 5 A" since (—)"7 is isotone and A1V 2 A

= ANsYsNs
= ANsYsN12V1208 due to definition of L-bond

o A"V gince the mapping (_)mluhmﬁ is isotone

Hence A"1Vnfs = AMs, =
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The equality from Lemma 3 written in relational form is Ao = (Aoly)>1{)op;
we use that to prove the following theorem.

Theorem 3. Composition of L-bonds is associative.

Proof. Let 81 be an L-bond from (X1,Y7, 1) to (Xs3,Ys, I5), B2 be an L-bond
from <X2,Y2,IQ> to <X3,Y3,Ig>, and ﬂg be an L-bond from <X3,Y3,Ig> to
(X4,Y4,I;). We have

(BreBa)ef3=(((BivIy)oBs)vIi)obs by Definition 2
= ((Se 0 B2) » IgT) o 33 by Remark 2
= ((Seo (SLol3)) > 15 )0 B3 by Lemma 2
= (((Se 0 8) o I3) o I3) 0 B3 by (3)
= (Sc 0 S;) o B3 by Lemma 3
= 8.0 (5.0 ) by (3)

= Sc0(B2003) =p1e(f2e53) by Remark 2 and Definition 2.
|
We obtain a category of L-contexts and L-bonds.
Theorem 4. The structure of L-contexts and L-bonds forms a category:

Objects are L-contexts,

Arrows are L-bonds where
identity arrow of any formal L-context (X,Y, I) is its incidence relation I,*
composition of arrows (1 e 35 is given by Definition 2.

Remark 3. The category is equivalent to category of attribute-oriented concept
lattices and isotone Galois connections. That is analogous to results in [12]. We
will bring more about is in full version of the paper.

3.2 Setting with different structures of truth degrees

In this section we generalize the previous results into a setting in which fuzzy con-
texts are defined over different complete residuated lattices. To do that we need
to explore compositions of underlying morphisms called residuation-preserving
(I, k)-connections between complete residuated lattices.

(I, k)-connections and their compositions
Firstly, let us recall definition and basic properties of the (I, k)-connections in-
troduced in [9].

Definition 3 ([9]). Let L1, Ly be complete residuated lattices, letl € L1,k € Lo
and let A : L1 — Lo,k : Lo — Ly be mappings, such that

* Clearly, I is an L-bond from (X,Y,I) to (X,Y, I).
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b |
e ® 0.25

0 ® 0
® 0 a b c d 1 —| 0 a b c d 1
0| 0 00O 0O 0| 1 1 1 1 1 1
al 00 0 a 0 a al d 1 41 1 1
bl 0 0O b 0 b b bl ¢ ¢ 1 ¢ 1 1
c|l 0 a 0 ¢c a ¢ c b d b 1 d 1
dl 00 b a b d dl a ¢ d ¢ 1 1
110 a b ¢ d 1 1 0 a b c d 1

Fig. 1. Six-element residuated lattice, with ® and — as showed in the bottom part
(011010:00A0BOBCAB in [3]), (top left), five-element Lukasiewicz chain (111:000AB in
[3]), (top right), and (e, 0.5)-connection between them.

— (\, k) is an isotone Galois connection between Ly and Lo,
— kXa1) =1 —>1 (I®1 a1) for each ay € Ly,
— Ai(ag) = k®2 (k —2 ag) for each ay € Lo.

We call {\, k) an (I, k)-connection from Ly to La. An (I, k)-connection from L
to Ly is called residuation-preserving if

k(k ®2 (Aa) =2 A(D))) = kA(a) =1 £A(D) (12)
holds true for any a,b € Lo.

Theorem 5 ([9]). Let {\, k) be a residuation-preserving (I, k)-connection from
L; to Lo. The algebra {fix(\, k), A, v,®,—,0,1) where A and v are given by

the order

{ar,az) < <(by,bay if ax <4 by, (13)
(equivalently, if as <o by)

and the adjoint pair is given by
{ar, a2y — {b1,ba)y = (a1 —1 b1,k ®2 (a2 —2 b))
={a1 =1 b1,k ®2 ((k =2 a2) —2 (k —2 b2))),
{ar,a2) ®<{b1,ba) = L =1 (I1®1 a1 ®1 b1), a2 @2 (K —2 b2))
= -1 (I®1 a1 @1 b1), (k=2 a2) @2 b2)

18 a complete residuated lattice.
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Figure 1 shows an example of (I, k)-connection. We refer the reader to [9] for
ideas behind (I, k)-connections, examples and further details.

Now we define composition of (I, k)-connections and show that it is an (I, k)-
connection as well. In addition, the composition preserves residuation-preservation,
that means that composition of residuation-preserving (I, k)-connections is a
residuation-preserving (I, k)-connection as well.

Theorem 6. Let (A1, k1) be an (I1, ka)-connection from Ly to Lo and (g, ko)
be an (kz, j3)-connection from Lg to Ls. Then the pair of mappings A: Ly — Lg,
k: Lz — Ly, defined by

AMay) = Aa(ka —2 Ai(a1)),
k(a3) = K1(ka ®2 ka(as))

for each ay € Ly and as € Lo, is an (l1, j3)-connection from Ly to Ls.

(18)

Proof. First, we prove that kA(a1) = l1 —1 (I1 ® a1) for each a1 € Ly and
Ak(az) = j3 ®3 (j3 —3 as) for each a3 € L. For each a; € Ly, we have

kA(a1) = K1(ke ®2 k2(A2(k2 —2 Ai(ar))))
= K1(k2 @2 (k2 =2 (k2 ® (k2 —2 Ai(a1)))))
1(k2 @2 (k2 —2 Ai(a1)))
1(M1(k1(A1(a1))))
1(A1(a1))
1—1 (L ®1 ar).

Similarly, we have for each a3 € L3

Ak(az) = Aa(ka —2 A1 (K1 (k2 ®2 k2(asz))))
= Aa(ka =2 (k2 ®2 (k2 —2 (k2 ®2 k2(as)))))
= Xa(k2 —2 (k2 ®2 K2(as)))))
= Aa(ka(A2(ka(asz))))
= A2(r2(as))
= j3 ®3 (j3 —3 as3).

Il
T 33

o~

Since kA(a1) =13 =1 (I1 ®1 a1) =1 a1 and Ak(a3) = j3 ®3 (J3 ®3 a3) <3 az we
only need to show monotony to prove that (A, k) is an isotone Galois connection:
For each a1, b; € Ly we have
ay <1 by implies A1(a1) <2 A\1(b1) since Ay is monotone,

implies ko —2 A1(a1) <o ko —2 A1(b1) since — is monotone

in its second argument,

1Inphes )\2(/4}2 —9 /\1(&1)) <3 /\ (kg —9 )\1(1)1)) since )\2 is monotone.

Thus a; <3 b implies A\(a;) <3 A(b1) for each aj,b; € Li. Similarly, one can

show that as <3 b3 implies x(az) <1 K(b3).
=
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Theorem 7. Let (A1, k1) be a residuation-preserving (ly, ka)-connection from
L; to Ly and (\a, k2) be a residuation-preserving (ka, j3)-connection from Lg to
Ls. Then the pair of mappings A: Ly — Lg, k: Ly — Ly, defined by (18), is a
residuation-preserving (11, j3)-connection from Ly to Ls.

Proof. For each aq,b; € L; we have

kX(a1) —1 kA(b1) =
(I1 =1 (1 ®1a1)) —1 (I1 —1 (11 ®1 b1))
= K1)\1(a1) —1 /ﬁ/\l(bﬁ
r1(ka @2 (A1(a1) —2 A1(b1)))
= K1(k2 ®2 (Ark1A1(a1) —2 Air1A(b1)))
= r1(k2 ®2 ((k2 ®2 (k2 —2 A1(a1))) —2 (k2 Q2 (k2 —2 A1(b1)))))
= k1 (k2 ®2 ((k2 ®2 (k2 —2 (k2 ®2 (ko —2 A1(a1))))) —2 (k2 ®2 (k2 —2 A1(b1)))))
1(k2 ®2 ((k2 —2 (k2 ®2 (k2 —2 A1(a1)))) —2 (k2 —2 (k2 ®2 (k2 —2 A1(b1)))))
( )
(
(

~ o~~~

\
=

= k1(ke ®2 (/“62>\2(k2 —2 )\1(a1)) —2 /‘?2>\2(k2 —2 )\1(171)) )

1(k2 @2 K2(j3 @3 (A2(k2 —2 A1(a1)) =3 Aa(k2 =2 Ai(b1)))))
= K1 (k2 ®2 k2(j3 ®3 (Ma1) —3 A(b1))))

K(js ®3 (Ma1) —3 A(b1))).

Il
=

[ ]

We call (A, k) from (18) a composition of (A1, k1) and {Ag, k2) and we denote
it as (A1, k1) @ {a, ko) = (A1 @ Ay, K1 ® K3). Now we show, that the composition
of (I, k)-connections is associative.

Theorem 8. Let (\1,k1) be an (11, ka)-connection from Ly to Ly, (\a, ko) be
a (ka, j3)-connection from La to Ls, and (s, ks3) be a (j3,m4)-connection from

L3 to Ly. Then

(A1, k1) @ (A2, k2) @ (A3, K3)) = ((A1, K1) @ (A2, K2)) @ (A3, K3).
Proof. We have for each a € L
(A1 o (A2 @ A3))(a1) = (A2 @ Ag) (k2 —2 Ai(a1))
= A3(js = A2(k2 —2 Ai(ar)))

= )\3(j3 — ()\1 b )\2)(&1))
= (M1 0 A2) @ A3)(a1)

and similarly for the k-part. m]
Theorem 9. The following structure forms a category.

Objects are pairs (L, e), where L is a complete residuated lattices and e € L.
Arrows from (Li,l) to (La, k) are (I, k)-connections from Ly to Lgy, where
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identity arrow on any (L, e) is (e, e)-connection {\, ky where AMa) = e®a
and k(a) = e — a for each a € L.
composition of arrows is as defined in (18).

If we use just residuation-preserving (1, k)-connections we obtain a sub-category.
Now, we can explore bonds based on residuation-preserving (I, k)-connections.

Definition 4. Let L1, Lo be complete residuated lattices, {\, k) be residuation-
preserving (1, k)-connection from Ly to Lo, and let (X1,Y1,11) and (X2,Ys, I5)

be Ly-context and Lo-context, respectively. We call § € ng\l X>Y2 a (), k)-bond

from (X1, Y1, 1) to (Xs,Ya, I) if the following inclusions hold.

Ext® (X1, Yz, 8) € Ext"V (X1, V1, kA(1h)), (19)
Int*" (X1, Ya, B) < Int"Y(Xa, Y2, Ae(I2)). (20)
The concept-forming operators (A, V) induced by {\, ky-bond § from (X1,Y1, 1)
to (Xa,Ya, I3) are given by’
Abs = A(A)mprojz(ﬁ)’

B = k(B) oo, @)

Theorem 10. Let {X;,Y1,I1) be an Lj-context, (Xs,Ys,I5) be an La-context,
and (A, k) an (1, k)-connection from Ly to L. Then 3 € Ly 0y is a (), k)-bond
from (X1,Y1,I1) to (X2, Ys, Iy) if and only if it is a Ly ,y-bond w.r.t. {n,u) from
<X1, Yi, <I€)\(Il), )\(Il)>> to <)(27 YQ, <,‘£(IQ>, )\,‘{(Ig)>>

Proof. Directly from the definition and (21). o

For what follows we will need the following product of fuzzy relations. Let
(A1, k1) be (I1, kg)-connection from L to Ly, (A9, kay be (ko,ms3)- connectlon

from Lo to Ls, and I € ng\“; v J € L?)\XZ y- Then I J € Lgif.z)\z pronad |
defined as

T8 = (), Aalks — K)) where K = projy(I) o projy(7)  (22)
and og is composition of Lo-relations (1).

Lemma 4. Let (X1,Y1, 1) be an Ly-context, (X, Ya, I5) be an La-context, and
A k) an (1, k)-connection from Ly to Ls.

(a) An Ly .y -relation B for which exist Ly .y -relations S, € Lg&l X>X2 and S €
Lg 2;2 such that
B = (RA(I1), A1)y B S5 = Se KI<k(12), Ak(12))
is a {\, ky-bond from (X1,Y1, 1) to (Xo,Ys, I5).

5 proj,, proj, denote projection of first and second component of a pair, respectively.
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(b) Each (\ k)-bond B from (X1,Y1, 1) to {Xs,Ys, I5) satisfies that there is

S. € L£1:>X2 such that

B = Se ¥ {k(I2), Ak(I2)).
Proof. From Theorem 10 and Lemma 1. O

Theorem 11. Let (A1, k1) be an (I1, ka)-connection from Ly to La, (A, ka) be
an (ka, j3)-connection from Lo to Lg, 51 be (A1, k1)-bond from (X1,Y1,11) to
(X2,Ys, Is), and B2 be (Aa, kay-bond from (X3, Y2, Is) to (X3,Ys, I3).

ﬂ = Seﬂ% (23)

where S = B1 v (k1 (I3 ), \k1(I5)), is a (A1 ® Ao, K1 ® ko )-bond from (X1,Y1, 1)
to <X37Y3,13>.

Let us denote S from (23) as 3 = (81 e B3 and call it a composition of isotone
(A, k)-bonds. Now we show associativity of this composition.

Theorem 12. Let (A1, k1) be an (I1, ka)-connection from Ly to La, (A, ka) be
an (ka, j3)-connection from Ly to Ls, (A3, k3) be an (js,m4)-connection from Lg
to Ly, and B; be (i, ki)-bond from (X;, Y, I;) to {Xi1,Yit1, liy1). Then

Bire(B2eB3) = (P19 B2)e Ps.
Proof. Follows from Theorem 3, Theorem 8, and Theorem 10. m]

Finally, we can state that L-contexts over different structures of truth degrees
and bonds between them form a category.

Theorem 13. Objects are pairs (K, e), where K is a L-context and e € L.
Arrows between (Kq,l)y and (Ka,k), where Ky is an Lj-context, Ko is an
Lo-context and | € Li,k € Lo, are {\ ky-bonds, where (\, k) is an (I,k)-
connection.
identity arrow for a pair (K,e) of L-context (X,Y,I) and e is {\, Kk)-
bond I with {\, k) are (e, e)-connections {\, k) where \(x) = e — a and
k(z) =e®a for each a € L.
composition of arrows [ e 8 is given by (23).

4 Future Research

Our future research in this area includes addressing the following issues:

— Antitone bonds between fuzzy contexts over different complete residuated
lattices were studied in [9]; basics of Isotone bonds are presented in this
paper. We want to extend this study to heterogeneous bonds[11]. We will
bring results on them and their compositions in the full version of this paper.

— As block relations are a special case of bonds, they share many properties
(see [11]). It can be fruitful to study the compositions described in this paper
in context of block L-relations. In addition, the composition applied on block
(crisp) relations correspond with multiplication used in calculus studied in
[1]. This observation deserves deeper study; we believe that this can bring a
new interesting insight to the calculus.
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