
Topic Modeling for RDF Graphs

Jennifer Sleeman, Tim Finin, and Anupam Joshi

Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore. MD 21250 USA
{jsleem1,finin,joshi}@cs.umbc.edu

Abstract. Topic models are widely used to thematically describe a col-
lection of text documents and have become an important technique for
systems that measure document similarity for classification, clustering,
segmentation, entity linking and more. While they have been applied to
some non-text domains, their use for semi-structured graph data, such
as RDF, has been less explored. We present a framework for applying
topic modeling to RDF graph data and describe how it can be used in a
number of linked data tasks. Since topic modeling builds abstract topics
using the co-occurrence of document terms, sparse documents can be
problematic, presenting challenges for RDF data. We outline techniques
to overcome this problem and the results of experiments in using them.
Finally, we show preliminary results of using Latent Dirichlet Allocation
generative topic modeling for several linked data use cases.

1 Introduction

Data presented as RDF triples can be problematic for tasks that involve identi-
fying entities, finding entities that are the same, finding communities of entities
and aligning ontological information. Data describing a resource can be sparse,
making it harder to distinguish one resource from other similar resources. Data
describing a resource can be noisy, having excessive data that is not relevant to
the resource. There can be large volumes of data which may contribute to an
increase in noise, errors, and ambiguities.

When data originating from multiple sources is used, combining and resolving
resource information can be challenging. For example, when aligning attributes
from one ontology to another, often there are attributes that simply are not
alignable [24]. In this paper, we show how topic modeling can be used to sup-
port tasks such as aligning ontologies, recognizing type information, community
detection and resolving resources that are the same. Though topic modeling can
be challenged by problems related to sparseness and noise, we show ways to
overcome these problems.

Topic modeling has quickly become a popular method for modeling large
document collections for a variety of natural language processing tasks. Topic
modeling is based on statistics of the co-occurrence of terms (typically words)
and establishes topics that are groupings of terms to describe documents. It has



2

been used to describe [2] and classify documents [21, 1], as a feature selection
method [8], sentiment analysis [16] and as a tool for clustering things of interest.

Topic modeling is a statistical method

Fig. 1: The Graphical Model for
LDA

that results in abstract categories or top-
ics from the processing of a set of docu-
ments. Several methods have been devel-
oped for generating topics. Early work by
Deerwester et al. [5] introduced the con-
cept of Latent Semantic Analysis (LSA)
which uses singular value decomposition
for finding the semantic structure of doc-
uments to improve indexing and retrieval.
Hofmann [13] later used the concept of
Probabilistic Latent Semantic Indexing (pLSI) to introduce a probabilistic gener-
ative approach. More recent work that has grown in popularity is Latent Dirichlet
Allocation (LDA) [3, 2] which is also a probabilistic approach but differs from
pLSI by the introduction of a conjugate Dirichlet prior and uses variational and
sampling based methods to estimate posterior probabilities. The LDA graphical
model is typically conveyed by a plate diagram as can be seen in Figure 1 where
W represents the words, β1..k are the topics, θd,k is the topic proportion of topic
k in document D, and Zd,k is the topic assignments.

With LDA, the terms in the collection of documents produce a vocabulary
that is then used to generate the latent topics. Documents are treated as a
mixture of topics, where a topic is a probability distribution over this set of
terms. Each document is then seen as a probability distribution over the set of
topics. We can think of the data as coming from a generative process that is
defined by the join probability distribution over what is observed and what is
hidden [2]. This generative process is defined as follows.

For each document: (1) Choose a distribution over topics; (2) For each
word in the document: (a) select a topic from the document’s distribution
over topics and (b) select a term from the associated distribution over
terms.

The computational portion of LDA involves learning the topic distributions by
means of inference. Though there are a number of variational and sampling based
methods for performing the inference, Gibbs sampling [12] is frequently used.

We describe how one might use topic modeling for RDF data and explore
its application to several problems faced by the Semantic Web community. RDF
data is less typical in terms of the documents that are used to create a topic
model but since a bag of words is typically used with this model, we will show
how RDF data can be used. Topic modeling was originally used to characterize
relatively long documents, such as newswire articles or scientific papers. More
recently, researchers have outlined successful strategies [28, 15, 21, 22], for using
topic modeling for short texts such as tweets and SMS messages. We build on
these ideas to establish an approach to using topic modeling with RDF data.



3

dbp:Alan_Turing dbpo:award dbp:Order_of_the_British_Empire .

dbp:Alan_Turing dbpo:birthDate "1912-06-23+02:00"^^xsd:date .

dbp:Alan_Turing dbpo:birthPlace dbp:Paddington .

dbp:Alan_Turing dbpo:field dbp:Computer_science .

dbp:Alan_Turing rdfs:label "Alan Turing"

dbp:Alan_Turing rdf:type dbpo:Scientist .

dbp:Alan_Turing rdf:type foaf:Person .

alan turing award birth date birth place field 1912-06-23+02:00 order

of the british empire paddington computer science scientist person

Fig. 2: A simple set of triples making up an RDF “document” and the word-like
tokens extracted from them for our topic modeling system

There are several issues in applying topic models to short texts [28]. The first
is the discriminative problem, where words in short documents do not discrimi-
nate as well as in longer ones. The second is that short documents provide much
less context than longer ones. RDF data shares both of these and adds a third:
none of its serializations are like any natural, human language.

2 Topic models and RDF graphs

2.1 Topic models for text

To give light to these problems we show how topic modeling for text documents
differ from RDF documents by describing how topic models are used with text
documents and how we apply them to RDF graphs.

Although there are a number of algorithms for defining and using topic mod-
els, they share several common aspects. A topic model uses a fixed set of K topics
to describe documents in a corpus. K varies with the application and is usually
between 100 and 1000. A text documents could be anything from a tweet to a
30-page scientific article, but they typically contain at least several paragraphs
of text. The mixture of topics in a document is represented as a vector of real
numbers between 0 and 1, where the kth number specifies the amount of topic
k that the document exhibits. Using topic vectors makes it easy to define the
“semantic” distance between two documents (often using the cosine similarity).

The K topics making up a topic model are not specified in advance, but
learned by a statistical process that discovers the ‘hidden thematic structure
in a document collection’ [2]. This stems from the probability that a word will
appear in a document about a different topic, which leads to an effective way to
compute the topic model vector for a document given its the bag of words.

One common problem is that many of the automatically induced topics in a
model may not correspond to concepts that are easy for people to identify. For
topic models over text documents, the best that can be done is to list the most
frequent words associated with each topic. This is often sufficient to recognize
that topic number 32 has something to do with politics and elections where



4

Fig. 3: Small and Large RDF Graphs

as topic number 126 seems to be about software and computer applications.
However, there are typically topics that are difficult or impossible to associate
with familiar concepts.

Once a topic model has been learned or trained from a document collection,
it can be used to infer a document’s topic vector from its bag of words. These
vectors can then be used for a number of different tasks, such as classifying,
clustering or recommending documents.

2.2 Topic models for RDF

While topic models were originally defined for text documents, they have been
applied to other kinds of data (e.g., images and generic sequences) and can be
used with RDF graphs. To do this, we must define what we will mean by a “doc-
ument” and the word-like elements within them and also how to compile large
collections of those “documents” to train our topic modeling system. For natural
language, topic models sometimes exploit linguistic concepts like part-of-speech
tags, stop words, and word lemmas and also apply normalization operations (e.g.,
downcasing, punctuation removal, abbreviation expansion, etc.) to improve per-
formance or accuracy, so we might consider analogs to these notions for RDF
data.

What’s a document? We assume that a knowledge base is represented by
triples, where a triple has a subject s, predicate p, and an object o, forming a
t(s, p, o) with the following definitions.

s ∈ (URI ∪Blank),p ∈ (URI) and o ∈ (URI ∪Blank ∪ Literal)

We define an ’entity’ by t1...tn ∈ T associated with a common s URI. In our
current model, we treat a document as the set of triples that describe a single
’entity’. We experiment with this definition of a document by working with
different parts of the triple, supplementing the triples with additional data, and
including 1-hop in-bound and out-bound links.

Alternatively, we could define it as the set of triples in which a given node is
either the subject or the object. If we consider a large dataset like DBpedia to
be a document collection, we probably want to further restrict the nodes in the



5

Table 1: Example objects extracted from triples.
Object Data Source
180(ttp://www.w3.org/2001/XMLSchema#integer DBpedia
MIT Building 10 and the Great Dome, Cambridge MA.jpg@en DBpedia
http://dbpedia.org/resource/Moli%C3%A8res, Tarn-et-Garonne DBpedia
http://dbpedia.org/resource/Thomas Walker (explorer) DBpedia
http://rdf.freebase.com/ns/m.02hm9j7 Freebase
5dc1e44e:14e30687534:-7f9e OAEI

graph that we will consider to be documents. A node like dbp:Alan Turing makes
a good subject but T-box nodes like owl:sameAs or dbpo:birthDate probably do
not. Similarly, structural nodes such as Freebase’s compound value type nodes
or nodes that link a measurement with a units and a numeric value may not be
suitable subjects for documents.

What’s a word? The “words” in a document are extracted from the subjects,
predicates and objects of each of its triples and the extractions are treated as
bags of words. The words related to an entity (given by a URI) are tokenized by
extracting all the triples related to a particular URI from a triple store. Then
by removing paths from subjects, predicates and objects. Specifically, literals,
i.e., strings, are used in which they are first sanitized with stop words removed.
Figure 2 shows an example of a set of triples forming a simple document and its
associated word-like tokens.

2.3 RDF Short Text Problem

Short text suffers from two distinct problems: sparseness affects how well the
model can discriminate and the lack of context affects word senses [28]. If a
word has multiple meanings often context can be used to identify the correct
meaning. RDF data also suffers from “unnatural” language since RDF data is
represented as triples, the natural structural clues found in human languages are
not present.

Sparseness. RDF data can suffer from sparseness. If we choose to think of a
document as a set of triples associated with a resource defined by an URI, the
set can be large, resulting in a larger, more context enriched bag of words or
small, offering very little information at all as shown in Figure 3. Even of the
large set of triples, the data that could actually be used in the bag of words,
after pre-processing could result in a smaller set of words.

Lack of Context. Context can be particularly problematic for RDF data, as
often words are used that can have multiple meanings and due to the potential
sparseness of RDF data in addition to the unnatural language characteristic, it
could be hard to distinguish that meaning. For example, the description Alter-
native rock contains the word rock, without additional context, this word could
be interpreted in multiple ways.



6

Unnatural Language. RDF data suffers from unnatural language issues. Since
RDF data is graph-based the natural structure of a sentence does not exist. Often
the components of a sentence provide additional context for understanding words
which may be polysemous or homonymous. In addition, the text is more prone
to error during pre-processing. For example, it is not uncommon to find parts
of a triple that have unexpected characters, unusual letter casing, pointers to
another resource and data that is simply hard to parse. We show some of these
examples in Table 1.

The short text problems in RDF. Researchers tend to take two approaches
to overcoming short text related problems. They either supplement the text
or they create modified versions of LDA to support their specific problem.
We currently use the approach of supplementing text using a set of baseline
techniques. Our future work will include additional techniques for supplement-
ing text and a modified LDA algorithm for RDF graphs. We show ways to
supplement RDF data in Figure 4. We could simply use the object literals
of the triple, for example “University of North Carolina” is an object literal
for the resource “University of North Carolina at Greensboro”. We could also
use the predicates, in addition to the object literal. For example, the predicate
“http://dbpedia.org/property/name“, may be the predicate for the triple with
the object literal “University of North Carolina”. We may also choose to use
Wordnet to supplement the RDF data. For example, for the word “Boston” if
we take a subset of synsets and the definition, we enrich the word “Boston”
with the following data: [capital of Massachusetts, state capital and largest city
of Massachusetts; a major center for banking and financial services, Beantown,
Bean Town, Boston, Hub of the Universe]. We also looked at using 1-hop in-links
and 1-hop out-links. For example, “Boston” may refer to a mayor, which with
1-hop we could consume the triples related to the mayor of Boston. We could
do this similarly with in-links.

3 Related Work

Work by Hong et al. [15] focuses on Twitter data and takes the approach of both
developing a modified version of LDA and also defining a number of modeling
schemes to be used. They take the approach of inferring a topic mixture for mes-
sages and authors where each word in a document is associated with an author
latent variable and a topic latent variable. In our work we are not proposing a
modification to LDA but rather a way to supplement RDF triples such that the
data is better suited for LDA modeling.

Since topic modeling works on the co-occurrences of terms, sparse documents
can be problematic. Work by Yan et al. [28] bring light to this problem in terms
of ’short text’. As described in this work, often researchers aggregate short text
documents or customize the topic model to train on aggregated data. Others
make assumptions as to how documents relate to topics. They take the approach
of a generative model specifically for ’biterms’ which is an ’unordered word-pair



7

Fig. 4: Bag of Words Variations

co-occurrence’. Again, they specifically address short text by modifying LDA.
Though we think this work has merit in this paper we specifically look at how
to modify the data itself.

Work by Phan et al. [21] describes how external data sources can supplement
short text. They describe a framework for classifying short, sparse text which
includes collecting large data sets that are used to create hidden topics. These
hidden topics are then used in conjunction with the small data set to support
classification. In this approach they were able to address the data sparseness
problem and expand their training set to be more representative. This approach
differs from ours in that they supplement the short text with large data sets that
they apply topic modeling to whereas we supplement the RDF and then apply
topic modeling.

Work by Dietz et al. [6] uses topic modeling for bibliographical data and
the results are presented as RDF data. However this work does not address the
problem of using topic modeling directly on RDF data.

4 Applying Topic Modeling

Given our description of topic modeling and how it could be used with RDF
data, we have outlined a number of ways topic modeling could be applied to
research tasks within the Semantic Web community.



8

4.1 Predicting entity types

Often there is a need to associate type information with entities that are de-
fined within RDF data [17, 26, 20]. For example, it is not clear from its name
what the resource ’http://dbpedia.org/resource/City of Golden Shadow’ refers
to. However, with associated type information, the types book, WrittenWork
and Creative Work are associated with the resource. By predicting type infor-
mation, when type information does not exist, types provide additional infor-
mation about the entity, supporting tasks such as knowledge base population,
entity coreference resolution and entity linking.

We use topic modeling to support entity type recognition by creating a topic
model from a sample of data which contains known type information. We use
the model to associate topics to the types. Given new data with missing type
information, we then infer topics for new entities. Using KL divergence, for each
entity with an unknown type, we measure the divergence between its topic vector
and the topic vectors of each known type. Based on this measure we assign known
types to new entities.

4.2 Entity Disambiguation

The need to match instances across different data sets or to link new instance
information with existing knowledge base instances is common [10, 27, 14, 25].
This method usually involves taking information from each instance and applying
a matching algorithm to identify which instances are likely the same. Topic
modeling supports creating clusters of entities that are closely related, which
can be used as a preprocessing step for matching instances or disambiguating
entities. In our work, we assume an existing knowledge base and create a topic
model from its data. With this, we can compute topic vectors for new entities
to be integrated into the knowledge base. We use cosine similarity to compare
the new entity topic vectors to vectors for existing KB entities. We treat this
approach as a candidate selection method, where the entities that have similar
topic vectors should be evaluated for similarity.

4.3 Ontology alignment - Class and Property Alignment

Ontology alignment [23] can include classes, properties and instances. For exam-
ple, from the OAEI initiative [19] oaei 101#author1 from ontology 1 aligns with
oaei 103#author from ontology 3. We use a topic model based on one ontology
then we infer topic vectors for our second ontology, making our properties and
classes our ’entities’ of interest. We take the cosine similarity to directly align
properties and classes.

1 We use the abbreviation oaei 101, oaei 103, and oaei 205 for http://oaei.-
ontologymatching.org/tests/101/onto.rdf, http://oaei.ontologymatching.org/tests/-
103/onto.rdf and http://oaei.ontologymatching.org/tests/205/onto.rdf, respectively.



9

Fig. 5: Example of Fantasy Literature Penguin Publishing Author Community

4.4 Community detection

Community detection approaches [29, 11, 9] can be categorized as topological or
topical [7]. We address topical detection in this work. By examining the graphs
of RDF data and based on highly connected vertices, communities can be de-
tected by node connections. As an example, we took a set of resources from a
DBpedia [4] sample and clustered resources that are fiction literature and pro-
duced communities based on sharing the same publishers and the same genre.
A community of authors can be seen in Figure 5.

This topical approach can be performed by using topic modeling. For ex-
ample, authors of the Fantasy Literature and Penguin Publishing community
might have more topics in common than authors of other genres associated with
different publishing companies.

In our work we build a topic model from a data set that we identify as having
communities of interest. From this model we then associate topic vectors to each
entity. We look for entities which have a number n of topics in common. In order
to find entities which have n topics in common, we create a histogram from the
topic probabilities for each entity. Assuming a topic defines a sub-community,
we use the histogram to tell us where the most density is among topics for the
entity and set a threshold so that we only consider the topics which are most
relevant to the entity. From this we assign entities to topic sub-communities. We
then find entities that have n sub-communities in common.

5 Experiments and Results

We experimented with different ways to build a bag of words from the RDF
data based on approaches in Figure 4. For each problem which we outlined pre-
viously, we used LDA without any modifications to the algorithm itself. Our goal
with this work was to show how to supplement RDF data to overcome issues
related to spareness, lack of context and the use of unnatural language. We did



10

see improvement in supplementing the RDF data with repetition of key words,
and using a limited set of synsets and definitions from Wordnet. Specifically,
when working with large graphs, using the object literals alone may be suffi-
cient but we have observed better results when including either the predicate
or the predicate and the subject. We have also found that where the graphs
are particularly sparse, using Wordnet [18] synsets and definitions can improve
performance. Using 1-hop in-links and 1-hop out-links often increased the noise
factor which negatively impacted the performance. We limited the data we in-
corporated from in-links and out-links to predicates that were of type name and
label. This approach reduced the noise but we didn’t see significant improvements
in performance. Our future work will include exploring links more, possibly by
examining graph similarities.

5.1 Predicting entity types

We used DBpedia data and created two different randomly selected data sets.
One was used to actually build the topic model, it had 6000 unique resources.
The second data set had 100 unique resources. We associated topics to known
types and then used the model to infer types for each entity in the second data
set. We then used KL divergence to compare topic vectors. From this we mapped
types from the first data set to entities in the second data set. We tested with
200 topics and 400 topics with resources that had an average of seven types that
should be recognized. Our ground truth in this case was the type defintions in
the DBpedia data set. We removed the type defintions for our test data set then
evaluated our predictions with what was defined by DBpedia. Though our test
set was relatively small, we were able to see how precision changed based on
data variations. As can be seen in Figure 6 we saw the highest precision using
predicates and objects and in Figure 7 we saw the highest precision using predi-
cates and objects that included the Wordnet synsets and definitions. Though it
was clear that objects alone did not perform as well as including the predicate,
future work will further explore the relationship between supplemental data and
the number of topics chosen for the model.

5.2 Entity Disambiguation

For this experiment we took a subset of DBpedia data as our knowledge base in-
cluding 300 unique entities with an average of 19 triples per entity and used this
data set to build a topic model. We created a second data set with 100 unique en-
tities obtained from the same data, except we obfuscated the subjects such that
subjects could not be directly matched. For example, the unobfuscated subject
“Falling in Love with Jazz” became “Jxiiwhw wh Uaka kwki Uxhh”. We used
this approach as to create a ground truth for entity matching. We used a lookup
table to correlate between the obfuscated subjects and the unobfuscated sub-
jects to evaluate our approach. We associated topics with each entity in our
knowledge base. We then took our obfuscated data set and inferred topics for
each entity. From this we used cosine similarity to compare entities and tried to



11

Fig. 6: Entity types with 200 topics

Fig. 7: Entity types with 400 topics



12

match entities from the two data sets. Though topic modeling is too coarse to
use directly to match instances, it does provide a way to significantly reduce the
number of candidates that need to be matched. Our experiments showed topic
modeling was a reasonable approach for candidate selection reducing on average
the number of candidates from 1000s to 100s. However, more work is required
to show how this method could be used in conjunction with a entity matching
algorithm.

5.3 Ontology alignment

We tested two different alignments that included aligning properties and classes.
We used the data from oaei 101 and oaei 103, where the class and property
names are identical. We also used the data from oaei 101 and oaei 205, where
class and property names to be aligned are not spelled the same. For example,
oaei 101#Booklet and oaei 205#Brochure should be recognized as alignable.
We used the OAEI ref alignments to evaluate our approach. This alignment
document indicates which properties and classes should be aligned. We excluded
instance alignments for this evaluation. We did however extract the instance data
only to generate a topic model. Our evaluation examined how well we aligned
properties and classes. We tested with 25, 50, 100 and 200 topics and saw the
best performance with 50 topics. We exercised the different variations for the
RDF data. The ontologies are good examples of sparseness, by using repetition
and supplemental data we were able to get approximately 80% precision, where
we selected the top N candidates of either an attribute or class match.

Fig. 8: Ontology alignment (101-103) with 50 topics



13

Fig. 9: Ontology alignment (101-205) with 50 topics

5.4 Community detection

We took a sample of the DBpedia data set and performed topic modeling using
50, 100, and 200 topics. From this we associated a set of topics with each en-
tity. We then looked for entities that had n topics in common. Commonality is
based on first identifying topics for each entity that are most relevant given their
probabilities. then comparing entities based on this subset of topics. Our data
set did not include ground truth for this evaluation. However, as seen in figure
10 our preliminary results found interesting communities, such as a community
that included Vini Lopez and Bruce Springsteen who are related by playing in
the same band. Future work will perform more comprehensive experiments to
evaluate this method further.

6 Conclusion

We described a framework for applying topic modeling to RDF graph data and
described how it can be used in a number of linked data tasks, including predict-
ing entity types, instance matching, ontology alignment, context identification
and community detection. By supplementing RDF data we can address the prob-
lems related to spareness, lack of context and unnatural language. We have used
different problems in Semantic Web research to exercise LDA modeling. For pre-
liminary results over a small amount of data, topic modeling shows promise for
a number of tasks. Repetition and Wordnet supplemental data improves perfor-
mance. More work is needed to determine how we could use in-links and out-links
to supplement the data without increasing the noise. Our results, though pre-
liminary, provide some insight into how a basic LDA model might perform given



14

Fig. 10: Community Detection

variations of the text. Our future work looks to modify the LDA algorithm itself
to work specifically with graph based data.

Acknowledgment. This work was supported by NSF grants 0910838 and 1228673.

References

1. B́ıró, I., Szabó, J., Benczúr, A.A.: Latent dirichlet allocation in web spam filtering.
In: 4th int. Workshop on Adversarial Information Retrieval on the Web. pp. 29–32.
ACM (2008)

2. Blei, D.M.: Probabilistic topic models. Comm. of the ACM 55(4), 77–84 (2012)
3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the Journal of

machine Learning research 3, 993–1022 (2003)
4. DBpedia: Dbpedia data set. http://dbpedia.org/Datasets (2011)
5. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:

Indexing by latent semantic analysis. JAsIs 41(6), 391–407 (1990)
6. Dietz, L., Stewart, A.: Utilize probabilistic topic models to enrich knowledge bases.

In: Proc. of the ESWC 2006 Workshop on Mastering the Gap: From Information
Extraction to Semantic Representation (2006)

7. Ding, Y.: Community detection: Topological vs. topical. Journal of Informetrics
5(4), 498–514 (2011)

8. Duric, A., Song, F.: Feature selection for sentiment analysis based on content and
syntax models. Decision Support Systems 53(4), 704–711 (2012)

9. Erétéo, G., Buffa, M., Gandon, F., Grohan, P., Leitzelman, M., Sander, P.: A state
of the art on social network analysis and its applications on a semantic web. In:
7th Int. Semantic Web Conference (2008)

10. Ferraram, A., Nikolov, A., Scharffe, F.: Data linking for the semantic web. Semantic
Web: Ontology and Knowledge Base Enabled Tools, Services and Applications
(2013)

11. Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174
(2010)

12. Griffiths, T.: Gibbs sampling in the generative model of latent dirichlet allocation
(2002), http://bit.ly/1IA88Pc



15

13. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in in-
formation retrieval. pp. 50–57. ACM (1999)

14. Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., Decker, S.: Scalable and
distributed methods for entity matching, consolidation and disambiguation over
linked data corpora. Journal of Web Semantics 10, 76–110 (2012)

15. Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: Pro-
ceedings of the First Workshop on Social Media Analytics. pp. 80–88. ACM (2010)

16. Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: 18th ACM
Conf. on Information and Knowledge Management. pp. 375–384 (2009)

17. Ma, Y., Tran, T., Bicer, V.: Typifier: Inferring the type semantics of structured
data. In: 29th Int. Conf. on Data Engineering. pp. 206–217. IEEE (2013)

18. Miller, G.: Wordnet: a lexical database for English. CACM 38(11), 39–41 (1995)
19. Ontology alignment evaluation initiative - OAEI 2014 campaign, http://oaei.-

ontologymatching.org/2014/
20. Paulheim, H., Bizer, C.: Type inference on noisy rdf data. In: International Se-

mantic Web Conference (2013)
21. Phan, X.H., Nguyen, L.M., Horiguchi, S.: Learning to classify short and sparse

text & web with hidden topics from large-scale data collections. In: 17th WWW
Conf. pp. 91–100. ACM (2008)

22. Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing microblogs with topic
models. ICWSM 10, 1–1 (2010)

23. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
Knowledge and Data Engineering, IEEE Transactions on 25(1), 158–176 (2013)

24. Sleeman, J., Alonso, R., Li, H., Pope, A., Badia, A.: Opaque attribute alignment.
In: Proc. 3rd Int. Workshop on Data Engineering Meets the Semantic Web (2012)

25. Sleeman, J., Finin, T.: Computing FOAF co-reference relations with rules and
machine learning. In: 3rd Workshop on Social Data on the Web. ISWC (2010)

26. Sleeman, J., Finin, T., Joshi, A.: Entity type recognition for heterogeneous seman-
tic graphs. In: AI Magazine. vol. 36, pp. 75–86. AAAI Press (March 2105)

27. Song, D., Heflin, J.: Domain-independent entity coreference for linking ontology
instances. Journal of Data and Information Quality 4(2), 7 (2013)

28. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In:
22nd Int. Conf. on the World Wide Web. pp. 1445–1456 (2013)

29. Zhang, H., Giles, L., Foley, H., Yen, J.: Probabilistic community discovery using
hierarchical latent gaussian mixture model. In: AAAI. pp. 663–668 (2007)


