
ACM/IEEE 18th International Conference on

Model Driven Engineering Languages and Systems

September 29, 2015 – Ottawa (Canada)

Flexible Model Driven Engineering Proceedings

(FlexMDE 2015)

Davide Di Ruscio, Juan de Lara, Alfonso Pierantonio (Eds.)

Editors’ addresses:

Davide Di Ruscio

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila (Italy)

Juan de Lara

Escuela Politécnica Superior

Departamento de Ingeniería Informática

Universidad Autónoma de Madrid (Spain)

Alfonso Pierantonio

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila (Italy)

Preface

Increasingly, models are starting to become commonplace and Model Driven Engineering (MDE) is gaining

acceptance in many domains including automotive, aerospace, railways, telecommunications, business

applications, and financial organizations. Over the last years, several modeling platforms have been

developed to simplify and automate many steps of MDE processes. However, still several challenges have to

be solved in order to enable a wider adoption of MDE technologies. One of the most important impediments

in adopting MDE tools is related to the reduced flexibility of existing modeling platforms that do not permit

to relax or enforce their rigidity depending on the stages of the applied development process. For instance,

EMF does not permit to enter models which are not conforming to a metamodel: on one hand it allows only

valid models to be defined, on the other hand it makes the corresponding pragmatics more difficult. In this

respect, there is a wide range of equally useful artefacts between the following extremes:

- diagrams informally sketched on paper with a pencil

- models entered in a given format into a generic modeling platform, e.g., Ecore/EMF

At the moment, modeling platforms encompasses only the latter possibility. However, while depending on

the stage of the process it makes sense to start with something closer to the former (to promote

communication among stakeholders) to eventually end up with the latter (to allow automatic model

processing and code generation). Thus, we are interested in exploring the possible forms of flexibility that

are required when applying MDE processes, ranging from agile ways to develop modeling artifacts and

languages to their flexible application in concrete domains.

Flexibility is also needed to enable wider possibilities for reusing MDE artefacts, like model transformations

and code generators. In particular, to deal with the growing complexity of software systems, it is necessary to

enforce consistent reuse and leverage the interconnection of the modeling artifacts that are produced and

consumed during the different phases of the applied development processes. In such contexts, modularization

mechanisms have to be devised in order to enable the development of complex modeling artifacts from

smaller ones, which are easier to process and reuse.

The first edition of the Flexible Model Driven Engineering workshop (FlexMDE) – previously known as

Extreme Modeling Workshop (XM) - has been co-located with the ACM/IEEE 18th International

Conference on Model Driven Engineering Languages & Systems (MODELS 2015). It provided a forum for

researchers and practitioners where different forms of agility have been discussed as demonstrated by the

technical program, including agile development of domains specific languages, agile requirements

engineering, and fast development of data-intensive Web applications. The program included also a keynote

by Prof. Colin Atkinson (University of Mannheim) entitled “Maximizing the Amount of Information Not

Modelled in MDE”. As part of the workshop, an informal tool demonstrations session has been also

organized consisting of 5 tools aiming at adding flexibility to MDE at different extents.

Many people contributed to the success of FlexMDE 2015. We would like to truly acknowledge the work of

all Program Committee members, and reviewers for the timely delivery of reviews and constructive

discussions given the very tight review schedule. Finally, we would like to thank the authors, without them

the workshop simply would not exist.

October 2015

Davide Di Ruscio

Juan de Lara

 Alfonso Pierantonio

Organizers

Davide Di Ruscio (co-chair) Università degli Studi dell’Aquila (Italy)
Juan De Lara (co-chair) Universidad Autonoma de Madrid (Spain)
Alfonso Pierantonio (co-chair) Università degli Studi dell’Aquila (Italy)

Program Committee

Colin Atkinson University of Mannheim (Germany)
Paolo Bottoni Sapienza University of Rome (Italy)
Antonio Cicchetti Maalardalen University (Sweden)
Tony Clark Middlesex University (UK)
Jeff Gray University of Alabama (USA)
Robert Hirschfeld Hasso-Plattner-Institut (Germany)
Dimitris Kolovos University of York (UK)
Philipp Kutter Montages AG (Switzerland)
Mark Minas Universität der Bundeswehr München (Germany)
Rick Salay University of Toronto (Canada)
Jesus Sanchez Cuadrado Universidad Autonoma de Madrid (Spain)
Bran Selic Malina Software Corp. (Canada)
Jim Steel University of Queensland (Australia)
Vadim Zaytsev Universiteit van Amsterdam (NL)
Steffen Zschaler King’s College London (UK)

Table of Contents

Maximizing the Amount of Information Not Modelled in MDE. 1
Colin Atkinson

MUTANT: Model-Driven Unit Testing using ASCII-art as Notational Text. 2
Daniel Strüber, Felix Rieger, Gabriele Taentzer

Agile bottom-up development of domain-specic IDEs for model-driven develop-
ment .

12

Steen Vaupel, Daniel Strüber, Felix Rieger, Gabriele Taentzer

Type Inference Using Concrete Syntax Properties in Flexible Model-Driven En-
gineering .

22

Athanasios Zolotas, Nicholas Matragkas, Sam Devlin, Dimitrios S. Kolovos, and
Richard F. Paige

Flexible Modelling for Requirements Engineering . 32
Athanasios Zolotas, Nicholas Matragkas, Dimitrios S. Kolovos, and Richard F.
Paige

Taxonomy of Flexible Linguistic Commitments . 42
Vadim Zaytsev

Prototizer: Agile on Steroids. 51
Aram Hovsepyan, Dimitri Van Landuyt

Keynote

Maximizing the Amount of Information Not
Modelled in MDE

Colin Atkinson
University of Mannheim

Ideally, a domain-specific modeling languages should allow domain experts to de-
fine requirements and solutions with the minimal necessary model content. Any
model content that is not strictly necessary for expressing the desired message is
essentially “accidental complexity” and reduces the generality and “flexibility”
of the model. Therefore, in the same way that agile methods aim to “maximize
the amount of work not done” in software engineering, model-driven develop-
ment should aim to maximize the amount of information not modeled in the
fulfillment of modeling goals. This requires the use of languages that are not
only optimized to express concepts in the domain of discourse but also possess
clear inference and frame rules allowing modelers to infer information that is
not explicitly expressed. Examples include “world assumptions” (e.g. open or
closed), derivation mechanisms (e.g. inheritance), “completion” statements and
elision notations. In this talk Colin Atkinson will clarify what it means to maxi-
mizing the amount of information not modelled in MDE, suggest some concrete
principles and mechanism for achieving this goal, and explore what consequence
it can have for model flexibility.

Colin Atkinson is leader of the Software Engineering Group at the University of

Mannheim (Germany). Before that he held a joint position as a professor at the Uni-

versity of Kaiserslautern and project leader at the affiliated Fraunhofer Institute for

Experimental Software Engineering. From 1991 until 1997 he was an Assistant Pro-

fessor of Software Engineering at the University of Houston Clear Lake. His research

interests are focused on the use of model-driven and component based approaches in

the development of dependable computing systems. He received a Ph.D. and M.Sc. in

computer science from Imperial College, London, in 1990 and 1985 respectively, and

received his B.Sc. in Mathematical Physics from the University of Nottingham 1983.

1

MUTANT: Model-Driven Unit Testing
using ASCII-art as Notational Text

Daniel Strüber, Felix Rieger, Gabriele Taentzer

Philipps-Universität Marburg, Germany,
{strueber, riegerf, taentzer}@informatik.uni-marburg.de

Abstract. There are two established strategies to create test models:
Textual notations require developers to mentally reconstruct the involved
graph structures ad hoc; maintenance effort and time are increased. Ex-
isting visual notations compel developers to switch frequently between
different editors; keeping the resulting test artifacts synchronized is com-
plicated by insufficient tool support. In this paper, we propose to specify
test models using ASCII-art – a text-based visual notation used by de-
velopers in their everyday practices. To outline our vision, we employ a
motivating example and discuss challenges such as editing, collaboration,
and scalability. The discussion sheds a promising light on the new idea,
notably for its usefulness in collaborative and reuse-intensive settings.

1 Introduction

Model-Driven Engineering (MDE) emerged as a paradigm to combat complex-
ity in software engineering through the use of visual notations. While its basic
premise appears promising, MDE has not found broad adoption as a mainstream
software development methodology, and a major cause for this failure is often
seen in inadequate tool support [1]. In particular, Batory et al. found the graph-
ical tools in a widely-known modeling framework unsuitable for teaching MDE
to students, considering them unappealing and unintuitive [2].

This lack of enthusiasm is seconded by practitioners. In a recent online dis-
cussion, an industry participant observed that “the graphical tools are bulky, lack
often some features like (smart) versioning, merging, collaborating, good integra-
tion into the overall development tool chain. [...] Working with mouse, property
dialogs, popup windows never gains the speed of a well configured source IDE.”1

In this work, we aim to provide the benefits of visual models without inducing
any of these tool-related problems. The idea is to specify models using ASCII-art ,
a text-based visual notation used by developers in their everyday practices [3].
ASCII-art is widely used in specification documents, such as Internet RFCs [4].
We will explore this idea in a context where it appears particularly well-suited:
Simplifying unit testing, a cornerstone in software quality assurance [5].

1 http://modeling-languages.com/failed-convince-students-benefits-code-generation
User Det, 2015-02-11

2

Often, a system under test takes as input a data structure with an intuitive
visual representation: Consider (i) a routing algorithm finding shortest paths in
a graph of towns, (ii) a model transformation deriving database schemas from
class models, or (iii) a social network site proposing new friends based on a social
graph. Adopting MDE terminology, we will call such data structures models.

There are two established strategies to create test models: The first is textual
specification using APIs or dedicated DSLs. However, textual notations are not
suited to capture the visual nature of the involved models. It has been reported
that the use of visual models respecting certain layouting criteria has a positive
effect on cognitive load [6]. Hence, the second option is to construct test models
using visual tools. Yet this results in a complicated process, involving repeated
switching between different editors and keeping test models and code synchro-
nized – challenging tasks, given the lack of production-ready collaboration tools.

In this paper, we propose model-driven unit testing using ASCII-art as nota-
tional text (MUTANT): Unit tests are annotated with test models, using a visual
notation based on ASCII characters. The main component of the approach is a
model compiler that derives models from these annotations and provides these
models to the test framework. By adding it to the build script, this compiler can
be integrated into any given IDE. We put forth the following design rationale:

I. Diffing and merging annotated code, crucial tasks in versioning and col-
laboration, is supported by mature tools included in state-of-the-art IDEs.

II. Collaborators and project stakeholders, such as managers and customer-
side developers, can view test models without requiring any tool setup.

III. The notation is not bound to a specific modeling platform. Alternative
platforms can be supported by providing separate model compilers.

IV. Creating new test models from existing ones boils down to copying text.
Sec. 2 reports on a daunting experience of performing this task using visual tools.

The rest of this paper is structured as follows: In Sec. 2, we introduce the
approach by example. In Secs. 3 and 4, we discuss challenges and an implemen-
tation prototype. We discuss related work and conclude in Secs. 5 and 6.

2 Motivating Example

Consider the following example to compare the new approach against the es-
tablished approaches to test model specification. The system under test is an
implementation of the pull up attribute refactoring [7] for class models: If two
classes have the same superclass and attributes of the same type and name, the
attributes are moved to the superclass. The unit tests in this example involve a
part where a test model is provided, a part where the refactoring is applied, and
assertions to check if the attribute was pulled up.

Textual specification. Fig. 1 presents a unit test for the refactoring based
on the Eclipse Modeling Framework (EMF), a modeling platform often used to
create and persist models [8]. In lines 4-12, the test model is created: A pack-
age acting as overarching container, classes, and their attributes are created. In
lines 13-14, person is set as common superclass for the professor and student

classes. In lines 16-19, the refactoring is applied and assertions are checked.

3

1 public class RefactoringTest extends UnitTest {

2 @Test

3 public void testRefactoring () {

4 EFactory fact = EcoreFactory.eINSTANCE;

5 EPackage pkg = fact.createEPackage ();

6 EClass person = fact.createEClass(pkg);

7 EClass professor = fact.createEClass(pkg);

8 EClass student = fact.createEClass(pkg);

9 EAttribute attr1 = fact.createEAttribute(

10 "name", String.class , professor);

11 EAttribute attr2 = fact.createEAttribute(

12 "name", String.class , student);

13 professor.setSuperClass(person);

14 student.setSuperClass(person);

15

16 assertTrue(person.getAttributes ().size()==0);

17 PullUpRefactoring refac = new

PullUpRefactoring(pkg);

18 refac.execute ();

19 assertTrue(person.getAttributes ().size()==1);

20 }

21 }

Fig. 1. Textual test model specification.

1 public class RefactoringTest extends UnitTest {

2 @Test

3 public void testRefactoring () {

4 EPackage pkg = load("/test1/Test.ecore");

5 EClass person = pkg.getEClass("Person");

6

7 assertTrue(person.getAttributes ().size()==0);

8 PullUpRefactoring refac = new

PullUpRefactoring(pkg);

9 refac.execute ();

10 assertTrue(person.getAttributes ().size()==1);

11 }

12 }

Fig. 2. Loading a visually specified test model.

This approach has two advantages: Test model and code are maintained at
the same place, eliminating the need for context and tool switching. Since the
input model is specified textually, it can be easily diffed and merged, facilitating
collaboration. However, the easy tractability of the code comes at a price: The
specification does not reflect the graph structure of the input model. Developers
have to reconstruct the graph in their minds, adding a level of complexity to the
understanding process and increasing maintenance effort and time.

External visual specification. Fig. 2 shows an equivalent unit test where
the test model, created using a visual editor, is loaded from the file system.

4

This solution has two benefits: The input model is specified visually, and
the test code remains clean and simple. On the downside, to understand and
maintain tests, developers are forced to switch between input models and tests.
Furthermore, the absence of the actual test model in this presentation reflects
the situation collaborating developers might find themselves in: The committing
developer might have used an incompatible version of the visual tool, or have
forgotten to include the test model in the commit. From our own experience,
we report on another serious drawback: To achieve a good test coverage, it is
reasonable to reuse test models by copying and modifying them. In EMF, this is
a complicated process: Models and their layout information are distributed over
several files, using hard-coded references that have to be adjusted manually.

MUTANT. Fig. 3 exemplifies test specification using the proposed ap-
proach. The test model is provided in the Javadoc accompanying the test method,
using a custom @InputModel parameter. In the employed syntax, boxes indicate
classes. The generalization relation is indicated by arrows: The character A resem-
bles a closed arrowhead. We provide a model compiler to parse such annotations
and derive models, making them accessible through a dedicated API, invoked in
line 18. To specify output models, the parameter @OutputModel can be used.

1 public class RefactoringTest extends UnitTest {

2 @Test

3 /** @InputModel EPackage pkg =

4

5 +------------+

6 | Person |

7 +------------+

8 A A

9 .-------' '-------.

10 | |

11 +--------------+ +--------------+

12 | Professor | | Student |

13 |--------------| |--------------|

14 | name: String | | name: String |

15 +--------------+ +--------------+

16 */

17 public void testRefactoring () {

18 EPackage pkg = Mutant.getPackage("pkg");

19 EClass person = pkg.getEClass("Person");

20

21 assertTrue(person.getAttributes ().size()==0);

22 PullUpRefactoring refac = new

PullUpRefactoring(pkg);

23 refac.execute ();

24 assertTrue(person.getAttributes ().size()==1);

25 }

26 }

Fig. 3. Specifying a test model using ASCII-art.

5

The outlined solution combines the advantages of both previous solutions
without suffering from any of their drawbacks: It establishes locality and use of
text-based collaboration tools while maintaining an intuitive, graphical layout,
indicating the layout of the known graphical model notation.

3 Challenges and Vision

In this section, we outline the full vision of the proposed approach, highlighting
its strengths, challenges, and strategies to tackle these challenges.

Editing. An important benefit of ASCII-art over non-textual graphical rep-
resentations is that it can be created, edited and viewed using any text editor.
However, not all text editors are recommendable for all of these tasks. Depend-
ing on the editor at hand, the editing process can be cumbersome: For instance,
moving a box horizontally may require to add whitespace in successive lines.

Instead, our approach targets state-of-the-art code IDEs. These IDEs come
with powerful text editors: Eclipse, IntelliJ and Visual Studio provide dedicated
modes allowing to manipulate successive lines by a single keystroke.2 Capabilities
to add, insert or remove characters in a column-wise fashion and to select or
manipulate boxes facilitate ASCII-art editing noticeably. To accommodate larger
editing steps, we propose the use of specialized text editors, providing convenient
features such as box drawing and freehand erasers.3 For viewing and minor edits,
the IDE code editor remains the designated tool – considerably reducing the need
for context switching imposed by processes involving graphical editors.

Collaboration. We base our approach on the claim that employing ASCII-
art enables the use of the mature collaboration tools found in present-day IDEs.
More specifically, we maintain that the existing line-based diff and merge tools
are sufficient in most cases. Yet, we identify two caveats:

First, text differencing considers just the syntax of the involved models and is
oblivious to their semantics. As a consequence, syntactically different models are
reported as different, even if they are semantically equivalent. This is analogous
to code diffs, where two semantically equivalent lines of code may be highlighted
as different. Second, as the only problematic case for merging, we identify merge
conflicts concerning the same line of code, which have to be resolved by hand –
again, a situation that is accepted in source code editing.

Scalability. The proposed idea is particularly suited for the creation of unit
tests since the models involved in unit testing tend to be relatively small: Unit
tests usually represent edge cases reflecting the core of a critical scenario. How-
ever, particular edge cases may demand large models. To address these cases,
we must account for the inherent limitations of text-based notations: Zooming
is not available. Space may be limited to 80 or 100 characters per line.4

2 Eclipse: block selection mode, IntelliJ and Visual Studio: column mode.
3 e.g. http://asciiflow.com/, http://www.jave.de/,

http://emacswiki.org/emacs/ArtistMode. Retrieved on 2015-08-31.
4 The example model in Fig. 3 stretches over 33 characters of horizontal dimension.

6

In order to address the space limitation, we provide adjustments that help to
increase notational compactness. To compact multiple objects of the same type,
nodes can carry a multiplicity, indicated by the character n. To compact multiple
links of the same type, edges can be multi-edges, i.e., have multiple source or
targets. To remove visual clutter in models with many edges – a potential ob-
stacle to developer performance [9] –, we introduce abbreviated edges, a concept
inspired by net labels in ECAD software5. The example model in Fig. 4 shows
a school with ten teachers, nine of them named Mary, one named Ed.

+------------+

| :School |#--{teachers}--[c]

+------------+

+----------------+ +-------------+

| :Teacher [n=9] | [c]--->| :Teacher |

|----------------| |-------------|

| name = "Mary" |<---[c] | name = "Ed" |

+----------------+ +-------------+

Fig. 4. Test model with multi-node and abbreviated multi-edge.

In the future, we aim to empirically investigate the scalability of the proposed
approach, including the effect of these mitigation strategies. In any case, it might
be argued that the advantage of unlimited space and zooming in graphical tools
is debatable in the first place: It has been observed that diagrams exceeding a
certain size can present an obstacle rather than an aid to comprehension [10].

Scope. To make the approach broadly applicable in various application do-
mains, we aim to provide support for different modeling languages. All modeling
languages can be supported by considering their abstract syntax – a representa-
tion based on boxes and arrows, exemplified in Fig. 4. Still, developers may prefer
the known concrete syntax (CS) notations. The example in Fig. 3 presents a CS-
based notation for class models. To support extensibility for arbitrary languages,
we propose a framework approach, allowing customization for new languages by
defining visual tokens and their mapping to the underlying meta-model.

Syntax errors. In present-day visual and textual editors, developers are
supported by syntax checks, allowing them to discover specification errors early,
during editing rather than at runtime. Feedback on syntax errors is part of our
basic approach: Its central component, a model compiler, is able to return specific
error messages in case that syntax errors are found. These error messages are
forwarded to the IDE by means of the build script invoking the compiler.

Conversion. It is desirable to enable an easy transition between external
specifications and the proposed notation. Sources of external specification may
include regular models in custom layout formats, PowerPoint and Visio docu-
ments, and even hand-drawn sketches photographed using smartphone cameras.

5 e.g., KiCad, http://tinyurl.com/kicad-labels/. Retrieved on 2015-08-31.

7

As a promising approach to address this sophisticated task, we aim to use an
ASCII-art generation heuristics that accounts for line structures found inside an
input graphic [11]. Postprocessing is required to ensure that valid instances of
the proposed syntax are created. Furthermore, if the existing test models were
generated automatically, they might not have a layout in the first place or be too
large for a visualization. To support them, we intend to apply state-of-the-art
layouting [12, 13] and splitting tools [14–16].

4 Implementation Prototype

We provide a prototypical implementation for the proposed approach. The main
component of the implementation is a model compiler that can be plugged into
any given IDE by adding an entry to the build configuration or script. During
compilation of annotated test classes, the compiler parses the contained ASCII-
art annotations to create models which are made available to the test framework
by means of a dedicated API. The implementation and instructions for plugging
it into Eclipse are found at https://github.com/frieger/mutant-ascii.

We support class models through a dedicated concrete syntax and arbitrary
modeling languages through abstract syntax. The parser first identifies boxes and
extracts contained information on names and types. Then, it identifies arrow-
heads, following the adjacent edges until a box or abbreviated edge label is hit.
It detects and follows remaining abbreviated edges, connecting those with iden-
tical labels and converting multi-edges to multiple single edges. The information
collected on objects and their relations serves as input to a model builder.

We initially planned to use Java annotations for specifying test models, which
proved infeasible since multi-line String literals are not supported in Java. In-
stead, as shown in Fig. 3, we embed models in Javadoc. Conceptually, Javadoc
is a suited place: The input and output of the code under test are documented.

5 Related Work

5.1 Model-Driven Testing

The proposed approach can be considered as a novel incarnation of model-driven
testing (MDT). MDT places models as key artifacts in testing. In earlier MDT
approaches, the aim was to derive test models using abstract specifications such
as coverage criteria [17], dedicated profiles [18], and visual contracts [19]. While
automated generation of test cases is a desirable and well-studied goal [20], the
trade-off is a significant initial cost in adopting the associated methods and tools.
From an enterprise perspective, this poses a considerable risk, notably when one
takes into account that the approaches are not tailored to all relevant tasks:
For instance, the approaches require to specify behavior using rules or sequence
diagrams, focusing on changes of object structures and neglecting algorithmic
functionality such as graph routing. Specifications are translated to plain test
cases that may expose the indicated drawbacks.

8

Unlike previous approaches to MDT that focus on the generation of test mod-
els, the new approach takes an agile stance, allowing rapid test model creation:
Developers specify test models directly, using a notation designed for easy reuse
and collaboration. This allows focusing on the intuitive process of identifying
edge cases. To our knowledge, our approach is the first to represent models in a
dedicated notation to facilitate testing. To still reap the benefits of the existing
MDT approaches, we aim to provide converters for the derived test models.

5.2 ASCII-art Notations in Software Engineering

Several software engineering problems have been tackled using ASCII-art. Text-
Test [21] is a tool for graphical user interface (GUI) testing based on the capture-
replay paradigm: Developers interact with the GUI under test. After each inter-
action, a GUI snapshot is saved using ASCII-art, enabling automated regression
tests. This approach is complementary to ours: Capture-replay is only avail-
able for GUIs, while our approach targets at the broad class of functionality
tests that involve models. Furthermore, documenting each interaction leads to
many text artifacts, not promoting locality and easy reuse. Another comple-
mentary approach [22] uses an ASCII-based model notation for code generation.
The authors mention converters from models to ASCII-art and back; however,
they do not explicate their realization strategy. They consider class models. In
[23], diagram parsing is used to recover grammars for existing programming lan-
guages from reference manuals. The authors discuss an interesting solution based
on attributed multiset grammars [24]. [25] proposes a context-free grammar for
ASCII-art tables as found in network protocol RFCs.

5.3 Visualizations in Textual IDEs

The lack of visual expressiveness associated with textual notations has motivated
work on visualization in code IDEs. The JetBrains MPS language workbench [26]
supports a form of integrated textual and visual editing: Language developers can
define custom box-and-arrow type diagram views that are embedded into source
code editors. Such embedded views mitigate several of the problems of purely
visual or textual editing, such as comprehension effort and context switching.

On the downside, they only facilitate the editing process. Diffing and merging
models remains a challenge. Moreover, this approach is coupled to a specific IDE,
which raises multiple problems: Developers are forced to use this IDE, which is
undesirable if a particular preferred IDE exists in their domain. Besides, as in
any new and experimental IDE, the embedded editors may show some of the
issues reported for graphical tools. Finally, specific IDEs come with an increased
business risk: It is not guaranteed that support is continued in the future. In
contrast, our approach offers a drop-in solution designed to support arbitrary
IDEs and their mature versioning and collaboration tools. To combine the bene-
fits of both approaches, we consider customizing MPS to use its embedded views
as front-end editors for ASCII-art model representations.

9

mbeddr [27], an extension of JetBrains MPS targeted at embedded software
development, provides built-in visualizations for state machines. The Xtext lan-
guage workbench [28] allows to visualize instances of textual DSLs using the
ZEST visualization library [29]. Both approaches provide read-only visualiza-
tions, while the embedded views in MPS are also editable.

5.4 Tool Reuse

Our premise of using production-ready tools rather than experimental ones de-
signed for specific purposes is inspired by recent work on usability-oriented MDE
tools. The Visual Model Transformation Language (VMTL) [30] allows to specify
model transformations using regular model editors. Similar to the new approach,
VMTL uses annotations to enable the reuse of existing technology: In VMTL,
models are annotated to specify transformation rules. In this work, test code is
annotated to specify test models. However, while VMTL allows to reuse model
editors, the current work reflects our experience that these editors are not well-
suited for test model creation – an issue we avoid by using textual IDEs.

6 Conclusion and Future Work

Tests are of paramount importance in software engineering. We target the chal-
lenge of model-driven unit testing: Instead of using external editors to view and
edit test models, we embed the models in the Javadoc comments accompanying
the test cases. The approach is text-based and does not modify the programming
language’s syntax, allowing to use existing editing, versioning, and collaboration
tools. The text-based visual syntax is designed to resemble the well-known graph-
ical notations while allowing to reduce visual clutter. As in visual tools, model
elements are aligned freely, supporting comprehension through spatial clues.

We address a set of challenges and solution ideas that we aim to investigate
more deeply in the future. These challenges include the development of convert-
ers from external specifications to ASCII-art, the development of a framework to
support multiple modeling languages through their concrete syntax, and the em-
pirical investigation of the approach’s scalability and general usefulness. Tackling
these challenges will lead to a set of domain- and IDE-independent tools enabling
developers to write tests more easily, combining the benefits of Test-Driven De-
velopment and Model-Driven Engineering.

References

1. J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal, “Industrial
Adoption of Model-Driven Engineering: Are the Tools Really the Problem?” in
Model-Driven Engineering Languages and Systems. Springer, 2013, pp. 1–17.

2. D. Batory, E. Latimer, and M. Azanza, “Teaching Model Driven Engineering from
a Relational Database Perspective,” in Model-Driven Engineering Languages and
Systems. Springer, 2013, pp. 121–137.

3. M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s Go to the Whiteboard:
How and Why Software Developers use Drawings,” in Conf. on Human Factors in
Computing Systems. ACM, 2007, pp. 557–566.

10

4. L. Zhu, V. Chen, J. Malyar, S. Das, and P. McCann, “RFC 7545: Protocol to
Access White-Space (PAWS) Databases,” 2015.

5. G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing. John
Wiley & Sons, 2011.

6. H. Störrle, “On the Impact of Layout Quality to Understanding UML Diagrams,”
in Visual Lang. and Human-Centric Comp. IEEE, 2011, pp. 135–142.

7. M. Fowler, Refactoring. Addison Wesley, 2002.
8. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse Modeling

Framework. Pearson Education, 2008.
9. D. Whitney and D. M. Levi, “Visual Crowding: A Fundamental Limit on Conscious

Perception and Object Recognition,” Trends in cognitive sciences, vol. 15, no. 4,
pp. 160–168, 2011.

10. H. Störrle, “On the Impact of Layout Quality to Understanding UML Diagrams:
Size Matters,” in Model-Driven Engineering Languages and Systems. Springer,
2014, pp. 518–534.

11. X. Xu, L. Zhang, and T.-T. Wong, “Structure-based ASCII art,” ACM Transac-
tions on Graphics (TOG), vol. 29, no. 4, pp. (52) 1–10, 2010.

12. M. Spönemann, Graph Layout Support for Model-Driven Engineering. PhD diss.,
Uni Kiel, 2015.

13. S. Maier and M. Minas, “A Pattern-based Approach for Initial Diagram Layout,”
Electronic Communications of the EASST, vol. 58, 2013.

14. D. Strüber, M. Selter, and G. Taentzer, “Tool support for clustering large meta-
models,” in Proceedings of the Workshop on Scalability in Model Driven Engineer-
ing. ACM, 2013, p. 7.

15. D. Strüber, J. Rubin, G. Taentzer, and M. Chechik, “Splitting Models using In-
formation Retrieval and Model Crawling Techniques,” Fundamental Approaches to
Software Engineering, pp. 47–62, 2014.

16. D. Strüber, M. Lukaszczyk, and G. Taentzer, “Tool Support for Model Splitting
using Information Retrieval and Model Crawling Techniques,” in Proceedings of
the Workshop on Scalability in Model Driven Engineering. ACM, 2014.

17. R. Heckel and M. Lohmann, “Towards Model-Driven Testing,” Electronic Notes in
Theoretical Computer Science, vol. 82, no. 6, pp. 33–43, 2003.

18. P. Baker, Z. R. Dai, J. Grabowski, I. Schieferdecker, and C. Williams, Model-Driven
Testing: Using the UML Testing Profile. Springer, 2007.

19. G. Engels, B. Güldali, and M. Lohmann, “Towards Model-Driven Unit Testing,”
in Models in Software Engineering. Springer, 2007, pp. 182–192.

20. S. Anand, E. Burke, T. Chen, J. Clark, M. Cohen, W. Grieskamp, M. Harman,
M. Harrold, and P. McMinn, “An Orchestrated Survey of Methodologies for Auto-
mated Software Test Case Generation,” Journal of Systems and Software, vol. 86,
no. 8, pp. 1978–2001, 2013.

21. E. Bache and G. Bache, “Specification by Example with GUI Tests-How Could
That Work?” in Agile Processes in Software Engineering and Extreme Program-
ming. Springer, 2014, pp. 320–326.

22. H. Washizaki, M. Akimoto, A. Hasebe, A. Kubo, and Y. Fukazawa, “TCD: A
text-based UML class diagram notation and its model converters,” in Advances in
Software Engineering. Springer, 2010, pp. 296–302.

23. R. Lämmel and C. Verhoef, “Semi-automatic Grammar Recovery,” Software: Prac-
tice and Experience, vol. 31, no. 15, pp. 1395–1438, 2001.

24. S.-K. Chang, “Picture Processing Grammar and its Applications,” Information
Sciences, vol. 3, no. 2, pp. 121–148, 1971.

25. A. Kay, D. Ingalls, Y. Ohshima, I. Piumarta, and A. Raab, “Steps toward the Rein-
vention of Programming,” Technical report, National Science Foundation, Tech.
Rep., 2006.

26. M. Voelter and K. Solomatov, “Language modularization and composition with
projectional language workbenches illustrated with MPS,” Software Language En-
gineering, vol. 16, 2010.

27. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr: an Extensible C-based
Programming Language and IDE for Embedded Systems,” in C. on Systems,
Progr., and Apps. ACM, 2012, pp. 121–140.

28. M. Eysholdt and H. Behrens, “Xtext: implement your language faster than the
quick and dirty way,” in ACM International Conf. Object-Oriented Programming
Systems Languages and Applications Companion. ACM, 2010, pp. 307–309.

29. R. I. Bull, Model Driven Visualization: Towards a Model Driven Engineering Ap-
proach for Information Visualization. PhD diss., University of Victoria, 2008.

30. V. Acretoaie, H. Störrle, and D. Strüber, “Transparent Model Transformation:
Turning Your Favourite Model Editor into a Transformation Tool,” in International
Conf. on Model Transformations. Springer, 2015, pp. 121–130.

11

12

13

14

15

16

17

18

19

20

21

Type Inference Using Concrete Syntax
Properties in Flexible Model-Driven Engineering

Athanasios Zolotas1, Nicholas Matragkas2, Sam Devlin1,
Dimitrios S. Kolovos1, and Richard F. Paige1

1 Department of Computer Science, University of York, York, UK
2 Department of Computer Science, University of Hull, Hull, UK

Email: {amz502, sam.devlin, dimitris.kolovos, richard.paige}@york.ac.uk,
n.matragkas@hull.ac.uk

Abstract. In traditional Model-Driven Engineering (MDE) models are
instantiated from metamodels. In contrast, in Flexible MDE, language
engineers initially create example models of the envisioned metamodel.
Due to the lack of a metamodel at the beginning, the example models
may include errors like missing types, typos or the use of different types
to express the same domain concepts. In previous work [1] an approach
that uses semantic properties of the example models to infer the types
of the elements that are left untyped was proposed. In this paper, we
build on that approach by investigating how concrete syntax properties
(like the shape or the color of the elements) of the example models can
help in the direction of type inference. We evaluate the approach on an
example model. The initial results suggest that on average 64% of the
nodes are correctly identified.

1 Introduction

In traditional MDE the models instantiated using editors, conform to a pre-
defined metamodel. In contrast, in Flexible MDE, language engineers use draw-
ing editors, like those proposed in [2], [3] and [17], to express example models
that will be used to infer the envisioned metamodel. These tools are used as
free-form whiteboards on which the domain experts sketch elements that repre-
sent concepts and assign types to them. As there is no metamodel to specify the
semantics, this process is error prone. Drawn elements may be left untyped, or
the same concept may be represented by using two or more types. The first could
happen either unintentionally (the engineer forgot to assign a type to the ele-
ment) or intentionally (engineers leave repeatedly-expressed concepts untyped).
The latter may occur either because two or more engineers are involved and thus
different terminology may be used or, if the process is long-term, the engineer
may have forgotten the type used in the past for a specific concept.

This paper addresses the challenges associated with identifying and managing
omissions during type assignment in flexible modelling by using a variation of the
type inference approach proposed in [1]: missing types are inferred by computing
and analysing matches between untyped and typed elements that share the same

22

graphical characteristics. The difference between the approach proposed in [1] is
that in this work we are looking for concrete syntax properties of the drawings
and not at semantic relations. More specifically, in this approach, features that
represent graphical characteristics of the nodes (i.e. the shape, color, width and
height) are fed to a Classification and Regression Tree (CART) algorithm which
predicts the types of the untyped nodes. We present the approach in detail,
using an illustrative flexible modelling approach based on GraphML and the
flexible modelling technique called Muddles [2]. We demonstrate the approach’s
accuracy via experiments run on an example flexible model.

This approach is based on the assumption that language engineers tend to
use, to the extent possible, the same concrete syntax to express the same concept
in a diagram. However, in order to explore the capabilities of the approach in
cases where this assumption does not stand (or stands partially) we add noise to
the example model by applying changes to the graphical properties of its nodes
(e.g. randomly changing the shape of some nodes).

2 Related Work

In [4], rules that should be taken into consideration to construct the graphi-
cal syntax of languages is proposed. The author claims that the importance of
graphical notation is a neglected issue so far and he adapts the theory of com-
munication by Shannon and Weaver [5] to highlight that the effectiveness of the
graphical syntax can be increased by choosing the most appropriate notation
conventions of these that the human mind can process. In [6], Bertin identified
a set of 8 visual variables that can encode and reveal information about the
elements they represent or their relations in a graphical way.

In the field of bottom-up metamodelling, Cho et al. [7] propose an approach
for an semi-automatic metamodel inference using example models. In [8], exam-
ple models created by domain experts can be used to infer the metamodel. In [9],
evolved models that do not conform to their metamodel are used to recover the
metamodel. In [2], users, using a drawing tool, define example models which are
then amenable to programmatic model management scripts.

Type inference is used in programming languages. The Hindley-Milner [10]
[11] algorithm and its extension by Milner and Damas [12] are the most common
used in this domain. Code statements are reduced to simpler constructs for
which a type is already known. Such approaches are challenging to apply in
flexible modelling where there is no predefined abstract syntax. Inferring types
(or metamodels) from example models is a matching problem: elements that
are “sufficiently similar” may have similar or identical types; a classification
was published in [13]. A model matching technique is used in [14] to generate
traceability links. The nodes of the two models are matched by checking their
name similarity. In [15] each element’s unique MOF identifier is used to calculate
the difference and union of models that belong to the same ancestor model. In [16]
manually generated signatures are used to match elements and perform model
merging. The last three approaches are of limited flexibility as they depend

23

on names or persistent identifiers for inference. Finally, in Flexisketch [17] the
authors adapt the algorithm proposed in [18] to find possible matches between
the shapes of hand-drawn elements that appear on the same canvas.

This work builds on the approach presented in [1]. A CART algorithm is
used to infer the types of nodes. However, the data fed to the classification
algorithm consist of features that are related to semantic aspects of the example
models (number of attributes, unique incoming and outgoing references and
unique parents and children of each node). In this work, we propose the use of
features that are related to the concrete syntax of the drawn example models.

3 Background: Muddles

In Muddles [2], a GraphML compliant drawing editor called yEd3 is used to allow
language engineers draw example models that are amenable to model manage-
ment suites. The drawn elements are annotated with their types. Attributes can
also be added by using the appropriate node properties input boxes. The drawing
is automatically transformed to the intermediate Muddle model and can then
be consumed by a model management suite like the Epsilon platform [19].

In this work, due to the fact that we are interested in the graphical properties
of the drawings, like the shape, the color and the size of the drawn elements we
use the extended version of the Muddles approach that was presented in [20] that
extracts such information. A muddling example follows for better understanding.

3.1 Example

Fig. 1. Example

The language engineer is interested in creating a language for expressing
zoos. The process starts by drawing an example zoo diagram (Fig. 1(b)). Next,
diagram elements are annotated with basic type information. For instance, the
type of both hexagon shapes is defined as Doctor and the type of the directed
edges from Doctor to Animal nodes (circles) as instances of the cures relation-
ship. The types are not bound to the shape but to each element, meaning that in
another example or even in the same drawing, a hexagon can be of type Doctor
while a different hexagon can be of type Animal. Types and properties of the
types (e.g. attributes, multiplicity of edges) can also be specified. More details
about these properties are presented in [2].

Model management programs can then be used to manage this diagram. For
example, the following Epsilon Object Language (EOL) [21] script returns the

3 http://www.yworks.com/en/products_yed_about.html

24

names of all the elements of Type Animal (the nodes typed as “Animal” have a
String attribute named name assigned to them).

var animals = Animal . a l l () ;
for (a in animals) {

(”Animal : ” + a . name) . p r i n t l n () ;
}

Listing 1.1. EOL commands executed on the drawing

4 Type Inference Approach

In this section the type inference approach followed is presented (an overview is
presented in Fig. 2). The engineer creates an example diagram of the envisioned
DSL using a GraphML compliant tool (yEd). Some of the elements may be left
untyped for the reasons discussed in Section 1. The mechanism proposed in this
approach, analyses the drawing and collects graphical information from it which
is then fed into a classification algorithm to classify the untyped elements.

Fig. 2. An overview of the proposed approach (taken from [1])

4.1 Features Collection

The classification of the elements is based on characteristics that each element
has. These are called features. We call the set of all the characteristics that are
collected from each node as feature signature. In addition, the type of each node
is attached to the last position of the feature signature. If the element is left
untyped, then this place is left empty. In this approach we propose the use of 4
graphical characteristics as features for each node. The selected characteristics
are presented in Table 1. Example signatures follow for better understanding.

Table 1. Signature features for nodes

Name of Feature Description

Shape The shape of the node (e.g. rectangle, ellipse, etc.).

Color The color of the filling of the node in HEX (e.g. #FFCC00, etc.).

Width The width of node expressed in pixels.

Height The height of the node expressed in pixels.

For example, the feature signature for the node named “Animal Tamara”
and annotated with the type “Animal” is [ellipse, #FFCC00, 114, 112, Animal].
The first value is the shape of the node (ellipse) while the second is the color of
the filling. The third and fourth features are the width and the height. The last
value is the annotated type for this element. Similarly, the feature signature for

25

the node named “Animal Joe” is [ellipse, #FFCC00, 107, 105, Animal]. From
these two signatures one can see that elements of the same type may or may not
have the same signatures. This justifies the selection of a classification algorithm
and not a simple matching algorithm, as classification algorithms do not only
look for perfect matches but can also classify the items by picking each time the
features that are more important in the set that they are trained on.

A script that parses the diagram and constructs the feature signature for the
nodes was created. The signatures are stored in a file that is fed to the CART.

4.2 Classification

Classification algorithms are a supervised machine learning method for finding
functions mapping input features to a discrete output class from a finite set
of possible values. They require a dataset to train on, after which they can
generalise from the previous examples given in the training set to predict the
class of new unseen instances.

Many classification algorithms exist, some of the most established being de-
cision trees, random forests, support vector machines and neural networks [22].
For this work we chose to use decision trees. Specifically, we used the rpart pack-
age (version 4.1-9)4 that implements the functionality of (CART) [23] in R5. In
practice other classification algorithms (i.e. support vector machines or neural
networks) can often have higher accuracy, but will produce a hypothesis in a
form that is not as easily interpreted. Given the exploratory nature of this work,
these other algorithms were not deployed in favour of the aid to debugging pro-
vided by being able to interpret how the learnt hypothesis would classify future
instances. For example, a possible decision tree for type inference is illustrated
in Figure 3. Internal nodes represent features (e.g. Shape, Colour, etc.), each
branch from a node is labelled with values of the feature and leaf nodes repre-
sent the final classification given. To classify a new instance, start at the root
node of the tree and take the branch that represents the value of that feature in
the new instance. Continue to process each internal node reached in the same
manner until a leaf node is reached. The predicted classification of the new in-
stance is the value of that leaf node. For example, given the tree in Fig. 3, a
new instance which shape is not an ellipse and its colour is different than white
(#FFFFFF) classified as Zoo (path is highlighted in Fig. 3).

In our approach, the feature signatures list that contains the signatures of
the known elements of the model are the input features to the CART algorithm.
A trained decision tree is produced which can be used to classify (identify the
type of) the untyped nodes using their feature signatures. The success of a
classification algorithm can be evaluated by the accuracy of the resultant model
(e.g. the decision tree learnt by CART) on test data not used when training.
The accuracy of a model is the sum of true positives and negatives (i.e. all
correctly classified instances) divided by the total number of instances in the

4 http://cran.r-project.org/web/packages/rpart/index.html
5 http://www.r-project.org/

26

test set. A single measure of accuracy can be artificially inflated due to the
learnt model overfitting bias in the dataset used for training. To overcome this,
k-fold classification can be implemented [24]. This approach generates k different
splits of the data into training and test data sets and returns the mean accuracy
generated from k repeats with each repeat using a unique split of the data.

Fig. 3. Example Decision Tree

5 Experimentation Process

In this section the experimentation process used to evaluate the performance of
the proposed approach is presented. An overview is given in Fig. 46.

Fig. 4. The experimentation process

In order to test the proposed approach we applied the classification algorithm
to a muddle. This muddle was created before commencing this research as part
of a side project to express requirements for a web application. Our experience
working with Muddles suggests that it is a fairly complicated example as it
consists of more than 100 elements of 20 different types. This muddle was also
one of the 11 models that were part of the experiment for the approach presented
in [1]. A comparison with the 10 other models used in the experiment of the
previous approach is not possible as these were automatically generated using
mechanisms that are biased in the selection of the 4 features that we assess in
this work: all the nodes were of the same shape, color and size.

In addition, we tested the resilience of the proposed approach to human error
and the bias that our muddling habits may cause: we tend to use the same shape
when we express a specific type. We need to highlight here, that in some cases
all elements of the same type share same features but there are types where
this is not the case. In contrast, some feature values (e.g. rectangle) were not
used only for one type: elements of different types share common features in our

6 The code, data, results and a guide on how to use the approach can be found in
http://www.zolotas.net/type-inference-graphical

27

experimentation example. Arguably, this is the case with any other relatively
large muddle as the number of available shapes and colors is in practice limited.
Thus, in order to check if adhering to some basic conventions when drawing an
example model is important for the accuracy of the prediction, we performed a
second experiment by adding noise to some of the elements by explicitly changing
their features. We did that gradually by altering randomly one feature of none
(0%) up to all (100%) of the elements of the muddle using a step of 20% (0%,
20%, ..., 100%). 40% noise addition means that 40% of the nodes have exactly
one feature (randomly selected) changed to something else (e.g. shape is changed
from rectangle to ellipse). A step-by-step description of the experiment follows.

Initially a script collects the features from the muddle and places them in

a list that includes the feature signatures for each element (step 1). As the
example has 105 nodes, there are 105 feature signatures in this list. This process
is repeated 6 times; a new signatures list file is created for each of the noise levels.

Next, each list is randomly separated into a training and a test set (step 2 in
Figure 4). The training set contains the nodes for which in a realistic scenario
the types are known while the test set contains those nodes that are left untyped.
In order to reach unbiased results (due to an unlucky or lucky random sampling)
we perform the random sampling 10 times for each file (10-Fold). It is also of
interest to identify if the amount of knowledge that the algorithm has on each
diagram is of importance to the success ratio. For that reason we use 7 different
sampling rates; from 30% to 90%. For example, a 40% sampling rate means that
40 % of the nodes are thought to be of known type while the rest (60%) are the
nodes for which the type is unknown. The generated couples of training and test

sets (420 in total) are then fed to the CART algorithm (step 3). The algorithm
is trained on a training set and predicts the types of the elements of the coupling
test set. The success ratio of the prediction is then calculated.

6 Results

Table 2 summarises the results for all the 420 runs. Each cell in the table contains
the average accuracy of the classification for the 10 runs for the specific added-
noise level and sampling rate. For instance, the highlighted value 0.64 indicates
that on average, 64% of the missing types were successfully predicted for the 10
samples of the 20% added-noise model, using a 70% sampling rate.

The results suggest that the accuracy scores for the original (0% noise) model
on average are similar to the success rates scores of the inference approach pro-
posed in [1] (last row of Table 2). As expected, increasing the level of noise results
in worse prediction scores. The same trend is also visible when decreasing the
sampling rate. The correlation coefficients Corel. 1 and Corel.2, which definition
follows, confirm that visual observation.

Corel. 1: How strong is the dependency between the sampling rate and the
success score?

Corel. 2: How strong is the dependency between the added-noise level and
the success score?

28

The values for Corel. 1 indicate a strong correlation for all the added-noise
levels: prediction scores increase as training sets (the nodes with known types)
become larger. The same behaviour was also observed in [1]. Regarding the
second correlation (Corel. 2) we observe a perfect (negative) correlation between
the number of nodes in a drawing that have altered features and the success score
across all the sampling rates. This is evidence that following specific rules in the
graphical syntax of the drawing increases the chances for correct type inference.
By the term “specific rules” it is not implied that these rules should be strict. As
discussed in previous sections, in the 0% added-noise example the authors use
the same shapes to express the same concepts or in other cases the same color
but not in a rigorous manner: same graphical properties are used in different
concepts while the same concepts may have different graphical properties. We
have also identified that the results related with the added noise experimentation
(especially those of 80% and 100%) are influenced a lot by the randomness in
picking the feature that each time will be altered. More specifically, if the random
algorithm picked a lucky noise injection (changing in each node a feature that
it is not distinctive for this type) then the results were better.

Table 2. Results summary table

Average Success Ratio (Accuracy)
for Different Sampling Rates

Noise Level 30% 40% 50% 60% 70% 80% 90% Avg. Corel. 1

0% 0.55 0.58 0.61 0.63 0.67 0.71 0.71 0.637 0.99

20% 0.50 0.53 0.58 0.61 0.64 0.63 0.74 0.604 0.96

40% 0.47 0.53 0.52 0.56 0.57 0.62 0.63 0.557 0.97

60% 0.42 0.46 0.45 0.49 0.46 0.56 0.53 0.481 0.85

80% 0.35 0.38 0.44 0.43 0.50 0.44 0.56 0.443 0.89

100% 0.35 0.35 0.35 0.37 0.42 0.42 0.40 0.380 0.85

Corel. 2 -0.98 -0.98 -0.99 -0.99 -0.95 -0.98 -0.93 - -

Muddle [1] 0.55 0.56 0.59 0.65 0.59 0.67 0.64 0.607 -

6.1 Threats to Validity

One example, created before commencing this research, was used to evaluate the
approach. Although having one example may not be the best way to extract safe
results we believe that it gives at least preliminary evidence that concrete syntax
can be used to infer types of nodes in flexible modelling. A threat related to that
which works against the approach is that the model consists of 20 different types.
According to our experience with Muddles, this is a marginal one as engineers
tend to use more rigorous editors as the models increase in size. The results in
the experiments run in the previous approach [1] suggest that as the number
of types increases the prediction accuracy decreases. In addition, the example
model consisted of a number of highly repeated elements of the same type (e.g.
nodes of type ”MenuItem”). If these elements can be correctly identified, the
fact that they participate a lot in the example leads to better success scores.
However, a balancing fact is that there were also 5 types which appear less than
2 times, reducing the chances of having them predicted correctly in case all of

29

their instances end in the testing set (there will be no appearance in the training
set so the algorithm doesn’t know about the existence of this specific type).

7 Conclusions and Future Work

In this work we assessed whether the concrete syntax of flexible models can be
used to infer the types of the elements that are left untyped using CART. Ex-
periments suggest that on average 64% of the types were correctly identified.
We also experimented with the intentional addition of noise in the diagram to
check how this affects the prediction accuracy. A strong correlation between the
percentage of altered nodes and the accuracy was identified providing evidence
that this approach is more successful if it is used under the assumption that
modellers tend to use, to the extent possible, the same graphical notation for
elements of the same concept. We believe that this behaviour can be “uninten-
tionally” replicated because of the “copy-paste” nature of muddling (e.g. create
an animal node once and then copy & paste the node when you need it again).
This way the same graphic notation is used for all the elements of the same type.
It is important to highlight that if the type of the node was typed before the
“copy-paste” event took place, which is not necessarily always the case, then the
type is also transferred to the newly pasted nodes.

In the future, we plan to introduce and test additional features like font
size and color, border size, orientation etc. In addition, in order to check if
the prediction accuracy can be further increased, our intention is to combine
the concrete syntax feature with the semantic related features proposed in [1].
Finally, we plan to run user studies to further evaluate the approach on more
example models developed by language engineers.

Acknowledgments

This work was carried out in cooperation with Digital Lightspeed Solutions
Ltd, and was part supported by the Engineering and Physical Sciences Research
Council (EPSRC) through the Large Scale Complex IT Systems (LSCITS) ini-
tiative, and by the EU, through the MONDO FP7 STREP project (#611125).

References

1. Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D., Paige, R.: Type inference in
flexible model-driven engineering. In Taentzer, G., Bordeleau, F., eds.: Modelling
Foundations and Applications. Volume 9153 of Lecture Notes in Computer Science.
Springer International Publishing (2015) 75–91

2. Kolovos, D.S., Matragkas, N., Rodŕıguez, H.H., Paige, R.F.: Programmatic muddle
management. XM 2013–Extreme Modeling Workshop (2013) 2

3. Gabrysiak, G., Giese, H., Lüders, A., Seibel, A.: How can metamodels be used
flexibly. In: Proceedings of ICSE 2011 workshop on flexible modeling tools, Waikik-
i/Honolulu. Volume 22. (2011)

30

4. Moody, D.L.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. Software Engineering, IEEE Transactions
on 35(6) (2009) 756–779

5. Shannon, C.E., Weaver, W.: The mathematical theory of communication. (2002)
6. Bertin, J.: Semiology of graphics: diagrams, networks, maps. (1983)
7. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific modeling languages

from end-user demonstration. In: Modeling in Software Engineering (MISE), 2012
ICSE Workshop on, IEEE (2012) 22–28

8. Sánchez-Cuadrado, J., De Lara, J., Guerra, E.: Bottom-up meta-modelling: An
interactive approach. Springer (2012)

9. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: Mars: A metamodel recovery system
using grammar inference. Information and Software Technology 50(9) (2008) 948–
968

10. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans-
actions of the american mathematical society (1969) 29–60

11. Milner, R.: A theory of type polymorphism in programming. Journal of computer
and system sciences 17(3) (1978) 348–375

12. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, ACM (1982) 207–212

13. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: An analysis of approaches to support model differencing. In:
Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models. CVSM ’09, Washington, DC, USA, IEEE Computer Society (2009) 1–6

14. Grammel, B., Kastenholz, S., Voigt, K.: Model matching for trace link generation
in model-driven software development. Springer (2012)

15. Alanen, M., Porres, I.: Difference and union of models. Springer (2003)
16. Reddy, R., France, R., Ghosh, S., Fleurey, F., Baudry, B.: Model composition-a

signature-based approach. In: Aspect Oriented Modeling (AOM) Workshop. (2005)
17. Wüest, D., Seyff, N., Glinz, M.: Flexisketch: A mobile sketching tool for software

modeling. In: Mobile Computing, Applications, and Services. Springer (2013)
225–244

18. Coyette, A., Schimke, S., Vanderdonckt, J., Vielhauer, C.: Trainable sketch rec-
ognizer for graphical user interface design. In: Human-Computer Interaction–
INTERACT 2007. Springer (2007) 124–135

19. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.: The design
of a conceptual framework and technical infrastructure for model management
language engineering. In: Engineering of Complex Computer Systems, 2009 14th
IEEE International Conference on, IEEE (2009) 162–171

20. Zolotas, A., Kolovos, D.S., Matragkas, N., Paige, R.F.: Assigning semantics to
graphical concrete syntaxes. In: XM 2014–Extreme Modeling Workshop. 12

21. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object language (eol). In:
Model Driven Architecture–Foundations and Applications, Springer (2006) 128–
142

22. Jiawei, H., Kamber, M.: Data mining: concepts and techniques. San Francisco,
CA, itd: Morgan Kaufmann 5 (2001)

23. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression
trees. CRC press (1984)

24. Mitchell, T.M.: Machine learning. 1997. Burr Ridge, IL: McGraw Hill 45 (1997)

31

Flexible Modelling for Requirements
Engineering

Athanasios Zolotas1, Nicholas Matragkas2,
Dimitrios S. Kolovos1, and Richard F. Paige1

1 Department of Computer Science, University of York, York, UK
2 Department of Computer Science, University of Hull, Hull, UK

Email: {amz502, dimitris.kolovos, richard.paige}@york.ac.uk,
n.matragkas@hull.ac.uk

Abstract. Many applications that are developed do not completely ful-
fil the requirements of their stakeholders. This can be a result of inad-
equate requirements elicitation and poorly defined requirements. Many
solutions, including model-driven inspired ones, have been proposed to
improve the elicitation of the requirements, though many of them are
not yet widely used in practice as they require training of both the em-
ployees and the stakeholders. In this paper we propose the use of flexible
modelling for eliciting and capturing the requirements of applications to
facilitate the production of correct products that deliver on the contract
defined between clients and developers. We argue that the use of flexible
modelling can lower the entry barrier for use in the industry. The pro-
posed method, called FlexRE, is applied to a scenario to demonstrate its
capabilities and ways it can be extended.

1 Introduction

Tendered contracts [1] are very often used for the ‘first contact’ between the
clients and the companies which develop applications. An initial, unstructured
set of needs is given in the form of a tendered contract to candidate compa-
nies. Developers bid for the project by proposing an estimation on cost and
time needed for the realisation of the project. The clients pick the solution that
appears to be the most appropriate. After the agreement, business analysts, fol-
lowing different requirements elicitation techniques (e.g. interviews, prototypes,
etc.) add more details to the requirements to let the developers have a better
understanding on the needs of the clients. Many projects that follow this process
fail to match the real client needs. Different studies [2], [3], [4] show that one of
the reasons for that problem is the ambiguity of the requirements.

Many techniques have been developed to tackle this problem, including those
that are model-driven inspired. The Agile methodologies, were proposed to in-
crease the active participation of the client in the software development process,
thus in the requirements elicitation phase. The above research surveys suggest
that the problem still exists.

32

The proposed solutions so far urge the composition of either a very structured
artefact which should conform to a rigorously-defined metamodel or a totally un-
structured composition of requirements using text. The former are difficult to be
used by non-technical stakeholders, as they force them to follow the semantics
that are bound to a fixed metamodel. Thus there is low clients’ contribution to
the requirements specification document and high entry barrier of the method-
ologies in real world. In contrast, the latter offer no or limited structure, thus
one cannot benefit from the use of model management techniques.

This paper presents a novel approach in expressing tendered contracts that
promotes the active involvement of the clients in the composition of the docu-
ment having as primary goal to lower the entry barrier and reduce the cost of
using Model-Driven Engineering (MDE) in the requirements elicitation phase.
This approach, offers a varying range of structure, positioning itself between the
unstructured and rigidly structured requirements methodologies. It is based on
the GraphML [5] standard and the flexible modelling technique introduced in [6].
Due to specific interest from our industrial partner in Web applications, we ap-
plied and tested the approach in this domain. There were no indications that it
could not be applied to other domains, like desktop or mobile applications.

2 Background and Motivation

Clients are usually domain experts; they generally can understand the termi-
nology and the processes that take place in the domain. By contrast, business
analysts, modellers and developers are technology experts and know how systems
are built. The lack of knowledge of the domain by technology experts and the
lack of knowledge of the technology by domain experts is termed as the symme-
try of ignorance. [7] “Contributory methods” like prototypes and scenarios, were
added to the development processes to increase the active client’s involvement
and cooperation with the system’s modellers. [7].

In WebML [8], probably the current standard in modelling web applica-
tions and their workflows, non-technical stakeholders should use elements from
a palette that they are not familiar with as these elements were defined to rep-
resent technical concepts, like edges that represent successful and unsuccessful
messages between actions or nodes that add/remove entries in ER Data dia-
grams.

A second problem of approaches that are based on rigorous and pre-defined
metamodels is the fact that they restrict users of expressing requirements that
the author of the metamodel did not think about. Thus, the scope of the projects
that they can model is reduced (e.g. support for data-driven web applications
only) or clients are restricted to use specific concepts that do not represent their
envisioned applications. This boils down to the following anecdotal quote:

“I’ve been in situations where I found that the modeling tool was sim-
ply too structured to let me describe everything I needed to describe.”3

3 http://programmers.stackexchange.com/questions/55679/why-arent-we-all-doing-
model-driven-development-yet

33

A survey conducted among 12 Business Analysts working with IBM [9] veri-
fies this argument and summarises the advantages and disadvantages of each of
these two types of requirements elicitation approaches.

In this paper we argue for an approach that can increase the domain experts’
contribution to the specification of the requirements. This approach is based on
the use of a simple drawing tool and thus it requires less training given that one
can build on familiar idioms and mechanisms reducing the cost of adaptation in
the real world. It offers a varying range of structure, positioning itself between
the unstructured and rigidly structured requirement methodologies promoting
the use of Agile principles and processes.

3 Related Work

The first family of approaches includes those which use natural language as the
means of expressing requirements. One approach is the use of spreadsheets or
text documents for expressing the requirements. Controlled Natural Language
(CNL) techniques aim to tackle the ambiguity of such statements written in
natural language. In the same direction, Kaindl et al. [10] proposed the ReD-
SeeDS requirements language which uses dictionary definitions attached to the
words and linking the words that refer to the same entity. These approaches can
be used by non-technical stakeholders with no specific training increasing their
contribution in the final definition of the system’s requirements. However, they
cannot benefit from the MDE advantages as they are not structured.

Two other approaches are the Business Process Modelling Language (BPMN)4

and the Unified Modelling Language (UML)5. They allow business analysts to
describe workflows of an application. The Web Requirements Engineering (We-
bRE) [11] is a UML profile specifically built to help with the specification of web
applications. These diagrams are not usually used as the only way to describe the
system but as supporting to the Software Requirements Specification, artefacts.
The Navigational Developemnt Technique (NDT) [12] uses a template to store
requirements. The Web Requirements Metamodel (WRM) [13] supports the defi-
nition of requirements using either UML Use Case Scenarios or NDT templates.
All these approaches offer some structure, like links between the stakeholders
and their needs, but not structure that is related with the elements that are
used in fulfilling the requirements (e.g. images, buttons, menus, lists, etc.). In
addition, training is needed to be used by non-technical stakeholders as they
require conformance to specific concrete and abstract syntax.

The Program Design Language (PDL) [14] was the first attempt in the di-
rection of using graphical interfaces to represent requirements, followed by other
approaches, like the Structured Analysis and Design Technique (SADT) [15].
These techniques promote a very structured way in storing the requirements
and can be seen as a design of the system under development rather than a SRS
document thus can only be used by specialists. [16]

4 http://www.omg.org/spec/BPMN/
5 http://www.omg.org/spec/UML/

34

The closest to our approach is the one proposed in [9]. The authors, as
mentioned in the previous section, surveyed 12 Business Analysts cooperating
with IBM. As an outcome they proposed the use of a flexible modelling tools in
the pre-requirements phase highlighting the advantages that such an approach
has when domain experts and non-technical stakeholders are involved. In this
paper, we propose the use of a flexible modelling approach not only in the pre-
requirements but through the whole requirements phase that can also be used
as a starting artefact for the other phases (e.g. coding, testing).

4 Flexible Modelling for RE

Our approach is based on the technical concepts of an approach called Mud-
dles, proposed in [6], which employs flexible modelling techniques and promotes
the use of a general-purpose drawing tool for the creation of programmatically
manageable models. Flexible modelling allows the creation of models that are
not instances of a specific metamodel. Models are created as an example to help
the production of a rigorous metamodel that can then support MDE processes
and model management using automated tools. Such a process allows domain
experts to be actively involved in the creation of the metamodel by providing
example models that describe their envisioned metamodel [6].

4.1 The Muddles Approach

The Muddles approach [6] uses a flexible graph definition language, GraphML [5],
to allow language engineers to draw models and then annotate them so they
can be accessed by model management suites. In the Muddles approach, each
GraphML Node that is created in the drawing is extended with four Data fields
attached to it (Fig. 1). The Type, is the field where the developer declares the
type of each node. The Properties, is the field where the developer can add
attributes to the node. For example, all the nodes of type “Web Page” have a
String property called “Title”. The Default field defines the variable which will
be used by model management suites to access the label of the node. Finally,
the Contents field defines the descriptor that will be used to get all the nodes
contained within a parent node.

Each GraphML Edge is also extended by the Type, Properties and Default
fields. In addition, fields to hold the descriptors of the “Source”, “Target”, the
“Role in source”, the “Role in target” and their multiplicities are defined. For
example, an edge that represents linking between two nodes, has an outgoing
relation named “linksTo” and an incoming relation called “linkedBy” with a
multiplicity of 1. The “sourcePage” and “targetPage” define the keywords for
the source and the taget page of the link, respectively. These keywords can be
used by a model management suite to have access to the source or target element.

After the diagrams are annotated they are automatically transformed to an
intermediate model which is instance of the Muddle metamodel. A discussion on
the steps of the transformation are beyond the scope of this paper. The Epsilon

35

Data

Type Image

Properties String src=“...”

Default name

Contents children

(a) The Node Properties

Data

Type Link Properties String URL = “..”

Source source Role in sourcePage linksTo1

Target target Role in targetPage linkedBy1

(b) The Edge Properties

Fig. 1. The element properties

platform [17] they are using offers a driver that can consume muddle models and
allow the execution of model management programs on them.

4.2 FlexRE

In this work we propose the use of a drawing tool that implements the GraphML
standard to let domain experts in collaboration with business analysts, express
the requirements of applications. By using a drawing tool and flexible modelling
throughout the requirements engineering phase, we argue that the drawbacks
(see Section 2) of current MDE techniques could be tackled. In addition, the
drawings that include the requirements are structured and can be consumed
by model management tools. We demonstrate this approach through a running
example. In the example, we use the yEd6 editor, the Epsilon platform [17]
for model management and the technical concepts of the Muddles approach
proposed in [6]. An overview of FlexRE is presented in Figure 2.

Fig. 2. An overview of FlexRE

In this case study, the client is interested in having a web application that will
be used to present their Hotel company. It includes static and dynamic pages
to present the rooms, the restaurant and help customers check for the rooms
availability. A comprehensive set of the requirements are summarised in Table 1.

The Manager, who is the client in this scenario, starts drawing using the
yEd editor, concepts that they are familiar with like check-in dates, check-out
dates, etc. (step 1). He does not need to follow any specific rules and can use any
shape or image from the palette of the drawing tool that represents their under-
standing of the required functionality. Business analysts can in parallel annotate
the drawings with types that can be useful for the requirement methodologies
they follow, using the fields presented in Fig. 1 (step 2). As an example, assume

6 http://www.yworks.com/en/products_yed_about.html

36

Table 1. List of the requirements

ID Stakeholder(s) Description

FR1 Manager “A page to present the rooms of the Hotel”

FR2 Manager “A home page that will have a short introduction
of the hotel, the rooms and the staff.”

FR3 Manager, Customer Services “A contact us page.”

FR4 Manager, Reservations Team “A page that will present all the available rooms
for a specific range of dates.”

FR5 Reservations Team “A page for presenting the restaurant.”

that, for the “FR5” requirement, the client ends up with the drawing shown in
Fig. 3(a). The business analyst starts annotating these concepts. In the interest
of a more clear presentation, the business analyst annotations for each element
are shown in square brackets. In reality, the types are given using the Properties
window of each element (Fig. 1). In this example, all the distinct HTML elements
that the client uses are annotated as subclasses of the “HTML Element” class
that this company uses as to identify them in the development process. This is
done by using the “>” symbol which is used to denote the extension relationship.
For instance, the Type property of the drawing that the client referred to as an
image is set to “Image > HTML Element”. These names given to the types are
conventions, used to let the elements be accessed by a model management suite.
It could be anything that fits the model-driven processes used in each company.

(a) The FR5 requirement
drawing

(b) The FR4 requirement drawing

Fig. 3. Two requirements

Non-functional requirements, business behaviour and workflows that can’t
be described using drawings can be typed in natural language. The business
analysts can then either translate this into a drawing based on their experience
or can simply attach bits of these requirements written in natural language to
parts of the drawing that it is related to. For example, assume that the client
needs to express the following requirement: “When the button is clicked, all the
available rooms between the check-in and check-out dates should be shown in
the results list.”. This is part of the FR4 requirement shown in Fig. 3(b). The

37

workflow that cannot be drawn is expressed using plain text inside the hexagons
(see Fig. 3(b)) and can then be linked with the button that the client talks
about, the check-in/out input fields and the results list that the client refers to.

The client continues drawing his understanding of the desired web appli-
cation. As soon as the client has finished developers can then prepare model
management programs or re-use those they have written in the past (step 3).
These programs can be executed against the annotated drawings (step 4) using
the technical facilities of the Muddles approach, to produce different artefacts
that are interested in like pieces of code, test cases, textual contracts, and many
others (step 5). Such examples are presented in the Section 5.

The same process could, in principle, be supported with a more traditional
editor based on a fixed metamodel (e.g., derived using EMF/GMF). An advan-
tage of using a flexible model is that it doesn’t restrict clients in expressing
concepts that the developers hadn’t considered about when creating the meta-
model. In other words, it allows clients to directly formulate the language of
discourse without being restricted by a predefined set of constructs produced by
non-experts. In addition, the drawing editor is a tool that even non-technical
stakeholder arguably are able to use with no extensive training.

A first disadvantage of using flexible modelling is that it is error-prone. For
instance, typos in the definition of the type of an element will create a new
type. Secondly, there is a possibility of leaving untyped nodes which will left out
from the model management processes. The above risks can be tackled by using
validation rules. For instance, one could write a re-usable post-processor that
calculates distance/similarity metrics for the Types. If the value for two Types
is above a specific threshold it alerts the modellers for possible errors. Work in
this direction is being carried out.

5 Application Scenarios

As discussed in the previous section, the annotated drawing can be consumed by
programs expressed in model management languages of the Epsilon platform [6].
In this section we present some examples on how the drawings can be used to
support different phases and aspects of the software development lifecycle.

5.1 Validation

It would be of interest to check if important rules/constraints of the domain
are being met. For example, in the web domain, all the “Link” edges must have
exactly one source and one target element. Conformance to such rules can be
achieved by applying model validation to the drawing. In our scenario we use
the Epsilon Validation Language (EVL), to validate that the above constraint
(see Listing 1.1). The “source” and “target” keywords used in the code are the
names the modellers provided in the Source and Target elements of the “Link”
properties (see Fig. 1). Similarly, the keyword “linksTo” is the identifier of the
“Role in source” property (see Fig. 1). The EVL statements, can be run against

38

the drawings, are written once and can be re-used for all the projects.

context Link {
constraint SourceAndTargetExist {

guard : s e l f . isTypeOf (Link)
check : (s e l f . l inksTo . sourcePage . a l l . s i z e == 1) and (s e l f . l inksTo . targetPage . a l l .

s i z e >= 1)
message : ”Link edges should have exac t ly one source node and at l e a s t one

ta rge t node”
}

}

Listing 1.1. Example of EVL rule for validating the Link edges.

5.2 Next Release Problem

The Next Release Problem (NRP) is a multi-objective optimisation problem.
The best set of requirements that should be implemented into the next soft-
ware release, staying within the budget, is calculated. Burton et al. [18] offer
a tool, as part of the Capability Acquisition Technique with Multi-Objective
Search (CATMOS) methodology, that uses genetic algorithms and Pareto fronts
to identify the optimal solutions calculating the possible trade-offs between the
requirements of different stakeholders. The optimal solutions are visualised based
on the total cost and total satisfaction they offer. Details on how the CATMOS
suite works to find the optimal solutions are beyond the scope of this paper.

In this section we demonstrate the automatic transformation of the stored
requirements into code that can be consumed by the CATMOS capability ac-
quisition suite in [18] to solve the Next Release Problem.

Based on the scenario presented above, the developers just need to add and
annotate two new types on the drawing. The first one is of type “Cost” (see
Fig. 3) and defines the estimated cost to implement each component. The sec-
ond is a “Dependency” edge and shows the dependency between two or more
requirements. The drawing is now ready to be consumed by a model-to-text
transformation expressed in the Epsilon Generation Language (EGL) and auto-
matically generate the code needed to run the CATMOS tool. The EGL script
is written once and can be then re-used.

3	
0	

4	
2	

5	

1	

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

2200	

2400	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Pr
ic
e	

Sa)sfac)on	

(a) The optimal solutions (b) The solution #2

Fig. 4. The results of the CATMOS suite

The results of running the CATMOS are shown in Fig. 4. Fig. 4(a) shows all
the possible optimal solutions for different budgets. The horizontal axis presents
the total satisfaction that each solution offers, while the vertical represents, the
cost of implementing each solution. Based on the budget, clients can pick the
most appropriate solution knowing that this set of requirements is the optimal

39

for the amount of money they want to spent. An example is given in Fig. 4(b). In
this solution, the client can have the FR2 (Home Page), FR3 (Contact Us) and
FR5 (Restaurant Presentation) requirements developed, which is the optimal set
of requirements for a budget of 1100 units of money.

5.3 Code and Test Cases Generation

Code and test cases can be generated from the drawings. In this scenario, we use
EGL to generate code for the structural and navigational parts of the described
application. Code that implements the behavioural requirements (workflows) is
not generated, yet. Plans for this process are presented in Section 6. In addition
to that, we generate Selenium-Webdriver7 test cases directly from the specifica-
tion for the structural and navigational aspect of the application. The test cases
can be used as primary artefacts for a Test-Driven Development approach where
the developers create the structure and navigation from scratch.

6 Conclusions and Future Work

We presented a method that can be used to elicit and store requirements of ap-
plications. The method allows non-technical stakeholders to ‘draw’ the require-
ments with no previous training offering a low entry barrier for industrial use. It
offers a flexible structure level to the requirements document (from completely
un-structured to highly structured) without restricting the types of requirements
that can be expressed. Finally, it can be used as a starting point for a number of
MDE methodologies like code and test cases generation suites. It is highlighted
though, that this approach could be beneficial in domains where the graphical
representation of requirements adds value. In contrast, in domains where tex-
tual representations are more appropriate, the drawing overhead of the approach
should be taken into account.

In the future, we aim to connect using M2M transformations, the require-
ments drawn using FlexRE with other MDE suites like WebRatio, which can
perform full code generation.

Acknowledgments

This work was carried out in cooperation with Digital Lightspeed Solutions
Ltd, and was supported by the EPSRC through the LSCITS initiative and part
supported by the EU, through the MONDO FP7 STREP project (#611125).

References

1. Domberger, S., Hall, C., Li, E.A.L.: The determinants of price and quality in
competitively tendered contracts. The Economic Journal (1995) 1454–1470

7 http://docs.seleniumhq.org/projects/webdriver/

40

2. Abbott, B.: Requirements set the mark. Infoworld (2001) 45–46
3. Epner, M.: Poor project management number-one problem of outsourced e-

projects. Research Briefs, Cutter Consortium 7 (2000)
4. Lowe, D.: Web system requirements: an overview. Requirements Engineering 8(2)

(2003) 102–113
5. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: Graphml

progress report structural layer proposal. In: Graph Drawing, Springer (2002)
501–512

6. Kolovos, D.S., Matragkas, N., Rodŕıguez, H.H., Paige, R.F.: Programmatic muddle
management. XM 2013–Extreme Modeling Workshop (2013) 2

7. Fernandes, K.J.: Interactive situation modelling in knowledge-intensive domains.
International Journal of Business Information Systems 4(1) (2009) 25–46

8. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing web sites. Computer Networks 33(1) (2000) 137–157

9. Ossher, H., Bellamy, R., Simmonds, I., Amid, D., Anaby-Tavor, A., Callery, M.,
Desmond, M., de Vries, J., Fisher, A., Krasikov, S.: Flexible modeling tools for
pre-requirements analysis: conceptual architecture and research challenges. ACM
Sigplan Notices 45(10) (2010) 848–864

10. Kaindl, H., Smialek, M., Svetinovic, D., Ambroziewicz, A., Bojarski, J.,
Nowakowski, W., Straszak, T., Schwarz, H., Bildhauer, D., Brogan, J., et al.: Re-
quirements Specification Language Definition: Defining the ReDSeeDS languages.
Institute of Computer Technology, Vienna University of Technology (2007)

11. Escalona, M., Koch, N.: Metamodeling the requirements of web systems. Web
Information Systems and Technologies (2007) 267–280

12. Jose Escalona, M., Aragon, G.: NDT. a model-driven approach for web require-
ments. Software Engineering, IEEE Transactions on 34(3) (may-june 2008) 377
–390

13. Molina, F., Pardillo, J., Toval, A.: Modelling web-based systems requirements
using WRM. In Hartmann, S., Zhou, X., Kirchberg, M., eds.: Web Information
Systems Engineering WISE 2008 Workshops. Volume 5176 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg (2008) 122–131

14. Caine, S.H., Gordon, E.K.: PDL: a tool for software design. In: Proceedings of the
May 19-22, 1975, national computer conference and exposition. AFIPS ’75, New
York, NY, USA, ACM (1975) 271–276

15. Ross, D., Schoman, K.E., J.: Structured analysis for requirements definition. Soft-
ware Engineering, IEEE Transactions on SE-3(1) (jan. 1977) 6 – 15

16. Sommerville, I.: Software Engineering. 6th Edition. Addison Wesley Publishing
Company Inc, Essex, England (2001)

17. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.: The design
of a conceptual framework and technical infrastructure for model management
language engineering. In: Engineering of Complex Computer Systems, 2009 14th
IEEE International Conference on, IEEE (2009) 162–171

18. Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.:
Solving acquisition problems using model-driven engineering. In: Modelling Foun-
dations and Applications. Springer (2012) 428–443

41

Taxonomy of Flexible Linguistic Commitments

Vadim Zaytsev

Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net

Abstract. Beside strict linguistic commitments of models to metamod-
els, documents to schemata, programs to grammars and activities to pro-
tocols, we often require or crave more flexible commitments. Some of such
types of flexible commitments are well-understood and even formalised,
others are considered harmful. In this paper, we make an attempt to
classify these types from the language theory point of view, provide con-
crete examples from software language engineering for each of them and
estimate usefulness and possible harm.

1 Introduction

In software language engineering people often speak of linguistic commitment,
structural commitment or commitment to grammatical structure [4]. Examples
include:

◇ well-formed schema-less XML documents that commit to containing tags
with allowed names and in proper combinations;◇ XML documents that commit to the structure explicitly specified in the
DTD or XSD;◇ models that conform to their metamodel;◇ programs in high level programming languages that commit to the structure
specified by a grammar of such language and by other constraints of the
designated compiler;◇ programs that rely on some library and have to commit to calling its func-
tions in proper order and with properly typed and ordered arguments;◇ communicating entities that commit to sending and receiving messages ac-
cording to the chosen protocol and must respect it in order to achieve com-
patibility and interoperability.

Any form of flexibility in such commitments is either not present or not
considered. In this paper we propose to model it explicitly and classify its forms
into several categories, varying in usefulness and the ability to lead to robust
systems or to catastrophes.

The paper is organised as follows: §2 state the problem more clearly and
formally. Based on that, §3 introduces three kinds of flexible language varia-
tions. Then, §4 classifies and explains all flexibly committing mappings within
the framework. §5 proposes five kinds of streamlining helper mappings around
the same language. §6 gives preliminary outlook at higher order manipulations
such as composition of mappings,extension/restriction of them and constructing
inverse functions. §7 concludes the paper.

42

2 Problem Statement

Consider a mapping f ∶ L1 → L2 which domain is a software language L1 and
which codomain is a software language L2 (they can be the same in many cases,
but let us look at the general case). Following the principle of least surprise, we
could assume that f is surjective and total (i.e., its image fully coincides with
its codomain and its preimage with its domain) so that it maps every element of
L1 to some element of L2 and that every element of L2 is reachable. By flexible
linguistic commitment we will understand a situation when this expectation is
violated.

3 Variations in Software Languages

Consider three variants based on a language L:

◇ By Ľ we will denote a language that is strictly smaller than L: it has more
constraints and less elements. Committing to a subset of a language is in
general not that harmful and means limited applicability of the tool or a
mapping.◇ By L̂ we will denote a similarly strict superset of L which has then more ele-
ments and less constraints. Committing to a bigger language than intended is
considered good practice in some areas that value robustness highly [7]. How-
ever, here we consider only “accidental” violations that extend the intended
language in a way that preserves the semantics of the language instances up
to heuristics that make sense for the problem domain.◇ By L̃ we will denote another superset of L that refers to semantic changes —
instances from L̃ are not just outside L, but they also allow interpretations
that are incorrect according to the semantics of L. The existence of L̃ is the
main cause for critique on robustness guidelines [1].

In order to stay universally applicable, we consider all definitions to be spe-
cific to the problem domain of the software language (without loss of generality,
so called general purpose programming and modelling languages are assumed to
belong to problem domains of Turing-complete algorithms and the everything-
is-a-model paradigm respectfully). For example, unclosed tags are indicators
of ĤTML since the HTML language is meant to be processed in a soft and
extremely flexible way, yet they are indicators of X̃ML in most cases except
for the absolutely trivial ones — say, one could argue that an XML document
which is well-formed except one place with the construction like <a> is
in X̂ML since it can be treated as <a>. However, even <a>c
is already in X̃ML since it has two intuitively good resolutions: <a>c
and <a>c. Yet, in a subdomain of XML that deals with exclusively
empty or complex elements but never with cdata or mixed content, <a>c
would also belong to X̂ML′.

2

43

mapping from
Ľ1 → . . . L1 → . . . L̂1 → . . . L̃1 → . . .

m
ap

pi
ng

to

. . .→ Ľ2
correct program
wrong language

non-surjectivity
conservativeness robustness overrobustness

. . .→ L2 partial applicability perfect
assumed fault recovery overrecovery

. . .→ L̂2 antirobustness liberality fault tolerance overtolerance
semirecovery

. . .→ L̃2 fault introduction shotgun effect linguistic
ignorance

Table 1. Forms of linguistic commitments of mappings with a domain L1 and
codomain L2, classified by their preimages Ľ1 ⊂ L1 ⊂ L̂1 and images Ľ2 ⊂ L2 ⊂ L̂2.
Additionally, L̃ is a special case where L̃i ⊃ Li, but the difference L̃1 ∖ L1 is unantici-
pated and L̃2 ∖L2 is unintended.

4 Variations in First Order Mappings

Table 1 presents all possible preimage/image combinations. Let us consider each
of them in turn more closely.

◇ f ∶ Ľ1 → Ľ2 (correct program, wrong language)
Some mappings that look like having flexible linguistic commitments, are
in fact (possibly) correct mappings working on a different language than
expected. This kind of “flexibility” is easily fixable by correcting the specifi-
cation.◇ f ∶ Ľ1 → L2 (partial mapping, limited applicability)
Theoretically this scenario corresponds to the notion of partial function. In
practice it can be well disguised in a wrapper that extends f to L1∖Ľ1 to be-
have like an identity function. If this is not done, this kind of flexibility is not
flexible at all: it actually means that in order to use f , one needs to normalise
its inputs in a more strict way than documented. In certain cases it mani-
fests itself as a works-on-my-machine antipattern when such undocumented
constraints concern configuration management and deployment details.◇ f ∶ Ľ1 → L̂2 (antirobustness, ungratefulness)
If robustness (see below) is to expect less and provide more, then antiro-
bustness is its exact opposite: the demands on the input in this case are
higher than officially specified, and even when they are met, the output is
ungratefully relaxed.◇ f ∶ Ľ1 → L̃2 (fault introduction)
If antirobust mappings can damage syntactic conformity, this variant can
also do semantic damage. Such a tool is flexible beyond reasonable, it is
inherently faulty: while holding surprisingly high expectations on its inputs,
it generates outputs that are outright wrong.◇ f ∶ L1 → Ľ2 (non-surjective mapping, conservativeness)
Concervative mappings that transform a language instance into an instance

3

44

with an even stronger linguistic commitment, are not surjective. For cases
of L1 = L2 they are called language reductions and represent a form of
traditional normalisers without extra tolerance for input violations. Most
code generators are conservative: they cover the entire input language but
there exist possible target language programs that will never be generated.
Classic canonical normal forms in grammarware and databases are also this
kind of conservative mappings: they are proven to exist for all inputs and
infer standardised provably equivalent counterparts of them. Formally, this
is one of the best kinds of flexibility.◇ f ∶ L1 → L2 (assumed / perfect)
We list this form of commitment for the sake of completeness, but in fact
it represents no flexibility: this is the standard commitment to grammatical
structure [4], more or less precisely defined and precisely obeyed.◇ f ∶ L1 → L̂2 (liberality)
In mathematics, a function is under no circumstances allowed to return a
value outside its codomain, but from our point of view this variant is a con-
ceptual sibling of the conservativeness discussed above which corresponds
to the lack of surjectivity. For the case of L1 = L2 this is called language
extension: and it may be intentional — consider a situation of a coupled
transformation sequence representing language evolution (if the language is
backwards compatible, it will only contain language preserving and extend-
ing operators) or some kind of refinement/enrichment plan that recognises
patterns of language use and transforms them into constructs of some more
sophisticated language.◇ f ∶ L1 → L̃2 (fault introduction)
What classifies mappings of this category is the lack of anticipation: it was
probably meant to be a Ľ1 → Ľ2 mapping, and as it turns out, it does not
work correctly on unanticipated instances from L ∖ Ľ. One of the typical
examples is refactoring engines that claim to cover some programming lan-
guage but in fact work correctly only on its subset while yielding irregular
results whenever certain concurrency or subtyping patterns are involved [3].◇ f ∶ L̂1 → Ľ2 (robustness)
This is precisely the model of the “be conservative in what you do, be liberal
in what you expect from others”, also known as Postel’s Robustness Prin-
ciple [7], or at least its harmless implementations. The input language is
extended to a safe superset of L1, but the output language is limited to a
subset of L2. Many normalisers work this way, accepting mostly valid entities
of a language and mapping them onto a strict subset of the same language.
For example, BibSLEIGH [15], a project involving a large JSON database,
has a normaliser that traverses all JSON files, including those that have trail-
ing commas in lists or dictionaries, as well as those with naïve quoting, and
transforms each of them into an LRJ file (Lexically Reliable Json) which
is basically valid JSON with extra guarantees of one key-value pair per line
and lines being sorted lexicographically.◇ f ∶ L̂1 → L2 (recovery)
A mapping that accepts slightly more than obligatory yet remains true to its

4

45

output language, represents error recovery: in the simplest case of L1 = L2

this may be the only purpose of the mapping, but it does not have to be. For
example, consider notation-parametric grammar recovery, a technique that
takes a human-written error-containing language document and a definition
of the format it is supposed to have, and yields a well-formed grammar
extracted from it [12]. Most of its heuristics are such mappings. Approximate
pattern matching [6] and semiparsing [13] also belong to the same group, as
do screen-scraping libraries like Beautiful Soup [8].◇ f ∶ L̂1 → L̂2 (tolerance)
In the terminology of negotiated mappings, the previous kind of flexible
commitment represented adaptation through adjustment; this one is adap-
tation through tolerance [14]. Such a mapping still needs to cope with the
unexpected outputs, but has an option of propagating the unexpected parts
further down the pipeline instead of fixing them.◇ f ∶ L̂1 → L̃2 (shotgun effect)
This kind of mapping has been identified in the technological space of inter-
net security and named “shotgun parsing” there [2]. A shotgun parser is a
program that is meant to check its input for linguistic commitment and sani-
tise it, yet in the interest of performance optimisations does not perform a
thorough check and limits itself to fundamentally flawed approaches such as
regular means of treating context-free languages or using plain string substi-
tution for escaping; as a result, the system becomes vulnerable to malevolent
input (comment bombs, SQL injections, etc). Every shotgun parser in the
pipeline increases the span of possible treatments of data, hence the shotgun
metaphor.◇ f ∶ L̃1 → Ľ2 (overrobustness)
A few paragraphs above we reintroduced robustness as input type contravari-
ance and output type covariance. Overrobustness does the same but crosses
the syntax-semantics border and hence becomes dangerously ambiguous,
nondeterministic and in general error-prone. Many examples of overrobust-
ness leading to security bugs were given by Meredith Patterson et al. at
http://langsec.org [2,9].◇ f ∶ L̃1 → L2 (overrecovery)
Overrecovery is a process of applying heuristic-based fixes to semantically
incorrect language instances with the goal to return to the intended out-
put language. Some aggressive heuristics like parenthesis matching from
notation-parametric grammar recovery [12] fall into this category, as well
as desperate matches in semiparsing [13].◇ f ∶ L̃1 → L̂2 (overtolerance, semirecovery)
Overtolerance is a form of harmful error handling when semantic errors in
the input are presumably fixed, but the output is still not always guaranteed
to be syntactically correct.◇ f ∶ L̃1 → L̃2 (ignorance)
The ultimate form of flexible linguistic commitment is complete linguistic
ignorance: our inputs can be broken beyond any hope of unambiguous re-
pair, and the outputs are not much better in that respect. All lexical analysis

5

46

L→ . . . L̂→ . . . L̃→ . . .

. . .→ Ľ
4

canoniser
1

normaliser
*∼

regulator

. . .→ L id 3
codifier

≃
calibrator

Table 2. Symbols and names for streamlining mappings.

methods belong to this category and are still being often use due to their ex-
treme speed, ease of development and virtually unlimited flexibility, despite
limited expressiveness and abundant false positives and negatives. Some mi-
gration and analysis projects of considerable size have been reported being
completed with language ignorant lexical methods [5,10].

5 Streamlining Mappings

Before we try to compose flexibly committed mappings and consider higher order
combinators, we need to introduce a special subcategory of streamlining map-
pings that help us “get back” to L or even Ľ whenever we deviate. In particular,
we have a need for the following five (summarised on Table 2:

◇ Canoniser (4 ∶ L→ Ľ) has a normal (precise) commitment to L and produces
a strict subset of it. Typically this is some kind of canonical normal form
that makes sense for the chosen technological space; if it is strictly canonical,
there is usually a proof of its uniqueness up to L.◇ Codifier (3 ∶ L̂→ L) is flexible with its input because it applies certain rules
for recovery which are applied until the output conforms to all expectations
of L.◇ Normaliser (1 ∶ L̂ → Ľ) implements a classic Postel-style normalisation
scheme that we have briefly discussed before: it is liberal with respect to
its input and conservative with respect to its output. In our formalisation
it also means that 1 ≡ 4 ○ 3 (a normaliser is equivalent to the superposition
of a codifier and a canoniser), and indeed, any normaliser can be conceptu-
ally studied as a composition of two parts implementing the liberality and
the conservativeness accordingly. We will consider superposition of flexibly
committing functions in the next section in more detail.◇ Calibrators (≃ ∶ L̃ → L) and regulators (*∼ ∶ L̃ → Ľ) can be decomposed
similarly in various ways, but the key when considering them is remembering
that the main distinction between L̂ and L̃ is that L̂ ∖ L is anticipated
and L̃ ∖ L is not. Hence, when something is not anticipated, it cannot be
casually accounted for by an automated streamliner. In practice developing
calibrators and regulators requires the same steps as developing codifiers
and normalisers, with additional effort dedicated to testing and documenting
recovery heuristics, which are usually unreliable.

6

47

f ⊚ g g, applied first
. . .→ Ľ . . .→ L . . .→ L̂ . . .→ L̃

f
,
ap

pl
ie
d

se
co
nd

Ľ′ → . . .
f ○ g, if Ľ ⊆ Ľ′

f ○ 4 ○ g f ○ 4 ○ g f ○ 1 ○ g f ○ *∼ ○ g
L→ . . . f ○ g f ○ g f ○ 3 ○ g f ○ ≃ ○ g
L̂′ → . . . f ○ g f ○ g f ○ g, if L̂ ⊆ L̂′

f ○ 3 ○ g f ○ ≃ ○ g
L̃′ → . . . f ○ g f ○ g f ○ 3 ○ g f ○ ≃ ○ g

Table 3. Superposition of two mappings with flexible commitments (f ⊚ g) expressed
as normal superposition of f , g and possibly some streamliners. Dashes simply denote
non-uniqueness: for example, L̂ may be a different superset of L than L̂′.

6 Manipulating Flexible Mappings

6.1 Extension and Restriction

For every possible combination of input and output types (strictly speaking,
for any input type since output type is irrelevant), a restriction on L is defined
straightforwardly as a function which returns whatever the original function
would have returned, for all inputs from the restricted set, and is underfined
otherwise. An extension of a function deliberately committing to a subset of the
intended language, on the other hand, cannot be defined in a general fashion.
Hence, for any f which preimage is L, L̂ or L̃, we get a f ∣L for free, but the
extension f ∣L for f ∶ Ľ→ L′ is, generally speaking, unknown.

A more interesting observation is that restriction can affect the flexibility
of the linguistic commitment to the output language as well: for example, if
f ∶ L̂1 → L2, then f ∣L1 ∶ L → L2 or possibly f ∣L1 ∶ L → Ľ2. This has bad
consequences on calculating inverses of restrictions.

6.2 Inverse Functions

Due to the nature of our formalisation that considers preimages and images in-
stead of domains and codomains, all functions that map between L1, Ľ1, L̂1 and
L2, Ľ2, L̂2, have straightforward inverse mappings. Their non-unique existence is
guaranteed (the proof is a direct consequence of the definitions of a premiga and
an image). For example, for any f ∶ Ľ1 → L̂2 there is at least one f−1 ∶ L̂2 → Ľ1.
Inverses of restrictions can be more desirable, but less reliable, since there is no
guarantee that for an arbitrary f ∶ L̂1 → L̂2, the image of f ∣L1(L1) ∩L2 ≠ ∅.
6.3 Composition

Table 3 summarises the resulting superpositions of two flexible mappings with
respect to all possible kinds of mappings. The most obvious case is the following:

⊚ ∶ (L2 → L3)→ (L1 → L2)→ (L1 → L3)
7

48

However, the following compositions are also universally safe (variations of
L2 correspond to variations of L in the table):

⊚ ∶ (L2 → L3)→ (L1 → Ľ2)→ (L1 → L3)
⊚ ∶ (L̂2 → L3)→ (L1 → Ľ2)→ (L1 → L3)
⊚ ∶ (L̃2 → L3)→ (L1 → Ľ2)→ (L1 → L3)
⊚ ∶ (L̂2 → L3)→ (L1 → L2)→ (L1 → L3)
⊚ ∶ (L̃2 → L3)→ (L1 → L2)→ (L1 → L3)

The result type of such compositions given above is a possible overapproxi-
mation, because technically we combine g with f ∣L2 or f ∣Ľ2

, not with f itself,
so it is possible for f ⊚ g with the codomain L3 to have image Ľ3.

The rest often require streamliners, with two special cases stemming from the
fact that in our notation L̂ expresses any superset of L and not a particular one.
Thus, it can be the case that Ľ2 ⊆ Ľ′2 and then ⊚ ∶ (Ľ′2 → L3) → (L1 → Ľ2) →(L1 → L3) is expressible with a simple superposition: f ⊚g = f ○g, but otherwise
we need an Ľ′2-canoniser to glue them together: f ⊚ g = f ○4 ○ g. Similarly to the
safe case discussed above, the image of such composition can be Ľ3 if Ľ2 ≠ Ľ′2.

7 Conclusion

This paper is an attempt to investigate Postel’s Robustness Principle (“be con-
servative in what you do, be liberal in what you expect from others”) [7,1], in
particular to follow the Postel’s Principle Patch (“be definite about what you ac-
cept”) [9] and the formal language theoretical approach to computer (in)security,
in the general software language engineering view (not limited to internet pro-
tocols and even data languages). The result was a taxonomy of several fami-
lies of language mappings depending on the inclusion relations between their
domains and preimages, as well as codomains and images. The taxonomy (Ta-
ble 1) contains two forms of precise commitment and several forms of harmful
and profitable flexible commitments. Streamlining mappings (Table 2), mapping
superpositions (Table 3) and other details of manipulating mappings with such
flexible commitments, have also been considered. This classification is a refine-
ment with respect to any previously existing approach, and provides means to
identify safe combinations of mappings and streamliners. Formal treatment of
tolerance [11] remains future work, and in general a categorical approach should
provide even more solid foundation than a set theoretical one, which can also be
refined further to yield interesting and useful properties.

8

49

References

1. E. Allman. The Robustness Principle Reconsidered. Communications of the ACM,
54(8):40–45, Aug. 2011.

2. S. Bratus and M. L. Patterson. Shotgun Parsers in the Cross-hairs. In Brucon,
2012. http://langsec.org.

3. M. Gouseti. A General Framework for Concurrency Aware Refactorings. Master’s
thesis, UvA, Mar. 2015. http://dare.uva.nl/en/scriptie/502196.

4. P. Klint, R. Lämmel, and C. Verhoef. Toward an Engineering Discipline for Gram-
marware. ACM ToSEM, 14(3):331–380, 2005.

5. S. Klusener, R. Lämmel, and C. Verhoef. Architectural Modifications to Deployed
Software. Science of Computer Programming, 54:143–211, 2005.

6. V. Laurikari. TRE. http://github.com/laurikari/tre, 2005.
7. J. Postel. DoD Standard Internet Protocol. RFC 0760, 1980.
8. L. Richardson. Beautiful Soup. http://www.crummy.com/software/

BeautifulSoup, 2012.
9. L. Sassaman, M. L. Patterson, and S. Bratus. A Patch for Postel’s Robustness

Principle. IEEE Security and Privacy, 10(2):87–91, Mar. 2012.
10. D. Spinellis. Differential Debugging. IEEE Software, 30(5):19–21, 2013.
11. P. Stevens. Bidirectionally Tolerating Inconsistency: Partial Transformations. In

FASE, volume 8411 of LNCS, pages 32–46. Springer, 2014.
12. V. Zaytsev. Notation-Parametric Grammar Recovery. In A. Sloane and S. Andova,

editors, LDTA. ACM DL, June 2012.
13. V. Zaytsev. Formal Foundations for Semi-parsing. In S. Demeyer, D. Binkley, and

F. Ricca, editors, CSMR-WCRE ERA, pages 313–317. IEEE, Feb. 2014.
14. V. Zaytsev. Negotiated Grammar Evolution. JOT, 13(3):1:1–22, July 2014.
15. V. Zaytsev. BibSLEIGH: Bibliography of Software Language Engineering in Gen-

erated Hypertext. In A. H. Bagge, editor, SATToSE, pages 59–62, July 2015.

9

50

Prototizer: Agile on Steroids

Aram Hovsepyan1, Dimitri Van Landuyt2

1 CODIFIC
aram@codific.eu

2 iMinds-DistriNet KULeuven
dimitri.vanlanduyt@cs.kuleuven.be

Abstract. The model-driven software development (MDSD) vision has
booked significant advances in the past decades. MDSD was said to be
very promising in tackling the “wicked” problems of software engineer-
ing in general. However, a decade later MDSD is still far from becoming
widely recognized within the mainstream software development. At the
same time Agile software development methodologies are widely consid-
ered as the way to go. This is counter-intuitive as MDSD seems to be
the right methodology to boost Agile approaches. From Agile software
development perspective, design models are a waste.
In this experience report, we present Prototizer, a tool based on model-
driven software engineering that could boost the Agile vision. We present
a validation of Prototizer on a recent case study and discuss the main
lessons learned throughout the past years.

Keywords: agile software development, minimum viable product, model-driven
development process, prototizer, lean entrepreneurship

1 Introduction

Given the advances in hardware technology, software development in general is
becoming an increasingly complex activity. For about a decade the model-driven
software development (MDSD) vision has seemed very promising in efficiently
tackling the essential complexities of the software development process [1]. The
MDSD vision, primarily focused on the vertical separation of concerns, aims
at reducing the gap between problem and software implementation domains
through the use of models that describe complex systems at different abstraction
levels and from a variety of perspectives. Automated code generation, claimed to
be one of the most valuable assets of MDSD, allows us to translate these models
instantaneously into code. Strangely, MDSD is still far from becoming accepted
within the mainstream software development [2].

As opposed to MDSD, Agile methodologies are currently considered to be
the best practices within software development. The spectrum of agile method-
ologies is very broad. The core principles are typically focused on fast iteration
cycles, responsiveness to change, early customer involvement, “good design”, etc.
Agile approaches aim at reducing the waste of big up-front analysis, planning

51

and documentation. Nonetheless, even the most code-centric agile methodolo-
gies suggest the use and evolution of design models for communication and doc-
umentation purposes. From this perspective, it is our strong belief that MDSD
is a necessary building block within a mature agile methodology. Introducing a
lightweight MDSD within Agile methodologies could further reduce the waste,
enforce a good design, aid with rapid prototyping and increase customer in-
volvement. Indeed, if we use models for representing software design, we might
as well use them as software artefacts, rather than merely a communication and
documentation tool.

In this experience report, we present Prototizer, an MDSD supporting tool
that could be used within any Agile software development process. Prototizer
embraces only a small part of the MDSD philosophy, namely using models as
first-class citizens and generating partial code from these models. Nevertheless,
this small part is the enabler of the true Agile vision. Over the course of the past
five years, we have developed more than ten different bespoke CRM/ERP web-
based software systems using Prototizer. More importantly, we are still main-
taining and expanding these software systems using Prototizer. In this paper,
we present one of these systems.

The remainder of the paper is structured as follows. In section 2, we pro-
vide essential background information on agile software development and model
driven software development. We also describe the problem statement in detail.
In sections 3 and 4, we present our solution and its application on a recent
case-study. Section 5 provides a brief evaluation of Prototizer. Finally, section 6
concludes this paper.

2 Agile vs. Models

This section provides a brief overview of agile and MDSD methodologies by
focussing on the key concepts that are in the core of the two paradigms.

2.1 Agile Software Development

Agile software development is a rather overloaded term and many existing ap-
proaches claim to be agile. The most well-known approaches in literature include
eXtreme Programming (XP) [3], Scrum [4], Feature Driven Development (FDD)
[5], Kanban [6], Dynamic systems development method [7], DevOps [8]. Despite
their intrinsic differences, which are out of the scope for this paper, all agile
approaches are focused on concepts such as adaptive planning, evolutionary de-
velopment, early delivery, continuous improvement, etc. More importantly, agile
has become a synonym of lean, i.e., reducing waste and focusing on efficiency.
This means that the heavyweight planning, documentation, software architec-
ture and design phases are reduced significantly. Fast iteration cycles (referred
to as timeboxes or sprints) with a duration of weeks or even days resulting in a
completely implemented, validated and verified subset of requirements is a cen-
tral theme in all agile approaches [7]. Nonetheless, even the most code-centric

52

agile approaches advocate the use of design models [3]. While models are used
for documentation and communication purposes, established agile approaches
advice the use of UML and do not exclude the use of “complex models using
specific notations” [7]. It is our strong belief that a lightweight MDSD process
can substantially increase the added value of agile approaches. Keeping mod-
els up-to-date requires a substantial rigor and therefore is highly challenging in
an agile context. In our view, fully automated, but partial code generation will
provide instant prototyping highly praised within agile.

2.2 Models

Similar to agile, model-driven software development (MDSD) also covers a rel-
atively broad spectrum of ideas, techniques and tools. Despite their differences,
we believe two key ideas are essential within most MDSD approaches.

Code generation Code generation is a central selling point behind MDSD
[9]. Code generation is instantaneous and saves time for the developers3. Code
generation improves the source code quality as generated code can be tailored
to follow best coding practices and can be considered to be bug-free [9]. Finally,
this instant code generation enables developers to play with the solution and
quickly deliver prototypes of the final system. Fast prototyping enables early
validation that is a central theme in agile approaches.

Models as primary software development artefacts The models within a
MDSD approach are no longer a mere piece of documentation, but actually an
essential software development artefact. Indeed, models have to be precise and
complete as they are fed to a code generator. As a result, models are always
up-to-date with the source code that makes them a valuable “lingua franca”
between the stakeholders. Software systems developed using MDSD are less likely
to evolve to a spaghetti-like systems where only the developers can manage to
find their way [9].

2.3 Problem Statement

It is our strong belief that there are two key obstacles that prevent MDSD from
entering the mainstream software development and supporting the currently
prevalent agile software development processes.

Rigid Code Generators. Typically, in a MDSD approach the code is gener-
ated based on a template (e.g., Eclipse JET) or a script that is a programming
language on its own (e.g., Acceleo [10]). One of the essential problems in MDSD

3 Throughout this work we only consider the MDSD vision where the code generation
is partial. Concretely, this means that the developers will typically generate the
overall structure and the behaviour will be manually programmed by the developer.

53

is that these templates/scripts are claimed to be reusable. In extreme cases, out
of the box generators are created and published, such as ”THE Java code gen-
erator”, ”THE C code generator”, etc. It is unlikely that two different software
development firms will be happy with the same generator. Unfortunately, the ex-
isting generators are often too rigid. It could be very challenging to quickly edit
the already messy and complex code generation templates. Finally, code gen-
erators must support iterative development, hence, the manually written code
should not be rewritten by the automated code generation. Although MDSD
research has always stressed the importance of this issue, its solution is far from
trivial. The concept of a “protected code section” seems to solve the problem at
a first glance, however it is not clear how to properly use them.

Steep Learning Curve. Even the most simple MDSD approach has a rather
steep learning curve. We believe that the main cause is that MDSD approaches
often try to oversell and become too heavyweight [9]. For a developer who is
new to MDSD and only has a rather superfluous understanding of UML class
diagrams it would be extremely difficult to join the models club. There is a lack
of simple lightweight MDSD success stories the potential followers could start
playing with. Once again, the technology providers typically try to provide ready-
to-use generators, rather than focusing on the mechanisms on how to modify the
existing generators or create new generators. As a result, even the early adopters
are unable to step into the world only the technology providers understand.

In the next section, as early adopter we present our toolset that we have
created based on existing MDSD technologies.

3 Prototizer

We refer to Prototizer as the toolset that enables the model-driven and agile
software development process. In this section we describe both the process we
follow as well as the toolset itself.

3.1 Prototizer Software Development Process and Toolchain

Figure 1 presents the development process showing each development activity
along with their structural connections to other activities. The solid lines on the
figure are both workflow and artefact transitions from one development activity
to another. The dashed lines represent traceability links between different arte-
facts. Traceability information currently falls out of the scope of our approach
and will not be discussed in this paper. The presented process process is in line
with the V-Model. We briefly describe each of the development phases, along
with the underlying technology that we have used.

Requirements Analysis This phase refers to both business requirements anal-
ysis as well as their translation into the technical requirements analysis. This
activity is done using a more traditional approach, i.e., by using a text editor.

54

Verification (Unit
Tests)Detailed Design

Requirements
Analysis

Verification
(Integration Tests)

Implementation

Software Architecture
Design

Validation
(Acceptance)

Prototizer

Fig. 1. Prototizer Software Development Process

Software Architecture Design This phase defines the architecture of the
overall software system. The software architecture is created in UML by the
means of component/connector and deployment diagrams. Currently, we do
not leverage the software architecture explicitly in the code generation.

Detailed Design This phase describes the detailed UML class diagram that is
further used for code generation.

Implementation Our firm mainly leverages the PHP Zend Framework as an
underlying platform. However, virtually any programming language and
platform can be used for the implementation.

Verification (Unit and Integration Tests) The verification phase focuses
on automated unit and integration tests that are an essential part of any
systematic software development process. Given the PHP implementation
platform, we further rely on PHPUnit and Selenium WebDriver for the unit
testing and integration testing.

Validation Finally, the end customer is expected to perform the validation of
the product release and officially accept the release. This is done by using a
modern web-browser.

The V-model is traditionally not considered to be agile, as it represents an
extension of the waterfall model. Thus, to improve the dynamics of this process
we leverage the Dynamic System Development Method (DSDM) Atern agile
project delivery framework used for software development [7]. The idea behind
DSDM is to develop a solution iteratively starting from global view of the prod-
uct. Figure 2 presents the timebox concept that is a key technique in DSDM
Atern. It represents the iterative process to control the creation of the prod-
uct under development with specific review points to ensure the quality of the
product and the efficiency of the delivery process. A more detailed description
of DSDM Atern is out of scope for this paper [7].

3.2 Prototizer Tool

Prototizer is an open-source tool implemented as an Eclipse plug-in and can
be downloaded from [11]. Prototizer is largely based on MOFScript that is an

55

Fig. 2. Timebox

open-source code generation technology developed by SINTEF [12]. Prototizer
transforms the input UML model into code based on a user-specified pluggable
and extensible cartridge. Over the years we have developed over five different
generation cartridges. Each generation cartridge contains two components, i.e.,
resource copier and generation script.

Resource Copier The resource copier simply copies various static resources,
such as libraries, Javascript/HTML/CSS files, into the file structure of the
project. The set of resources can be easily manipulated by the developer by
simply managing the static files within the plugin cartridge folder. These re-
sources are typically specific for a certain company or even project domain.

Generation Scripts The generation scripts are used by Prototizer to trans-
late the UML model into code. Modifying a generation script is straightforward
as MOFScript is an imperative language syntactically similar to Java. For the
specifics of the generation scripts we refer to the MOFScript specification [12].
We leverage two complementary techniques in order to make the code generation
scripts sufficiently flexible when it comes to manual code refinements.

1. We use protected code sections that are placeholders for manually refined
source code that are kept intact upon subsequent generation steps.

2. In certain cases, protected code sections could place unnecessary constraints
on the manual coding. In order to overcome this problem, we leverage the
generation gap pattern [13]. The generated code is placed in abstract super-
classes that can be easily subclassed with manually written code.

4 Case study: CODIFIX

The case study presented in this paper is a simplified version of our own enter-
prise resource planning system named CODIFIX. CODIFIX initially consisted
of a rather primitive content management system for our website. However, we
have gradually added various new modules that have introduced a substantial
set of new functionalities. In this section, we will briefly describe two of the
CODIFIX modules, i.e., the content management system and the issue tracking
system. We focus mainly on the models from which the source code is contin-
uously and incrementally generated. At the end of this section, we provide an
overview of the artefacts that are actually generated from the design models.

56

4.1 Technology Stack

CODIFIX is implemented in PHP by leveraging the Zend Framework version 2.
Note that we do not use the Doctrine framework that provides a transparent
database storage. Rather, the generation step creates the complete database API
ready to use by the developers. We also rely on client-side functionality written
by third parties in Javascript. As an underlying database we use MySQL.

4.2 Content Management System

Figure 3, presents the class diagram of the simple content management system
(CMS) model we have designed to use for our informative website. The CMS
consists of menus (Menu) denoting the pages. Each menu has a specific language
(Language) and can have a parent menu. The website information is represented
as contents (Content) where each content can belong to a menu object. The at-
tributes of the classes and the semantics that are assigned to the model elements
and used in the generation are out of scope for this paper.

Fig. 3. Content Management System

4.3 Issue Tracking System

Figures 4 presents the diagram of the issue tracking system model (ITS). The
ITS groups tasks (Task) in projects (Project). Additional task information is
represented by attachments (Attachment) and comments (Comment). The task
and project related information is obviously linked to users (User) each of whom
belongs to a certain client (Client). The access control is currently hard-coded
and depends on the linking between User, Role and System.

4.4 Generated artefacts

Database scheme and API The complete data layer as well as the commu-
nication API is generated by Prototizer. The database scheme is generated as
an .sql dump. We have developed a simple scripting mechanism to synchronise
the generated database scheme with the actual running database. The database
communication API is a collection of classes that allows systematic manipu-
lation of the database entries for each of the classes within the UML models.

57

Fig. 4. Issue Tracking System

We currently do not leverage on frameworks like Doctrine (the PHP version of
Hibernate) and the database communication API represents a relatively large
codebase. Typically, this part of the generated code is never modified manually
as the UML model within the Prototizer philosophy is semantically complete.

Model classes Each modelling entity (along with its relationships) is translated
into a corresponding PHP Class. These classes represent the models in MVC
terminology. Obviously, the classes have pre-generated list of attributes as well
as getter and setter functions. In addition, we also generate validation rules
for each attribute as defined by its type. For instance, the order attribute in
Menu class must be an integer. The model classes are typically manually refined,
hence, protected code sections denote the places where this can be realised. In
general, the attribute information as well as their getters and setters should
never be modified manually. On the other hand, methods like toString() and any
additional methods that are added by the developer are protected by Prototizer.

Controllers and views The basic features for most of our systems (including
CODIFIX) are the web-based create, retrieve, update and delete (CRUD) in-
terfaces to manipulate the database entities. These interfaces are also generated
by Prototizer. In MVC terminology these are the controllers and the views. The
controllers are in charge of processing the HTTP requests and constructing the
HTML views that are sent back to the web-browsers by the web-server. The
views are mainly HTML scripts with template parameters that are dynamically
instantiated by the corresponding controllers.

Generated code percentage Overall, our currently running CODIFIX project
contains 17546 lines of generated PHP/HTML code from a total codebase of
22281 lines of code (including comments and white spaces). Current best prac-
tices in Zend Framework would require one to write all this code manually.
Nonetheless, the productivity increase is limited by two factors. Firstly, not all

58

of the generated code is actually used. Given the ease of code generation we
generate quite a few helper functions that are not always needed and used. Sec-
ondly, the generated code is by definition trivial as it constitutes the repetitive
part of the code. However, writing the code manually when it can be generated
is a 100% waste of time.

5 Lessons Learned

In the past five years we have iteratively developed numerous custom web-based
CRM and ERP systems using Prototizer. All of these systems are still heavily
used by our customers who often submit change requests. In this section, we
provide an overview of the lessons learned within the context of our firm.

5.1 Benefits

The process behind Prototizer is in line with agile and virtually any agile frame-
work can be plugged in as a concrete dynamics of the process. Prototizer is a
clear realization of the MDSD vision regarding the centrality of models, instanta-
neously generated source code and the increased prototyping abilities. This saves
a substantial amount of time and allows our developers to focus on core problems
rather than spending time in typing code. The generated code is considered to
be bug-free as we assume the generation cartridges are bug free. Prototizer forces
the designers to create complete UML models of the system, hereby making the
communication between designers and developers in the context of the system
structure much more clear. Prototizer also enforces a specific code structure that
is valuable especially for the less experienced developers within our firm. In our
experience, the long-term benefits of Prototizer are even more critical. The ex-
istence of a complete and up-to-date UML model increases the system longevity
and substantially reduces the maintenance cost. Within our firm, the cost of
maintenance (e.g., new features, change requests) often by far exceeds the orig-
inal cost of development. This is confirmed by various studies in the industry
(e.g., [14]).

5.2 Drawbacks

Virtually any code generation approach introduces additional constraints for
the developers. The protected sections where developers are expected to operate
sometimes lead to two problems. Firstly, inexperienced developers inevitably
misplace manually written code that leads to overwritten code on subsequent
iterations. While the code is not really lost (thanks to version control), such
situations involve an additional overhead. Secondly, certain manual refinements
could be relatively complicated to fit within the protected sections. Developers
are sometimes forced to duplicate code in order to achieve the desired result.

59

5.3 Evaluation

From a research point of view Prototizer is not innovative. In fact, the build-
ing blocks of Prototizer, i.e., MOFScript and EMF were stable almost a decade
ago. However, from a state-of-the-practice point of view, Prototizer is a prag-
matic answer to both problems presented in section 2.3. Generation cartridges
can be easily modified and new cartridges can be quickly created by example.
The resource copier requires simply moving around files and folders that are
needed for a specific project type. MOFScript is a powerful, yet very simple
language for creating and modifying code generation scripts. Prototizer is a very
lightweight approach, only focusing on a very small subset of UML, i.e., class
diagrams. Instead of focusing on a programming language (PHP code genera-
tor), we have created generation cartridges for a specific framework (Zend code
generator). We believe that these aspects contribute to reducing the steepness of
the MDSD learning curve. However, we have not validated either of these claims
in a systematic fashion.

6 Conclusion

In this experience paper, we have presented Prototizer - a tool that enables
a boosted agile software development approach. Prototizer, which is based on
existing model-driven software engineering building blocks, enables the use of
the design models as actual software development artefacts, rather than mere
documentation.

References

1. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Proceedings of the 29th ICSE, IEEE Computer Society (2007) 37–54

2. Fieber, F., Regnat, N., Rumpe, B.: Assessing usability of model driven development
in industrial projects. CoRR abs/1409.6588 (2014)

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change (2Nd
Edition). Addison-Wesley Professional (2004)

4. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. 1st edn. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA (2001)

5. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development. 1st
edn. Pearson Education (2001)

6. Anderson, D.: Kanban. Blue Hole Press (2010)
7. DSDM Consortium: The DSDM Atern Handbook. DSDM Consortium (2008)
8. Httermann, M.: DevOps for Developers. 1st edn. Apress, Berkely, CA, USA (2012)
9. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing.

John Wiley & Sons, Inc., New York, NY, USA (2002)
10. Obeo: Acceleo. (http://www.eclipse.org/acceleo)
11. CODIFIC: Prototizer. (http://prototizer.com)
12. SINTEF: MOFScript. (http://modelbased.net/mofscript/)
13. Fowler, M.: Domain Specific Languages. 1st edn. Addison-Wesley Professional

(2010)
14. Erlikh, L.: Leveraging legacy system dollars for e-business. IT Professional (2000)

60

