
Agile bottom-up development of domain-specific
IDEs for model-driven development?

Steffen Vaupel, Daniel Strüber, Felix Rieger, Gabriele Taentzer

Philipps-Universität Marburg, Germany
{svaupel,strueber,riegerf,taentzer}@informatik.uni-marburg.de

Abstract. Diminishing time-to-market and rapidly evolving technology
stacks stretch traditional software development methods to their lim-
its. In this paper, we propose a novel process for bottom-up develop-
ment of domain-specific IDEs based on agile principles. It aims to en-
able a fine-grained co-evolution of domain-specific modeling languages
(DSMLs) and their model editors and code generators. We illustrate our
approach by iteratively developing an IDE for model-driven development
of mobile applications. As a key success factor for continuous DSML de-
velopment, we determine the automated deduction of migration scripts
for all dependent artifacts of a DSML evolution step.

1 Introduction

Vastly increasing numbers of applications and users make the development of mo-
bile applications one of the most important fields in software engineering. In this
field, short time-to-market, differing platforms and rapidly emerging technologies
stretch traditional software development methodologies to their limits. A viable
research direction to tackle these challenges involves the combination of model-
driven development (MDD) [1] and agile software development [2]: Aligning the
domain-specific, platform-independent abstractions provided by MDD with agile
principles such as quick response to change and early delivery promises a high
potential to handle the requirements of rapidly evolving software domains.

Experience has shown that model-driven and agile practices complement each
other well during the development of individual applications [3,4]. In these sce-
narios, a static modeling language was assumed; the evolution of this language
was not considered. Yet in the reality of rapidly evolving software domains,
the evolution of domain-specific modeling languages (DSMLs) has become an
unavoidable fact. A major challenge is the co-evolution of the enabling technolo-
gies for DSMLs – in particular, their IDEs. Domain-specific IDEs include model
editors and code generators. The development of these components is facilitated
by a wealth of meta-tools: GMF [5], Sirius [6] and Xtext [7] for editor, Xtend [7]
and EGL [8] for generator development.

? This work was partially funded by LOEWE HA project no. 355/12-45 (State Of-
fensive for the Development of Scientific and Economic Excellence) on “Platform
Independent Mobile Augmented Reality” (PIMAR).



In the state-of-the-art process of using these meta-tools, the developer ana-
lyzes one or several reference applications and extracts knowledge to specify the
IDE components. This approach, referred to as bottom-up development [9], as-
sumes that full reference applications are provided upfront, which is reasonable if
the involved technologies and user requirements are stipulated at the beginning
of the project. In rapidly evolving software domains, however, this assumption
does not hold anymore: Due to changing user demands and underlying technolo-
gies, a DSML is exposed to evolution during its whole lifespan. The following
research question arises: How can domain-specific IDEs be developed sys-
tematically in the presence of modeling language evolution?

In this paper, we aim to address this question. Our main contribution is an
agile bottom-up process for the development of domain-specific IDEs, focussing
on the co-evolution of a DSML, its editors and code generators. The key idea
is to organize language evolution into fine-grained evolution steps: In each step,
prototype models are employed to generate one or several application prototypes.
The developer manually modifies the prototypes as required for the evolution
step. Then, the IDE developer identifies aspects concerning the DSML, editors,
and code generators. These aspects are used as input for their synchronous evo-
lution. Afterward, the application prototype is no longer required. The process
is not designed for, but can be aligned with a specific agile methodology, such
as Scrum. As our second contribution, we integrate this process in the overarch-
ing vision of a three-tier process model, involving the development of meta-tools,
tools and applications. Our third contribution is an experience report concerning
the development of a DSML and domain-specific IDE for mobile applications.

The remainder of this paper is structured as follows: In Sect. 2, we present
the process, outlining its main activities. Sect. 4 introduces the three-tier process
model. Sect. 3 reports on experiences we made applying the process in a research
project on the development of mobile applications. In Sect. 5, we discuss related
work. In Sect. 6, we conclude and elaborate our plans for future work.

2 Agile bottom-up development of domain-specific IDEs

Domain-specific IDEs are an enabling technology for the model-driven develop-
ment of specific applications. At a minimum, a domain-specific IDE comprises
one or several model editors for the underlying DSML and code generators for
one or several target platforms. Additional components may include version man-
agement, testing and debugging tools.

In this section, we give an overview of the proposed agile bottom-up IDE de-
velopment process: First, to define an initial DSML and IDE, a domain analysis
is carried out, involving the extraction of domain concepts and generator tem-
plates from existing reference applications. Second, in the course of continuous
language and IDE development, developers perform evolution steps, including
the generation and modification of prototypes and successive evolution of the
DSML and IDE. Third, evolution steps may require a follow-up migration step
to reconcile inconsistencies introduced in existing prototype app models during

2



the evolution step. These app models are model-based descriptions of prototypes.
For each of these activities, we outline the involved manual and automated tasks
and the tools supporting these tasks.

2.1 Domain analysis

Different rationales can motivate a change to model-driven development: First,
in large software projects, a lot of boilerplate code may exist due to use cases
showing certain similarities. Second, a number of separate applications might
show similarities in structure and behavior. Third, it may be required to deploy
one individual application to several target platforms. In each of these scenarios,
the abstraction level of development can be lifted by using DSMLs with code
generation facilities. The initial step to establish such a DSML based on one or
several reference applications is called domain analysis.

Domain analysis involves three steps: Quality assurance, domain concept
identification and template extraction. Quality assurance ensures that the exist-
ing applications exhibit high quality, rendering them suitable as reference appli-
cations for code generation. This task involves the identification of anti-patterns
and refactoring towards design patterns. During domain concept identification,
concepts recurring throughout the reference applications are identified; they are
reflected as model elements in the DSML. The aim of template extraction is to
specify generator templates: A generator template represents a unit of code with
gaps. The gaps are filled during application development by the generator, using
application-specific information given by instances of the DSML.

Quality assurance can be partly automatized using static analysis tools sup-
porting the detection of anti-patterns and code smells [10]. A promising tech-
nology to detect recurring concepts is automated clone detection [11]. To our
knowledge, no specific tools exist to manage the extraction of templates based
on reference applications, leaving it a fully manual step.

Fig. 1. Agile MDD process in action: Fine-grained evolution steps

2.2 Continuous language and IDE development

We propose to develop IDE components, notably the model editors and a code
generators, in fine-grained iterations (cf. Figure 1): First, developers decide on
the next feature that should be supported by the DSML and its IDE. Then, the
IDE developer generates one or more prototypes from app models and manually

3



extends these prototypes by the code required to implement this feature. The
extension is then analyzed and results in a synchronous evolution step of the
DSML and its IDE.

In this approach, the IDE developer is required to inspect the generated
prototypes and extend them to incorporate new features. Therefore, it is essential
that generated applications are working software systems and that the generated
code is of good quality, i.e. well structured and easy to understand. As an aid
to support the comprehension of the generated code, we provide a mapping
between DSML elements and the individual code generator templates involved
in implementing these elements. In our experience, such a mapping has proven
itself valuable.

Various meta-tools allow specifying editors, transformations and further tools.
GMF, Xtext and Sirius support high-level specification of graphical and textual
model editors. ATL [12], Henshin [13], ViaTra [14] and many more support the
specification of model translations, simulations and optimizations. There are fur-
ther meta-tools for IDE components such as EMF Refactor [15] for model qual-
ity assurance tools, and EMFCompare [16] and SiLift [17] to support version
management features. Since continuous language evolution results in continu-
ous IDE evolution, co-evolution processes are important to be considered and
to be supported by tools. Therefore, meta-tools are needed for migrating all
dependent artifacts such as instance models, model transformations, especially
code generators, model editor specifications, model quality assurance and version
management tools. Future research is needed to automate these migrations.

2.3 Migration of app models

Since app models are directly dependent on the evolution of their DSML, they
have to be kept consistent with the DSML. One possibility is to only make
changes that do not necessitate adapting the software systems on lower layers.
However, this might lead to compromise solutions in language design. The alter-
native is to migrate them accordingly which allows to freely develop DSMLs.

Co-evolution tools such as Edapt [18] and Flock [19] are available, but still
show specific limitations: For instance, Edapt supports the evolution of meta-
models using pre-defined operations and the automatic deduction of a suitable
migration script for all instance models. However, integrating these pre-defined
operations requires a significant adoption of existing modeling workflows and
tools. As a consequence, migration processes are currently performed by hand,
which can be tedious and error-prone. In the future, we aim to provide tool
support for the automated co-evolution of app models. We intend to base these
tools on results concering the co-evolution of language meta-models and instance
models [20,21].

3 Experience Report

In this section we provide an experience report concerning the development
of a DSML and a domain-specific IDE for mobile applications. First, we pro-

4



vide a domain description, including the resulting modeling approach. Second,
to demonstrate the application of meta-tools within the proposed process, we
describe one iteration of language and IDE development. Third, we report on
continuous language and generator extension. To determine the usefulness of the
application of meta-tools, we investigated how these tools can shorten iterations
by allowing the automatic (re)generation of code for certain IDE artifacts. We
tracked the size of an editor and a code generator and the number of covered use
cases during the development of the IDE. Finally, we discuss the open problems.

3.1 Domain description

Along with our industrial partner advenco [22], a medium-sized software consult-
ing company, we discovered the domain by analyzing two of their products. The
first product is a multimedia guide for tourists, guiding them through places of
interest such as museums, exhibitions or towns. A second product allows defin-
ing business processes using mobile and further devices. As a result, we define
several characteristics of the application domain that should be supported by
the IDE:

Core functionality:
– provide language elements for data, behavior, and GUI modeling
– generate apps that operate in multiple contexts (e.g., online or offline) and

support user-provided content (e.g. current information about tourist events)
Enhanced functionality:
– provide access to device sensors (e.g. optical barcode and RFID tags)
– provide functionalities for augmented reality applications
– provide functionalities for e-Learning applications (e.g., vocabulary training,

self-assesment, safety training, etc.)
Supporting new technology:
– new platforms and versions
– new kinds of devices (e.g., wearables, tablets, embedded Android, etc.)

On the basis of our domain analysis, we support different modeling aspects
and generate native apps that can be flexibly configured by users. Figure 2
illustrates the resulting modeling approach. It comprises two code generators,
one for Android and one for iOS, which generate runnable applications (100%
of the application code is generated from the models). Detailed information
regarding the abstract and concrete syntax of data, behavior, and GUI models
is provided in [23].

Fig. 2. MDD approach for mobile applications

5



3.2 Example: Language design and development iteration

To illustrate an evolution step, we implement an e-Learning application for safety
instructions. The e-Learning application, illustrated in Figure 3, comprises two
use cases: The first use case, called learning mode, concerns learning using dif-
ferent media types (e.g., videos, pictures and sound recordings). The second use
case, called testing mode, allows to practice learned content using assignment
tasks.

(a) Learning mode (b) Testing mode

Fig. 3. e-Learning application for a safety instruction

The GUI meta-model includes style settings and generic page types serving
different purposes. For example, there is a ViewPage for displaying objects and
an EditPage for modifying them. To offer the e-Learning functionality, we intro-
duced an ELearningPage into the GUI meta-model. As shown in Figure 3, the
purpose of the ELearningPage is to present learning content (learning mode) or
provide a self-test format (testing mode). The ELearningPage hides the techni-
cal details (e.g., playing the sound file, loading the media files, etc.) from the
modeler. Adding ELearningPage was the only DSML extension.

After having extended the modeling language, the visual editor was regener-
ated. Then, the code generators had to be adapted to the new language elements.
In order to process the new ELearningPage element, a new template (ELearning-
PageGenerator) was added to the generator. This template initially generated
an empty Android activity or iOS view. We then extended the empty mock class
with the required code. After testing, we abstracted the inserted code to code
templates. The iteration ended when the generated application fulfilled the same
requirements as the extended prototype. The prototype is no longer required.

3.3 Continuous language and generator extensions

The entire process of IDE development usually contains several iterations of the
above-mentioned kind. We have changed the DSML 26 times within a period of
approx. 18 months to cover the 19 use cases of the two reference applications.

6



Most of the changes (19 times) were pure extensions of the DSML (from 25 up
to 46 elements). We have developed five case studies on mobile apps of different
kinds simultaneously through the course of the development of the IDE.

Fig. 4. Continuous language, IDE and prototype extensions

Figure 4 shows four samples of the 19 iterations; we can see the incremental
growth of both the IDE and the prototype (generated from the app model).
Each iteration realizes an additional use case. During the first six iterations
(Rev. 1304), the core functionalities were implemented, followed by the enhanced
functionalities.

After each DSML modification, the visual model editor, a key component of
the domain-specific IDE, was (re)generated. Figure 4 shows the growth in size
of the visual model editor and the Android code generator: In terms of LoC, the
model editor was at least three times larger than the code generator during all
iterations. Being able to generate this large percentage of the codebase helped
to shorten the development cycles: Changes to the DSML were immediately
available in the editor. The effect of these changes to the visual editor allowed
early detection of language design flaws and appropriate refactorings.

Besides, both platform-specific code generators were extended manually. The
iterative approach reduced the complexity of generator construction and ex-
tension since developers could focus on recent changes made to the DSML.
There were exceptions in the form of cross-cutting modeling elements (e.g., ap-
plication-wide style settings), which affected many generator templates.

Another advantage of our approach was the co-evolution of the IDE and
the app model. IDE users could create app models at an early stage of IDE
development and provide test models for the code generators. Figure 5 shows
the Eclipse-based domain-specific IDE (visual editor) resulting from continuous
language and generator extensions.

3.4 Threats to validity and open problems

Considering external validity, it is not ensured that our experiences generalize
to arbitrary syntactic and semantic changes in DSMLs. To mitigate this threat,

7



Fig. 5. Domain-specific IDE for model-driven development of mobile applications.

we consider a wide range of use-cases and code generation for multiple target
platforms. More experiments are needed to allow general conclusions about the
utility of the approach. A threat to internal validity is the lack of a case study
using traditional processes. Still, we argue that these processes do not provide a
course of action to support the co-evolution of DSMLs and IDEs, which renders
them unsuitable for our scenario.

The automated deduction of migration scripts for all dependent artifacts is
an unsolved problem: For example, changes to the DSML affect the respective
templates and existing app models. Currently, all modeling artifacts are migrated
manually after each iteration step, a time-consuming and error-prone task.

4 Three-tier agile process model

From a global perspective, taking into account all processes and tools involved
in model-driven development leads to three tiers of software development: The
development of concrete applications, the development of domain-specific IDEs
for model-driven development, and the development of meta-tools to specify
IDE components. Although the main contribution of this paper is an agile de-
velopment process for domain-specific IDEs, we argue that concrete applications
and meta-tools shall be developed based on agile principles as well. To quickly
respond to new user demands and technologies, all involved software systems
should be developed continuously. Their development should incorporate short
feedback cycles based on running software.

This set of requirements leads to the stipulation of a three-tier agile develop-
ment process model, outlined in Figure 6. In the domain of mobile applications,
for example, a concrete application is a mobile app that is developed using an
IDE for model-driven development of mobile apps. Meta-tools such as editor
generators or model-to-text transformation approaches can be used to specify
model editors and code generators of these IDEs. The interplay of three dif-
ferent kinds of software projects leads to challenges: Changes in one software
project can affect the other ones. These challenges are aggravated by different
life cycles and change frequencies. While applications are quickly developed by
model-driven development, IDE development is much slower, and meta-tools are
usually developed completely independently of concrete IDEs.

8



Fig. 6. Three-tier agile software development process model

5 Related work

Several papers describing agile model-driven development, such as [3,4], focus on
developing application software by using existing IDEs for MDD, whereas our
scope extends to agile development of the domain-specific IDEs themselves.

Völter [24] reflects on best practices for model-driven engineering and DSMLs.
Our approach incorporates many of these practices and joins them to the ag-
ile development process of domain-specific IDEs. We also focus on minimizing
manually written code and co-evolving our language and concepts.

Bagheri et al. [9] propose extracting partial models from stable parts of the
system, leaving the remaining parts to be developed manually. They support
combining generated and manually written code through their technique called
partial synthesis. In our process, at the end of an iteration, all manually written
code is eventually integrated in the generator, app model, or DSML. Thus, the
resulting prototype only contains code produced by the generator.

Fehrenbach et al. [25] consider software evolution by introducing an embed-
ded DSL into a legacy code base. Their approach is orthogonal to ours which
assumes that the DSL itself is subject to evolution.

6 Conclusion

We propose an agile bottom-up development process for domain-specific IDEs
supporting model-driven development. Starting from reference applications, the
domain is analyzed. Prototype applications are continuously generated and ex-
tended, leading to continuously evolving domain-specific modeling languages and
supporting IDEs. The greater vision is a process model for the integrated agile
development of applications, domain-specific IDEs and meta-tools. Continuous
evolution of all involved software artifacts is key to realize this vision.

As future work, we aim to integrate isolated IDEs for different domains. In
an upcoming case study, we will examine the integrated development of data-
centric and gaming applications sharing a set of communication points in the
IDE and application layers. To specify the communication points, we extended
the EMF meta-tool infrastructure with an interface concept [26], allowing us to
generate intents between activities and/or services of the involved apps.

9



References

1. Thomas Stahl and Markus Völter. Model-Driven Software Development. Wiley,
2006.

2. Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. Manifesto for agile software development. 2001.

3. Yuefeng Zhang and Shailesh Patel. Agile model-driven development in practice.
IEEE Software, 28(2):84–91, 2011.

4. Vinay Kulkarni, Souvik Barat, and Uday Ramteerthkar. Early experience with
agile methodology in a model-driven approach. In 14th Int. Conf. on Model Driven
Engineering Languages and Systems, pages 578–590, 2011.

5. Graphical Modeling Framework. http://www.eclipse.org/gmf.
6. Eclipse Sirius. http://www.eclipse.org/sirius.
7. Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.

Packt Publishing Ltd., 2013.
8. EGL Development Tools (EDT). http://www.eclipse.org/edt.
9. Hamid Bagheri and Kevin J. Sullivan. Bottom-up model-driven development. In

35th Int. Conf. on Software Engineering, pages 1221–1224. IEEE/ACM, 2013.
10. Jernej Novak, Andrej Krajnc, and Rok Zontar. Taxonomy of static code analysis

tools. In MIPRO, 2010 Proc. of the 33rd Int. Conv., pages 418–422. IEEE, 2010.
11. Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation

of code clone detection techniques and tools: A qualitative approach. Science of
Computer Programming, 74(7):470–495, 2009.

12. Eclipse ATL. http://www.eclipse.org/atl.
13. Eclipse Henshin. http://www.eclipse.org/henshin.
14. Dániel Varró and András Balogh. The model transformation language of the VI-

ATRA2 framework. Science of Computer Programming, 68(3):214–234, 2007.
15. EMF Refactor. http://www.eclipse.org/emf-refactor.
16. Eclipse EMF Compare. http://www.eclipse.org/emf/compare.
17. Timo Kehrer, Udo Kelter, and Gabriele Taentzer. Consistency-Preserving Edit

Scripts in Model Versioning. In 28th IEEE/ACM Int. Conference on Automated
Software Engineering, pages 191–201. IEEE, 2013.

18. Eclipse Edapt. http://www.eclipse.org/edapt.
19. Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.

Model Migration with Epsilon Flock. In 3rd Int. Conf. on Theory and Practice of
Model Transformations, pages 184–198. Springer, 2010.

20. Boris Gruschko, Dimitrios Kolovos, and Richard Paige. Towards Synchronizing
Models with Evolving Metamodels. In Ws. on Model-Driv. Softw. Evolution, 2007.

21. Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
Automating Co-evolution in Model-Driven Engineering. In 12th Int. Conf. on
Enterprise Distributed Object Computing, pages 222–231. IEEE, 2008.

22. Advenco Consulting GmbH. http://www.advenco.de.
23. Steffen Vaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh, René Gerlach,

and Michael Guckert. Model-driven development of mobile applications allowing
role-driven variants. In 17th Int. Conf. on Model-Driven Engineering Languages
and Systems, pages 1–17, 2014.

24. Markus Völter. Md* best practices. J. of Object Technology, 8(6):79–102, 2009.
25. Stefan Fehrenbach, Sebastian Erdweg, and Klaus Ostermann. Software evolution

to domain-specific languages. In Software Language Engineering, pages 96–116.
Springer, 2013.

26. Daniel Strüber, Gabriele Taentzer, Stefan Jurack, and Tim Schäfer. Towards a
distributed modeling process based on composite models. Fundamental Approaches
to Software Engineering, pages 6–20, 2013.

10


