Using Linguistic Hedges in L-rough Concept Analysis

Eduard Bartl and Jan Konecny

Data Analysis and Modeling Lab Dept. Computer Science, Palacky University, Olomouc 17. listopadu 12, CZ-77146 Olomouc Czech Republic

Abstract. We enrich concept-forming operators in L-rough Concept Analysis with linguistic hedges which model semantics of logical connectives 'very' and 'slightly'. Using hedges as parameters for the concept-forming operators we are allowed to modify our uncertainty when forming concepts. As a consequence, by selection of these hedges we can control the size of concept lattice.

Keywords: Formal concept analysis; concept lattice; fuzzy set; linguistic hedge; rough set; uncertainty.

1 Introduction

In [2] we presented a framework which allows us to work with positive and negative attributes in the fuzzy setting by applying two unipolar scales for intents – a positive one and a negative one. The positive scale is implicitly modeled by an antitone Galois connection while the negative scale is modeled by an isotone Galois connection. In this paper we extend this approach in two ways.

First, we work with uncertain information. To do this we extend formal fuzzy contexts to contain two truth-degrees for each object-attribute pair. The two truth-degrees represent necessity and possibility of the fact that an object has an attribute. The interval between these degrees represents the uncertainty presented in a given data.

Second, we parametrize the concept-forming operators used in the framework by unary operators called truth-stressing and truth-depressing linguistic hedges. Their intended use is to model semantics of statements *'it is very sure that this attribute belongs to a fuzzy set (intent)'* and *'it is slightly possible that an attribute belongs a fuzzy set (intent)'*, respectively. In the paper, we demonstrate how the hedges influence the size of concept lattice.

2 Preliminaries

In this section we summarize the basic notions used in the paper.

[©] paper author(s), 2015. Published in Sadok Ben Yahia, Jan Konecny (Eds.): CLA 2015, pp. 229–240, ISBN 978–2–9544948–0–7, Blaise Pascal University, LIMOS laboratory, Clermont-Ferrand, 2015. Copying permitted only for private and academic purposes.

Residuated Lattices and Fuzzy Sets

We use complete residuated lattices as basic structures of truth-degrees. A complete residuated lattice [4, 12, 17] is a structure $\mathbf{L} = \langle L, \land, \lor, \otimes, \rightarrow, 0, 1 \rangle$ such that $\langle L, \land, \lor, 0, 1 \rangle$ is a complete lattice, i.e. a partially ordered set in which arbitrary infima and suprema exist; $\langle L, \otimes, 1 \rangle$ is a commutative monoid, i.e. \otimes is a binary operation which is commutative, associative, and $a \otimes 1 = a$ for each $a \in L$; \otimes and \rightarrow satisfy adjointness, i.e. $a \otimes b \leq c$ iff $a \leq b \rightarrow c$. 0 and 1 denote the least and greatest elements. The partial order of \mathbf{L} is denoted by \leq . Throughout this work, \mathbf{L} denotes an arbitrary complete residuated lattice.

Elements of *L* are called truth degrees. Operations \otimes (multiplication) and \rightarrow (residuum) play the role of (truth functions of) "fuzzy conjunction" and "fuzzy implication". Furthermore, we define the complement of $a \in L$ as $\neg a = a \rightarrow 0$.

An L-set (or fuzzy set) *A* in a universe set *X* is a mapping assigning to each $x \in X$ some truth degree $A(x) \in L$. The set of all L-sets in a universe *X* is denoted \mathbf{L}^{X} .

The operations with **L**-sets are defined componentwise. For instance, the intersection of **L**-sets $A, B \in \mathbf{L}^X$ is an **L**-set $A \cap B$ in X such that $(A \cap B)(x) = A(x) \land B(x)$ for each $x \in X$. An **L**-set $A \in \mathbf{L}^X$ is also denoted $\{A(x)/x \mid x \in X\}$. If for all $y \in X$ distinct from x_1, \ldots, x_n we have A(y) = 0, we also write $\{A(x_1)/x_1, \ldots, A(x_n)/x_n\}$.

An L-set $A \in L^X$ is called normal if there is $x \in X$ such that A(x) = 1. An L-set $A \in L^X$ is called crisp if $A(x) \in \{0, 1\}$ for each $x \in X$. Crisp L-sets can be identified with ordinary sets. For a crisp A, we also write $x \in A$ for A(x) = 1 and $x \notin A$ for A(x) = 0.

For $A, B \in \mathbf{L}^X$ we define the degree of inclusion of A in B by $S(A, B) = \bigwedge_{x \in X} A(x) \to B(x)$. Graded inclusion generalizes the classical inclusion relation. Described verbally, S(A, B) represents a degree to which A is a subset of B. In particular, we write $A \subseteq B$ iff S(A, B) = 1. As a consequence, we have $A \subseteq B$ iff $A(x) \leq B(x)$ for each $x \in X$.

By \mathbf{L}^{-1} we denote *L* with dual lattice order. An **L**-*rough* set *A* in a universe *X* is a pair of **L**-sets $A = \langle \underline{A}, \overline{A} \rangle \in (\mathbf{L} \times \mathbf{L}^{-1})^{U}$. The \underline{A} is called an *lower approximation* of *A* and the \overline{A} is called a *upper approximation* of A.¹

The operations with L-rough sets are again defined componentwise, i.e.

$$\bigcap_{i\in I} \langle \underline{A}, \overline{A} \rangle = \langle \bigcap_{i\in I} \underline{A}, \bigcap_{i\in I}^{-1} \overline{A} \rangle = \langle \bigcap_{i\in I} \underline{A}, \bigcup_{i\in I} \overline{A} \rangle,$$
$$\bigcup_{i\in I} \langle \underline{A}, \overline{A} \rangle = \langle \bigcup_{i\in I} \underline{A}, \bigcup_{i\in I}^{-1} \overline{A} \rangle = \langle \bigcup_{i\in I} \underline{A}, \bigcap_{i\in I} \overline{A} \rangle.$$

Similarly, the graded subsethood is then applied componentwise

$$S(\langle \underline{A}, \overline{A} \rangle, \langle \underline{B}, \overline{B} \rangle) = S(\underline{A}, \underline{B}) \wedge S^{-1}(\overline{A}, \overline{B}) = S(\underline{A}, \underline{B}) \wedge S(\overline{B}, \overline{A})$$

¹ In our setting we consider intents to be L-rough sets; the lower and upper approximation are interpreted as necessary intent and possible intent, respectively.

and the crisp subsethood is then defined using the graded subsethood:

$$\langle \underline{A}, \overline{A} \rangle \subseteq \langle \underline{B}, \overline{B} \rangle$$
 iff $S(\langle \underline{A}, \overline{A} \rangle, \langle \underline{B}, \overline{B} \rangle) = 1$, iff $\underline{A} \subseteq \underline{B}$ and $\overline{B} \subseteq \overline{A}$.

An L-rough set $\langle \underline{A}, \overline{A} \rangle$ is called *natural* if $\underline{A} \subseteq \overline{A}$.

Binary L-relations (binary fuzzy relations) between *X* and *Y* can be thought of as L-sets in the universe $X \times Y$. That is, a binary L-relation $I \in \mathbf{L}^{X \times Y}$ between a set *X* and a set *Y* is a mapping assigning to each $x \in X$ and each $y \in Y$ a truth degree $I(x, y) \in L$ (a degree to which *x* and *y* are related by *I*). L-rough relations are then $(\mathbf{L} \times \mathbf{L}^{-1})$ -sets in $X \times Y$. For L-relation $I \in \mathbf{L}^{X \times Y}$ we define its inverse $I^{-1} \in \mathbf{L}^{Y \times X}$ as $I^{-1}(y, x) = I(x, y)$ for all $x \in X$, $y \in Y$.

Formal Concept Analysis in the Fuzzy Setting

An L-context is a triplet $\langle X, Y, I \rangle$ where *X* and *Y* are (ordinary) sets and $I \in L^{X \times Y}$ is an L-relation between *X* and *Y*. Elements of *X* are called objects, elements of *Y* are called attributes, *I* is called an incidence relation. I(x, y) = a is read: "The object *x* has the attribute *y* to degree *a*."

Consider the following pairs of operators induced by an L-context $\langle X, Y, I \rangle$. First, the pair $\langle \uparrow, \downarrow \rangle$ of operators $\uparrow : \mathbf{L}^X \to \mathbf{L}^Y$ and $\downarrow : \mathbf{L}^Y \to \mathbf{L}^X$ is defined by

$$A^{\uparrow}(y) = \bigwedge_{x \in X} A(x) \to I(x, y) \text{ and } B^{\downarrow}(x) = \bigwedge_{y \in Y} B(y) \to I(x, y).$$

Second, the pair $\langle \cap, \cup \rangle$ of operators $\cap : \mathbf{L}^X \to \mathbf{L}^Y$ and $\cup : \mathbf{L}^Y \to \mathbf{L}^X$ is defined by

$$A^{\cap}(y) = \bigvee_{x \in X} A(x) \otimes I(x, y) \text{ and } B^{\cup}(x) = \bigwedge_{y \in Y} I(x, y) \to B(y).$$

To emphasize that the operators are induced by *I*, we also denote the operators by $\langle \uparrow_I, \downarrow_I \rangle$ and $\langle \cap_I, \cup_I \rangle$.

Fixpoints of these operators are called formal concepts. The set of all formal concepts (along with set inclusion) forms a complete lattice, called L-concept lattice. We denote the sets of all concepts (as well as the corresponding L-concept lattice) by $\mathcal{B}^{\uparrow\downarrow}(X, Y, I)$ and $\mathcal{B}^{\cap\cup}(X, Y, I)$, i.e.

$$\mathcal{B}^{\uparrow\downarrow}(X,Y,I) = \{ \langle A,B \rangle \in \mathbf{L}^X \times \mathbf{L}^Y \mid A^{\uparrow} = B, B^{\downarrow} = A \}, \\ \mathcal{B}^{\cap \cup}(X,Y,I) = \{ \langle A,B \rangle \in \mathbf{L}^X \times \mathbf{L}^Y \mid A^{\cap} = B, B^{\cup} = A \}.$$

For an L-concept lattice $\mathcal{B}(X, Y, I)$, where \mathcal{B} is either $\mathcal{B}^{\uparrow\downarrow}$ or $\mathcal{B}^{\cap\cup}$, denote the corresponding sets of extents and intents by Ext(X, Y, I) and Int(X, Y, I). That is,

$$\operatorname{Ext}(X, Y, I) = \{A \in \mathbf{L}^X \mid \langle A, B \rangle \in \mathcal{B}(X, Y, I) \text{ for some } B\},$$

$$\operatorname{Int}(X, Y, I) = \{B \in \mathbf{L}^Y \mid \langle A, B \rangle \in \mathcal{B}(X, Y, I) \text{ for some } A\}.$$

An $(\mathbf{L}_1, \mathbf{L}_2)$ -Galois connection between the sets *X* and *Y* is a pair $\langle f, g \rangle$ of mappings $f : \mathbf{L}_1^X \to \mathbf{L}_2^Y, g : \mathbf{L}_2^Y \to \mathbf{L}_1^X$, satisfying

$$S(A, g(B)) = S(B, f(A))$$

for every $A \in \mathbf{L}_1^X$, $B \in \mathbf{L}_2^Y$.

One can easily observe that the couple $\langle \uparrow, \downarrow \rangle$ forms an (**L**, **L**)-Galois connection between *X* and *Y*, while $\langle \cap, \cup \rangle$ forms an (**L**, **L**⁻¹)-Galois connection between *X* and *Y*.

L-rough Contexts and L-rough Concepts Lattices

An L-rough context is a quadruple $\langle X, Y, \underline{I}, \overline{I} \rangle$, where *X* and *Y* are (crisp) sets of objects and attributes, respectively, and the $\langle \underline{I}, \overline{I} \rangle$ is a L-rough relation. The meaning of $\langle \underline{I}, \overline{I} \rangle$ is as follows: $\underline{I}(x, y)$ (resp. $\overline{I}(x, y)$) is the truth degree to which the object *x* surely (resp. possibly) has the attribute *y*. The quadruple $\langle X, Y, \underline{I}, \overline{I} \rangle$ is called a L-*rough context*.

The L-rough context induces two operators defined as follows. Let $\langle X, Y, \underline{I}, \overline{I} \rangle$ be an L-rough context. Define L-*rough concept-forming operators* as

$$A^{\Delta} = \langle A^{\top_{\underline{\ell}}}, A^{\top_{\overline{\ell}}} \rangle,$$

$$\langle \underline{B}, \overline{B} \rangle^{\nabla} = \underline{B}^{\downarrow_{\underline{\ell}}} \cap \overline{B}^{\cup_{\overline{\ell}}}$$
(1)

for $A \in \mathbf{L}^X$, \underline{B} , $\overline{B} \in \mathbf{L}^Y$. Fixed points of $\langle \Delta, \nabla \rangle$, i.e. tuples $\langle A, \langle \underline{B}, \overline{B} \rangle \rangle \in \mathbf{L}^X \times (\mathbf{L} \times \mathbf{L}^{-1})^Y$ such that $A^{\Delta} = \langle \underline{B}, \overline{B} \rangle$ and $\langle \underline{B}, \overline{B} \rangle^{\nabla} = A$, are called **L**-rough concepts. The \underline{B} and \overline{B} are called *lower intent approximation* and *upper intent approximation*, respectively.

In [2] we showed that the pair of operators (1) is an $(\mathbf{L}, \mathbf{L} \times \mathbf{L}^{-1})$ -Galois connection.

Linguistic Hedges

Truth-stressing hedges were studied from the point of fuzzy logic as logical connectives 'very true', see [13]. Our approach is close to that in [13]. A *truth-stressing hedge* is a mapping $* : L \rightarrow L$ satisfying

$$1^* = 1, \quad a^* \leq a, \quad a \leq b \text{ implies } a^* \leq b^*, \quad a^{**} = a^*$$
 (2)

for each $a, b \in L$. Truth-stressing hedges were used to parametrize antitone L-Galois connections e.g. in [3, 5, 9], and also to parameterize isotone L-Galois connections in [1].

On every complete residuated lattice L, there are two important truthstressing hedges:

(i) identity, i.e. $a^* = a \ (a \in L)$;

(ii) globalization, i.e.

$$a^* = \begin{cases} 1, & \text{if } a = 1, \\ 0, & \text{otherwise.} \end{cases}$$

A *truth-depressing hedge* is a mapping $\square : L \rightarrow L$ such that following conditions are satisfied

$$0^{\Box} = 0, \quad a \leq a^{\Box}, \quad a \leq b \text{ implies } a^{\Box} \leq b^{\Box}, \quad a^{\Box\Box} = a^{\Box}$$

for each $a, b \in L$. A truth-depressing hedge is a (truth function of) logical connective 'slightly true', see [16].

On every complete residuated lattice L, there are two important truth-depressing hedges:

(i) identity, i.e. $a^{\Box} = a \ (a \in L)$;

(ii) antiglobalization, i.e.

$$a^{\Box} = \begin{cases} 0, & \text{if } a = 0, \\ 1, & \text{otherwise} \end{cases}$$

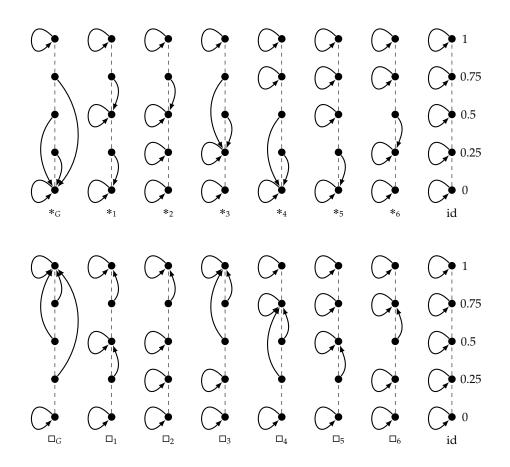


Fig. 1. Truth-stressing hedges (top) and truth-depressing hedges (bottom) on 5-element chain with Łukasiewicz operations $\mathbf{L} = \langle \{0, 0.25, 0.5, 0.75, 1\}, \min, \max, \otimes, \rightarrow, 0, 1 \rangle$. The leftmost truth-stressing hedge $*^{G}$ is the globalization, leftmost truth-depressing hedge $^{\square_{G}}$ is the antiglobalization. The rightmost hedges denoted by id are the identities.

For truth-stressing/truth-depressing hedge * we denote by fix(*) set of its idempotent elements in L; i.e. fix(*) = { $a \in L \mid a^* = a$ }.

Let $*_1, *_2$ be truth-stressing hedges on L such that fix $(*_1) \subseteq$ fix $(*_2)$; then for each $a \in A$, $a^{*_1*_2} = a^{*_1}$ holds. The same holds true for $*_1, *_2$ being truthdepressing hedges.

We naturally extend application of truth-stressing/truth-depressing hedges to L-sets: $A^*(x) = A(x)^*$ for all $x \in U$.

3 Results

The L-rough concept-forming operator \triangle gives for each L-set of objects two L-sets of attributes. The first one represents a necessity of having the attributes and second one a possibility of having the attributes. We add linguistic hedges to the concept-forming operators to control shape of the two L-sets.

Since the L-rough concept-forming operators are defined via $\langle \uparrow, \downarrow \rangle$ and $\langle \cap, \cup \rangle$, we first recall the parametrization of these operators as described in [8, 15].

3.1 Linguistic Hedges in Formal Fuzzy Concept Analysis

Let $\langle X, Y, I \rangle$ be an L-context and let $\mathbf{\bullet}, \mathbf{\bullet}$ be truth-stressing hedges on L. The antitone concept-forming operators parametrized by $\mathbf{\bullet}$ and $\mathbf{\bullet}$ induced by *I* are defined as

$$A^{\uparrow \bullet}(y) = \bigwedge_{x \in X} A(x)^{\bullet} \to I(x, y),$$
$$B^{\downarrow \bullet}(x) = \bigwedge_{y \in Y} B(y)^{\bullet} \to I(x, y)$$

for all $A \in \mathbf{L}^X$, $B \in \mathbf{L}^Y$.

Let \P and \blacklozenge be truth-stressing hedge and truth-depressing hedge on L, respectively. The isotone concept-forming operators parametrized by \P and \blacklozenge induced by *I* are defined as

$$A^{\cap_{\bullet}}(y) = \bigvee_{x \in X} A(x)^{\bullet} \otimes I(x, y),$$
$$B^{\cup_{\bullet}}(x) = \bigwedge_{y \in Y} I(x, y) \to B(y)^{\bullet}$$

for all $A \in \mathbf{L}^X$, $B \in \mathbf{L}^Y$.

Properties of the hedges in the setting of multi-adjoint concept lattices with heterogeneous conjunctors were studied in [14].

3.2 L-rough Concept-Forming Operators with Linguistic Hedges

Let ♥, ♦ be truth-stressing hedges on L and let ♠ be a truth-depressing hedge on L. We parametrize the L-rough concept-forming operators as

$$A^{\blacktriangle} = \langle A^{\uparrow \bullet}, A^{\cap \bullet} \rangle \quad \text{and} \quad \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown} = \underline{B}^{\downarrow \bullet} \cap \overline{B}^{\circ \bullet}$$
(3)

for $A \in \mathbf{L}^X, B, \overline{B} \in \mathbf{L}^Y$.

Remark 1. When the all three hedges are identities the pair $\langle \blacktriangle, \bigtriangledown \rangle$ is equivalent to $\langle \vartriangle, \bigtriangledown \rangle$; so it is an $(\mathbf{L}, \mathbf{L} \times \mathbf{L}^{-1})$ -Galois connection. For arbitrary hedges this does not hold.

The following theorem describes properties of $\langle \blacktriangle, \lor \rangle$.

Theorem 1. The pair $\langle \blacktriangle, \lor \rangle$ of L-rough concept-forming operators parametrized by hedges has the following properties.

 $\begin{array}{ll} (a) \ A^{\blacktriangle} = A^{\blacktriangledown_{\bigtriangleup}} = A^{\blacktriangledown_{\blacktriangle}} and \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown} = \langle \underline{B}^{\bullet}, \overline{B}^{\bullet} \rangle^{\triangledown} = \langle \underline{B}^{\bullet}, \overline{B}^{\bullet} \rangle^{\blacktriangledown} \\ (b) \ A^{\vartriangle} \subseteq A^{\blacktriangle} and \langle \underline{B}, \overline{B} \rangle^{\triangledown} \subseteq \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown} \\ (c) \ S(A_{1}^{\bullet}, A_{2}^{\bullet}) \leqslant S(A_{2}^{\bullet}, A_{1}^{\bullet}) and \ S(\langle \underline{B_{1}}, \overline{B_{1}} \rangle, \langle \underline{B_{2}}, \overline{B_{2}} \rangle) \leqslant S(\langle \underline{B_{2}}, \overline{B_{2}} \rangle^{\blacktriangledown}, \langle \underline{B_{1}}, \overline{B_{1}} \rangle^{\blacktriangledown}) \\ (d) \ A^{\blacktriangledown} \subseteq A^{\blacktriangle} and \langle \underline{B}^{\bullet}, \overline{B}^{\bullet} \rangle \subseteq \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown A}; \\ (e) \ A_{1} \subseteq A_{2} \ implies \ A_{2}^{\blacktriangle} \subseteq A_{1}^{\land} and \langle \underline{B_{1}}, \overline{B_{1}} \rangle \subseteq \langle \underline{B_{2}}, \overline{B_{2}} \rangle \ implies \ \langle \underline{B_{2}}, \overline{B_{2}} \rangle^{\blacktriangledown} \subseteq \langle \underline{B_{1}}, \overline{B_{1}} \rangle^{\blacktriangledown} \\ (f) \ S(A^{\blacktriangledown}, \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown}) = S(\langle \underline{B}^{\bullet}, \overline{B}^{\bullet} \rangle, A^{\blacktriangle}) \\ (g) \ (\bigcup_{i \in I} A_{i}^{\heartsuit})^{\blacktriangle} = \bigcap_{i \in I} A_{i}^{\land} and \ (\langle \bigcup_{i \in I} \underline{B_{i}}^{\bullet}, \bigcap_{i \in I} \overline{B_{i}}^{\bullet} \rangle)^{\blacktriangledown} = \bigcap_{i \in I} \langle \underline{B_{i}}, \overline{B_{i}} \rangle^{\blacktriangledown} \\ (h) \ A^{\blacktriangle^{\blacktriangledown}} = A^{\bigstar^{\bigstar^{\blacktriangledown^{\blacktriangledown}}}} and \ \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown^{\blacktriangle}} = \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown^{\blacktriangledown^{\blacktriangledown^{\blacktriangledown^{\blacktriangledown^{\blacktriangledown^{\blacktriangledown^{\blacktriangledown^{\blacktriangledown^{\bullet}}}}}}}. \end{array}$

Proof. (a) Follows immediately from definition of \blacktriangle and \blacktriangledown and idempotency of hedges.

(b) From (2) we have $A^{\bullet} \subseteq A$; by properties of Galois connections the inclusion implies $A^{\vartriangle} \subseteq A^{\bullet_{\vartriangle}}$, which is by (a) equivalent to $A^{\vartriangle} \subseteq A^{\bullet}$. Proof of the second statement in (b) is similar.

(c) Follows from (a) and properties of Galois connections.

(d) By [2, Corollary 1(a)] we have $A^{\blacktriangledown} \subseteq A^{\blacktriangledown \triangle^{\triangledown}}$. Using (a) we get $A^{\blacktriangledown} \subseteq A^{\blacktriangle^{\triangledown}}$ and from (b) we have $A^{\blacktriangle^{\triangledown}} \subseteq A^{\blacktriangle^{\triangledown}}$, so $A^{\blacktriangledown} \subseteq A^{\blacktriangle^{\triangledown}}$. Similarly for the second claim.

(e) Follows directly from [2, Corollary 1(c)] and properties of Galois connections.

(f) Since $\langle \Delta, \nabla \rangle$ forms $(\mathbf{L}, \mathbf{L} \times \mathbf{L}^{-1})$ -Galois connection and using (a) we have $S(A^{\bullet}, \langle \underline{B}, \overline{B} \rangle^{\bullet}) = S(A^{\bullet}, \langle \underline{B}^{\bullet}, \overline{B}^{\bullet} \rangle^{\nabla}) = S(\langle \underline{B}^{\bullet}, \overline{B}^{\bullet} \rangle, A^{\bullet \Delta}) = S(\langle \underline{B}^{\bullet}, \overline{B}^{\bullet} \rangle, A^{\bullet}).$ (g) We can easily get

$$\begin{split} (\bigcup_{i\in I} A_i^{\bullet})^{\bullet} &= \langle (\bigcup_{i\in I} A_i^{\bullet})^{\uparrow_{\bullet}}, (\bigcup_{i\in I} A_i^{\bullet})^{\circ_{\bullet}} \rangle = \langle \bigcap_{i\in I} A_i^{\uparrow_{\bullet}}, \bigcup_{i\in I} A_i^{\circ_{\bullet}} \rangle \\ &= \bigcap_{i\in I} \langle A_i^{\uparrow_{\bullet}}, A_i^{\circ_{\bullet}} \rangle = \bigcap_{i\in I} A_i^{\bullet}, \end{split}$$

and

$$(\langle \bigcup_{i \in I} \underline{B}_{i}^{\bullet}, \bigcap_{i \in I} \overline{B}_{i}^{\bullet} \rangle)^{\bullet} = (\bigcup_{i \in I} \underline{B}_{i}^{\bullet})^{\downarrow_{\bullet}} \cap (\bigcap_{i \in I} \overline{B}_{i}^{\bullet})^{\cup_{\bullet}} = \bigcap_{i \in I} \underline{B}_{i}^{\downarrow_{\bullet}} \cap \bigcap_{i \in I} \overline{B}_{i}^{\cup_{\bullet}})$$
$$= \bigcap_{i \in I} (\underline{B}_{i}^{\downarrow_{\bullet}} \cap \overline{B}_{i}^{\cup_{\bullet}}) = \bigcap_{i \in I} \langle \underline{B}_{i}, \overline{B}_{i} \rangle^{\bullet}.$$

(h) Using (a), (d) and (e) twice, we have $A^{A^{\forall}} \subseteq A^{A^{\forall A^{\forall}}}$. Using (d) for $\langle \underline{B}, \overline{B} \rangle = A^{A^{\forall}}$ we have $A^{A^{\forall}} \subseteq A^{A^{\forall A^{\forall}}} = A^{A^{\forall A^{d}}}$. Then applying (e) we get $A^{A^{\forall A^{\forall}}} \subseteq A^{A^{\forall}}$ proving the first claim. The second claim can be proved analogically.

The set of fixed points of $\langle \blacktriangle, \lor \rangle$ endowed with partial order \leq given by

is denoted by $\mathcal{B}_{\Psi, \bullet, \bullet}^{\mathsf{A} \mathsf{V}}(X, Y, \underline{I}, \overline{I})$.

Remark 2. Note that from (4) it is clear that if a concept has non-natural L-rough intent then all its subconcepts have non-natural intent. If such concepts are not desired, one can simply ignore them and work with the iceberg lattice of concepts with natural L-rough intents.

The next theorem shows a crisp representation of $\mathcal{B}_{\bullet,\bullet,\bullet}^{\bullet}(X,Y,\underline{I},\overline{I})$.

Theorem 2. $\mathscr{B}_{\bullet,\bullet,\bullet}^{\bullet}(X, Y, \underline{I}, \overline{I})$ is isomorphic to ordinary concept lattice $\mathscr{B}^{\uparrow\downarrow}(X \times \operatorname{fix}(\bullet), Y \times \operatorname{fix}(\bullet) \times \operatorname{fix}(\bullet), I^{\times})$ where

$$\langle\langle x,a\rangle,\langle y,\underline{b},\overline{b}\rangle\rangle \in I^{\times}$$
 iff $a \otimes \underline{b} \leq \underline{I}(x,y)$ and $a \to \overline{b} \geq \overline{I}(x,y)$.

Proof. This proof can be done by following the same steps as in [8, 15].

The following theorem explains the structure of $\mathcal{B}_{\bullet,\bullet,\bullet}^{\mathsf{AV}}(X,Y,\underline{I},\overline{I})$.

Theorem 3. $\mathcal{B}_{\bullet,\bullet}^{\mathsf{AV}}(X,Y,\underline{I},\overline{I})$ is a complete lattice with suprema and infima defined as

$$\bigwedge_{i} \langle A_{i}, \langle \underline{B}_{i}, \overline{B}_{i} \rangle \rangle = \langle (\bigcap A_{i})^{\mathbf{A}\mathbf{\nabla}}, \langle \bigcup_{i} \underline{B}_{i}^{\mathbf{A}\mathbf{\nabla}}, \bigcap_{i} \overline{B}_{i}^{\mathbf{A}\mathbf{\nabla}} \rangle \rangle$$
$$\bigvee_{i} \langle A_{i}, \langle \underline{B}_{i}, \overline{B}_{i} \rangle \rangle = \langle (\bigcup_{i} A_{i}^{\mathbf{\Phi}})^{\mathbf{A}\mathbf{\nabla}}, \langle \bigcap_{i} \underline{B}_{i}, \bigcup_{i} \overline{B}_{i} \rangle^{\mathbf{\nabla}\mathbf{A}} \rangle$$

for all $A_i \in \mathbf{L}^X$, $\underline{B}_i \in \mathbf{L}^Y$, $\overline{B}_i \in \mathbf{L}^Y$.

Proof. Follows from Theorem 2.

Remark 3. Note that if we alternatively define (3) as

$$A^{\blacktriangle} = \langle (A^{\uparrow} \bullet)^{\bullet}, (A^{\cap} \bullet)^{\bullet} \rangle \quad \text{and} \quad \langle \underline{B}, \overline{B} \rangle^{\bullet} = (\underline{B}^{\downarrow} \bullet \cap \overline{B}^{\cup})^{\bullet}$$
(5)

or

$$A^{\blacktriangle} = \langle (A^{\uparrow})^{\blacklozenge}, (A^{\cap})^{\blacklozenge} \rangle \quad \text{and} \quad \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown} = (\underline{B}^{\downarrow} \cap \overline{B}^{\cup})^{\blacktriangledown}$$
(6)

or

$$A^{\blacktriangle} = \langle (A^{\uparrow \bullet})^{\bullet}, (A^{\cap \bullet})^{\bullet} \rangle \quad \text{and} \quad \langle \underline{B}, \overline{B} \rangle^{\bullet} = \langle \underline{B}, \overline{B} \rangle^{\nabla}$$

or

$$A^{\blacktriangle} = A^{\vartriangle} \quad \text{and} \quad \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown} = (\underline{B}^{\downarrow_{\bigstar}} \cap \overline{B}^{\cup_{\bigstar}})^{\blacktriangledown}$$

we obtain an isomorphic concept lattice. In addition (5) and (6) produce the same concept lattice.

3.3 Size Reduction of Fuzzy Rough Concept Lattices

This part provides analogous results on reduction with truth-stressing and truthdepressing hedges as [10] for antitone fuzzy concept-forming operators and [15] for isotone fuzzy concept-forming operators.

For the next theorem we need the following lemma.

Lemma 1. Let $\mathbf{\Psi}, \heartsuit, \mathbf{A}, \diamond$ be truth-stressing hedges on \mathbf{L} such that $\operatorname{fix}(\mathbf{\Psi}) \subseteq \operatorname{fix}(\heartsuit)$, $\operatorname{fix}(\mathbf{A}) \subseteq \operatorname{fix}(\diamondsuit)$; let \mathbf{A}, \diamond be truth-depressing hedges on \mathbf{L} such that and $\operatorname{fix}(\mathbf{A}) \subseteq \operatorname{fix}(\diamondsuit)$. We have

$$A^{\blacktriangle} \subseteq A^{\bigstar}$$
 and $\langle \underline{B}, \overline{B} \rangle^{\blacktriangledown,\diamond} \subseteq \langle \underline{B}, \overline{B} \rangle^{\blacktriangledown,\diamond}$

Proof. We have $A^{\blacklozenge \heartsuit} \subseteq A^{\heartsuit}$ from (2). From the assumption $\operatorname{fix}(\blacklozenge) \subseteq \operatorname{fix}(\heartsuit)$ we get $A^{\blacklozenge \heartsuit} = A^{\diamondsuit}$; whence we have $A^{\blacktriangledown} \subseteq A^{\heartsuit}$. Theorem 1(e) implies $A^{\heartsuit \blacktriangle} \subseteq A^{\blacktriangledown \blacktriangle}$ which is by the claim (a) of this theorem equivalent to $A^{\blacktriangle \heartsuit} \subseteq A^{\bigstar \blacktriangledown}$. The second claim can be proved similarly.

Theorem 4. Let $\mathbf{\Psi}, \heartsuit, \mathbf{\diamond}, \mathbf{\diamond}$ be truth-stressing hedges on \mathbf{L} such that $\operatorname{fix}(\mathbf{\Psi}) \subseteq \operatorname{fix}(\heartsuit)$, $\operatorname{fix}(\mathbf{\diamond}) \subseteq \operatorname{fix}(\diamondsuit)$; let $\mathbf{\diamond}, \diamond$ be truth-depressing hedges on \mathbf{L} s.t. and $\operatorname{fix}(\mathbf{\diamond}) \subseteq \operatorname{fix}(\diamondsuit)$,

$$|\mathcal{B}_{\nabla,\diamond,\diamond}^{A^{\nabla}}(X,Y,\underline{I},I)| \leq |\mathcal{B}_{\heartsuit,\diamond,\diamond}^{A^{\nabla}}(X,Y,\underline{I},I)|$$

for all **L**-rough contexts $\langle X, Y, \underline{I}, \overline{I} \rangle$.

In addition, if $\mathbf{\bullet} = \heartsuit = \mathrm{id}$ *, we have*

$$\operatorname{Ext}_{\mathbf{v},\mathbf{\diamond},\mathbf{\diamond}}^{\mathbf{A}\mathbf{v}}(X,Y,\underline{I},\overline{I}) \subseteq \operatorname{Ext}_{\mathrm{v},\mathrm{\diamond},\mathrm{\diamond}}^{\mathbf{A}\mathbf{v}}(X,Y,\underline{I},\overline{I}).$$

Similarly, if $\blacklozenge = \diamondsuit = \blacklozenge = id$ *, we have*

$$\operatorname{Int}_{\mathbf{\nabla}, \diamond, \diamond}^{\mathbf{A}\mathbf{\nabla}}(X, Y, \underline{I}, \overline{I}) \subseteq \operatorname{Int}_{\heartsuit, \diamond, \diamond}^{\mathbf{A}\mathbf{\nabla}}(X, Y, \underline{I}, \overline{I}).$$

Proof. (4) follows directly from Theorem 2 and results on subcontexts in [11]. Now, we show (4). Note that each $A \in \operatorname{Ext}_{\bullet,\bullet}^{\bullet}(X, Y, \underline{I}, \overline{I})$ we have

$$A = A^{\blacktriangle_{\triangledown} \blacktriangledown_{\diamond, \diamond}} = A^{\blacktriangle_{\heartsuit} \blacktriangledown_{\diamond, \diamond}} \supseteq A^{\blacktriangle_{\heartsuit} \blacktriangledown_{\diamond, \diamond}} \supseteq A.$$

Thus we have $A \in \operatorname{Ext}_{\heartsuit,\diamondsuit,\diamondsuit}^{A^{\nabla}}(X, Y, \underline{I}, \overline{I})$. The inclusion (4) can be proved similarly.

Example 1. Consider the truth-stressing hedges $*_G$, $*_1$, $*_2$, id and truth-depressing hedges \Box_G , \Box_1 , \Box_2 , id from Figure 1. One can easily observe that

$$\begin{aligned} &\operatorname{fix}(*_G) \subseteq \operatorname{fix}(*_1) \subseteq \operatorname{fix}(*_2) \subseteq \operatorname{fix}(\operatorname{id}) \\ &\operatorname{fix}(\square_G) \subseteq \operatorname{fix}(\square_1) \subseteq \operatorname{fix}(\square_2) \subseteq \operatorname{fix}(\operatorname{id}). \end{aligned}$$

Consider the L-context of books and their graded properties in Fig.2 with L being 5-element Łukasiewicz chain. Using various combinations of the hedges we obtain a smooth transition in size of the associated fuzzy rough concept lattice going from 10 concepts up to 498 (see Tab. 1). When the 5-element Gödel chain is used instead, we again get a transition going from 10 concepts up to 298 (see Tab. 2).

	High rating	Large no. of pages	Low price	Top sales rank
1	0.75	0	1	0
2	0.5	1	0.25	0.5
3	1	1	0.25	0.5
4	0.75	0.5	0.25	1
5	0.75	0.25	0.75	0
6	1	0	0.75	0.25

Fig. 2. L-context of books and their graded properties; this L-context was used in [1, 15] to demonstrate reduction of L-concept lattices using hedges.

$\blacklozenge = \Box_G$	* _G	* 1	*2	id	$\blacklozenge = \Box_1$	* G	* 1	* 2	id
* _G	10	16	59	61	* _G	15	28	71	110
*1	12	22	65	93	*1	15	28	71	170
*2	15	26	69	103	*2	22	28	79	195
id	19	41	97	152	id	28	28	110	264
$\blacklozenge = \Box_2$	* _G	*1	*2	id	$\blacklozenge = id$	* G	*1	*2	id
* _G	15	53	134	211	* _G	27	75	160	297
*1	15	53	134	290	*1	27	75	160	372
*2	22	63	146	327	*2	32	80	165	396
id	28	80	181	415	id	40	99	202	498

Table 1. Numbers of concepts in L-context from Fig. 2 formed by $\langle \blacktriangle, \lor \rangle$ parametrized by $\langle, \diamond, and \diamondsuit$. A 5-element Łukasiewicz chain is used as the structure of truth degrees. The rows represent the hedge \diamondsuit and the columns represent the hedge \diamond .

$\blacklozenge = \Box_0$	G *G	*1	*2	id	$\blacklozenge = \Box_G$	$*_G$	$*_1$	*2	id
*(3 10	18	24	24	* _G	15	29	36	45
*	1 12	21	33	36	*1	15	32	49	63
*	2 15	29	45	48	*2	22	57	78	106
ic	d 19	33	51	54	id	28	66	89	117
$\blacklozenge = \square_G$	* G	*1	*2	id	$\blacklozenge = \square_G$	* G	*1	*2	id
* G	15	32	48	59	* G	27	50	66	125
*1	15	32	59	75	*1	27	50	80	167
*2	22	57	88	118	*2	32	79	113	257
id	28	66	100	130	id	40	90	127	298

Table 2. Numbers of concepts in L-context from Fig. 2 formed by $\langle \blacktriangle, \lor \rangle$ parametrized by $\langle \blacklozenge, \lor \rangle$ and \diamondsuit . A 5-element Gödel chain is used as the structure of truth degrees. The rows represent the hedge \blacklozenge and the columns represent the hedge \diamondsuit .

4 Conclusion and further research

We have shown that the L-rough concept-forming operators can be parameterized by truth-stressing and truth-depressing hedges similarly as the antitone and isotone fuzzy concept-forming operators.

Our future research includes a study of attribute implications using whose semantics is related to the present setting. That will combine results on fuzzy attribute implications [7] and attribute containment formulas [6].

Acknowledgment

Supported by grant No. 15-17899S, "Decompositions of Matrices with Boolean and Ordinal Data: Theory and Algorithms", of the Czech Science Foundation.

References

- Eduard Bartl, Radim Belohlavek, Jan Konecny, and Vilem Vychodil. Isotone Galois connections and concept lattices with hedges. In *IEEE IS 2008, Int. IEEE Conference* on Intelligent Systems, pages 15–24–15–28, Varna, Bulgaria, 2008.
- Eduard Bartl and Jan Konecny. Formal L-concepts with Rough Intents. In CLA 2014: Proceedings of the 11th International Conference on Concept Lattices and Their Applications, pages 207–218, 2014.
- Radim Belohlavek. Reduction and simple proof of characterization of fuzzy concept lattices. Fundamenta Informaticae, 46(4):277–285, 2001.
- 4. Radim Belohlavek. *Fuzzy Relational Systems: Foundations and Principles*. Kluwer Academic Publishers, Norwell, USA, 2002.
- 5. Radim Belohlavek, Tatana Funioková, and Vilem Vychodil. Fuzzy closure operators with truth stressers. *Logic Journal of the IGPL*, 13(5):503–513, 2005.
- 6. Radim Belohlavek and Jan Konecny. A logic of attribute containment, 2008.
- 7. Radim Belohlavek and Vilem Vychodil. A logic of graded attributes. *submitted to Artificial Intelligence*.
- Radim Belohlavek and Vilem Vychodil. Reducing the size of fuzzy concept lattices by hedges. In *FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems,* pages 663–668, Reno (Nevada, USA), 2005.
- 9. Radim Belohlavek and Vilem Vychodil. Fuzzy concept lattices constrained by hedges. *JACIII*, 11(6):536–545, 2007.
- Radim Belohlavek and Vilem Vychodil. Formal concept analysis and linguistic hedges. Int. J. General Systems, 41(5):503–532, 2012.
- 11. Bernard Ganter and Rudolf Wille. *Formal Concept Analysis Mathematical Foundations*. Springer, 1999.
- 12. Petr Hájek. *Metamathematics of Fuzzy Logic (Trends in Logic)*. Springer, November 2001.
- 13. Petr Hájek. On very true. Fuzzy Sets and Systems, 124(3):329-333, 2001.
- Jan Konecny, Jesús Medina and Manuel Ojeda-Aciego Multi-adjoint concept lattices with heterogeneous conjunctors and hedges. *Annals of Mathematics and Artificial Intelligence*, 72(1):73–89, 2011.

- 240 Eduard Bartl and Jan Konecny
- 15. Jan Konecny. Isotone fuzzy Galois connections with hedges. *Information Sciences*, 181(10):1804–1817, 2011. Special Issue on Information Engineering Applications Based on Lattices.
- 16. Vilem Vychodil. Truth-depressing hedges and BL-logic. *Fuzzy Sets and Systems*, 157(15):2074–2090, 2006.
- 17. Morgan Ward and R. P. Dilworth. Residuated lattices. *Transactions of the American Mathematical Society*, 45:335–354, 1939.