
Flexible Modelling for Requirements
Engineering

Athanasios Zolotas1, Nicholas Matragkas2,
Dimitrios S. Kolovos1, and Richard F. Paige1

1 Department of Computer Science, University of York, York, UK
2 Department of Computer Science, University of Hull, Hull, UK

Email: {amz502, dimitris.kolovos, richard.paige}@york.ac.uk,
n.matragkas@hull.ac.uk

Abstract. Many applications that are developed do not completely ful-
fil the requirements of their stakeholders. This can be a result of inad-
equate requirements elicitation and poorly defined requirements. Many
solutions, including model-driven inspired ones, have been proposed to
improve the elicitation of the requirements, though many of them are
not yet widely used in practice as they require training of both the em-
ployees and the stakeholders. In this paper we propose the use of flexible
modelling for eliciting and capturing the requirements of applications to
facilitate the production of correct products that deliver on the contract
defined between clients and developers. We argue that the use of flexible
modelling can lower the entry barrier for use in the industry. The pro-
posed method, called FlexRE, is applied to a scenario to demonstrate its
capabilities and ways it can be extended.

1 Introduction

Tendered contracts [1] are very often used for the ‘first contact’ between the
clients and the companies which develop applications. An initial, unstructured
set of needs is given in the form of a tendered contract to candidate compa-
nies. Developers bid for the project by proposing an estimation on cost and
time needed for the realisation of the project. The clients pick the solution that
appears to be the most appropriate. After the agreement, business analysts, fol-
lowing different requirements elicitation techniques (e.g. interviews, prototypes,
etc.) add more details to the requirements to let the developers have a better
understanding on the needs of the clients. Many projects that follow this process
fail to match the real client needs. Different studies [2], [3], [4] show that one of
the reasons for that problem is the ambiguity of the requirements.

Many techniques have been developed to tackle this problem, including those
that are model-driven inspired. The Agile methodologies, were proposed to in-
crease the active participation of the client in the software development process,
thus in the requirements elicitation phase. The above research surveys suggest
that the problem still exists.



The proposed solutions so far urge the composition of either a very structured
artefact which should conform to a rigorously-defined metamodel or a totally un-
structured composition of requirements using text. The former are difficult to be
used by non-technical stakeholders, as they force them to follow the semantics
that are bound to a fixed metamodel. Thus there is low clients’ contribution to
the requirements specification document and high entry barrier of the method-
ologies in real world. In contrast, the latter offer no or limited structure, thus
one cannot benefit from the use of model management techniques.

This paper presents a novel approach in expressing tendered contracts that
promotes the active involvement of the clients in the composition of the docu-
ment having as primary goal to lower the entry barrier and reduce the cost of
using Model-Driven Engineering (MDE) in the requirements elicitation phase.
This approach, offers a varying range of structure, positioning itself between the
unstructured and rigidly structured requirements methodologies. It is based on
the GraphML [5] standard and the flexible modelling technique introduced in [6].
Due to specific interest from our industrial partner in Web applications, we ap-
plied and tested the approach in this domain. There were no indications that it
could not be applied to other domains, like desktop or mobile applications.

2 Background and Motivation

Clients are usually domain experts; they generally can understand the termi-
nology and the processes that take place in the domain. By contrast, business
analysts, modellers and developers are technology experts and know how systems
are built. The lack of knowledge of the domain by technology experts and the
lack of knowledge of the technology by domain experts is termed as the symme-
try of ignorance. [7] “Contributory methods” like prototypes and scenarios, were
added to the development processes to increase the active client’s involvement
and cooperation with the system’s modellers. [7].

In WebML [8], probably the current standard in modelling web applica-
tions and their workflows, non-technical stakeholders should use elements from
a palette that they are not familiar with as these elements were defined to rep-
resent technical concepts, like edges that represent successful and unsuccessful
messages between actions or nodes that add/remove entries in ER Data dia-
grams.

A second problem of approaches that are based on rigorous and pre-defined
metamodels is the fact that they restrict users of expressing requirements that
the author of the metamodel did not think about. Thus, the scope of the projects
that they can model is reduced (e.g. support for data-driven web applications
only) or clients are restricted to use specific concepts that do not represent their
envisioned applications. This boils down to the following anecdotal quote:

“I’ve been in situations where I found that the modeling tool was sim-
ply too structured to let me describe everything I needed to describe.”3

3 http://programmers.stackexchange.com/questions/55679/why-arent-we-all-doing-
model-driven-development-yet



A survey conducted among 12 Business Analysts working with IBM [9] veri-
fies this argument and summarises the advantages and disadvantages of each of
these two types of requirements elicitation approaches.

In this paper we argue for an approach that can increase the domain experts’
contribution to the specification of the requirements. This approach is based on
the use of a simple drawing tool and thus it requires less training given that one
can build on familiar idioms and mechanisms reducing the cost of adaptation in
the real world. It offers a varying range of structure, positioning itself between
the unstructured and rigidly structured requirement methodologies promoting
the use of Agile principles and processes.

3 Related Work

The first family of approaches includes those which use natural language as the
means of expressing requirements. One approach is the use of spreadsheets or
text documents for expressing the requirements. Controlled Natural Language
(CNL) techniques aim to tackle the ambiguity of such statements written in
natural language. In the same direction, Kaindl et al. [10] proposed the ReD-
SeeDS requirements language which uses dictionary definitions attached to the
words and linking the words that refer to the same entity. These approaches can
be used by non-technical stakeholders with no specific training increasing their
contribution in the final definition of the system’s requirements. However, they
cannot benefit from the MDE advantages as they are not structured.

Two other approaches are the Business Process Modelling Language (BPMN)4

and the Unified Modelling Language (UML)5. They allow business analysts to
describe workflows of an application. The Web Requirements Engineering (We-
bRE) [11] is a UML profile specifically built to help with the specification of web
applications. These diagrams are not usually used as the only way to describe the
system but as supporting to the Software Requirements Specification, artefacts.
The Navigational Developemnt Technique (NDT) [12] uses a template to store
requirements. The Web Requirements Metamodel (WRM) [13] supports the defi-
nition of requirements using either UML Use Case Scenarios or NDT templates.
All these approaches offer some structure, like links between the stakeholders
and their needs, but not structure that is related with the elements that are
used in fulfilling the requirements (e.g. images, buttons, menus, lists, etc.). In
addition, training is needed to be used by non-technical stakeholders as they
require conformance to specific concrete and abstract syntax.

The Program Design Language (PDL) [14] was the first attempt in the di-
rection of using graphical interfaces to represent requirements, followed by other
approaches, like the Structured Analysis and Design Technique (SADT) [15].
These techniques promote a very structured way in storing the requirements
and can be seen as a design of the system under development rather than a SRS
document thus can only be used by specialists. [16]

4 http://www.omg.org/spec/BPMN/
5 http://www.omg.org/spec/UML/



The closest to our approach is the one proposed in [9]. The authors, as
mentioned in the previous section, surveyed 12 Business Analysts cooperating
with IBM. As an outcome they proposed the use of a flexible modelling tools in
the pre-requirements phase highlighting the advantages that such an approach
has when domain experts and non-technical stakeholders are involved. In this
paper, we propose the use of a flexible modelling approach not only in the pre-
requirements but through the whole requirements phase that can also be used
as a starting artefact for the other phases (e.g. coding, testing).

4 Flexible Modelling for RE

Our approach is based on the technical concepts of an approach called Mud-
dles, proposed in [6], which employs flexible modelling techniques and promotes
the use of a general-purpose drawing tool for the creation of programmatically
manageable models. Flexible modelling allows the creation of models that are
not instances of a specific metamodel. Models are created as an example to help
the production of a rigorous metamodel that can then support MDE processes
and model management using automated tools. Such a process allows domain
experts to be actively involved in the creation of the metamodel by providing
example models that describe their envisioned metamodel [6].

4.1 The Muddles Approach

The Muddles approach [6] uses a flexible graph definition language, GraphML [5],
to allow language engineers to draw models and then annotate them so they
can be accessed by model management suites. In the Muddles approach, each
GraphML Node that is created in the drawing is extended with four Data fields
attached to it (Fig. 1). The Type, is the field where the developer declares the
type of each node. The Properties, is the field where the developer can add
attributes to the node. For example, all the nodes of type “Web Page” have a
String property called “Title”. The Default field defines the variable which will
be used by model management suites to access the label of the node. Finally,
the Contents field defines the descriptor that will be used to get all the nodes
contained within a parent node.

Each GraphML Edge is also extended by the Type, Properties and Default
fields. In addition, fields to hold the descriptors of the “Source”, “Target”, the
“Role in source”, the “Role in target” and their multiplicities are defined. For
example, an edge that represents linking between two nodes, has an outgoing
relation named “linksTo” and an incoming relation called “linkedBy” with a
multiplicity of 1. The “sourcePage” and “targetPage” define the keywords for
the source and the taget page of the link, respectively. These keywords can be
used by a model management suite to have access to the source or target element.

After the diagrams are annotated they are automatically transformed to an
intermediate model which is instance of the Muddle metamodel. A discussion on
the steps of the transformation are beyond the scope of this paper. The Epsilon



Data

Type Image

Properties String src=“...”

Default name

Contents children

(a) The Node Properties

Data

Type Link Properties String URL = “..”

Source source Role in sourcePage linksTo1

Target target Role in targetPage linkedBy1

(b) The Edge Properties

Fig. 1. The element properties

platform [17] they are using offers a driver that can consume muddle models and
allow the execution of model management programs on them.

4.2 FlexRE

In this work we propose the use of a drawing tool that implements the GraphML
standard to let domain experts in collaboration with business analysts, express
the requirements of applications. By using a drawing tool and flexible modelling
throughout the requirements engineering phase, we argue that the drawbacks
(see Section 2) of current MDE techniques could be tackled. In addition, the
drawings that include the requirements are structured and can be consumed
by model management tools. We demonstrate this approach through a running
example. In the example, we use the yEd6 editor, the Epsilon platform [17]
for model management and the technical concepts of the Muddles approach
proposed in [6]. An overview of FlexRE is presented in Figure 2.

Fig. 2. An overview of FlexRE

In this case study, the client is interested in having a web application that will
be used to present their Hotel company. It includes static and dynamic pages
to present the rooms, the restaurant and help customers check for the rooms
availability. A comprehensive set of the requirements are summarised in Table 1.

The Manager, who is the client in this scenario, starts drawing using the
yEd editor, concepts that they are familiar with like check-in dates, check-out
dates, etc. (step 1). He does not need to follow any specific rules and can use any
shape or image from the palette of the drawing tool that represents their under-
standing of the required functionality. Business analysts can in parallel annotate
the drawings with types that can be useful for the requirement methodologies
they follow, using the fields presented in Fig. 1 (step 2). As an example, assume

6 http://www.yworks.com/en/products_yed_about.html



Table 1. List of the requirements

ID Stakeholder(s) Description

FR1 Manager “A page to present the rooms of the Hotel”

FR2 Manager “A home page that will have a short introduction
of the hotel, the rooms and the staff.”

FR3 Manager, Customer Services “A contact us page.”

FR4 Manager, Reservations Team “A page that will present all the available rooms
for a specific range of dates.”

FR5 Reservations Team “A page for presenting the restaurant.”

that, for the “FR5” requirement, the client ends up with the drawing shown in
Fig. 3(a). The business analyst starts annotating these concepts. In the interest
of a more clear presentation, the business analyst annotations for each element
are shown in square brackets. In reality, the types are given using the Properties
window of each element (Fig. 1). In this example, all the distinct HTML elements
that the client uses are annotated as subclasses of the “HTML Element” class
that this company uses as to identify them in the development process. This is
done by using the “>” symbol which is used to denote the extension relationship.
For instance, the Type property of the drawing that the client referred to as an
image is set to “Image > HTML Element”. These names given to the types are
conventions, used to let the elements be accessed by a model management suite.
It could be anything that fits the model-driven processes used in each company.

(a) The FR5 requirement
drawing

(b) The FR4 requirement drawing

Fig. 3. Two requirements

Non-functional requirements, business behaviour and workflows that can’t
be described using drawings can be typed in natural language. The business
analysts can then either translate this into a drawing based on their experience
or can simply attach bits of these requirements written in natural language to
parts of the drawing that it is related to. For example, assume that the client
needs to express the following requirement: “When the button is clicked, all the
available rooms between the check-in and check-out dates should be shown in
the results list.”. This is part of the FR4 requirement shown in Fig. 3(b). The



workflow that cannot be drawn is expressed using plain text inside the hexagons
(see Fig. 3(b)) and can then be linked with the button that the client talks
about, the check-in/out input fields and the results list that the client refers to.

The client continues drawing his understanding of the desired web appli-
cation. As soon as the client has finished developers can then prepare model
management programs or re-use those they have written in the past (step 3).
These programs can be executed against the annotated drawings (step 4) using
the technical facilities of the Muddles approach, to produce different artefacts
that are interested in like pieces of code, test cases, textual contracts, and many
others (step 5). Such examples are presented in the Section 5.

The same process could, in principle, be supported with a more traditional
editor based on a fixed metamodel (e.g., derived using EMF/GMF). An advan-
tage of using a flexible model is that it doesn’t restrict clients in expressing
concepts that the developers hadn’t considered about when creating the meta-
model. In other words, it allows clients to directly formulate the language of
discourse without being restricted by a predefined set of constructs produced by
non-experts. In addition, the drawing editor is a tool that even non-technical
stakeholder arguably are able to use with no extensive training.

A first disadvantage of using flexible modelling is that it is error-prone. For
instance, typos in the definition of the type of an element will create a new
type. Secondly, there is a possibility of leaving untyped nodes which will left out
from the model management processes. The above risks can be tackled by using
validation rules. For instance, one could write a re-usable post-processor that
calculates distance/similarity metrics for the Types. If the value for two Types
is above a specific threshold it alerts the modellers for possible errors. Work in
this direction is being carried out.

5 Application Scenarios

As discussed in the previous section, the annotated drawing can be consumed by
programs expressed in model management languages of the Epsilon platform [6].
In this section we present some examples on how the drawings can be used to
support different phases and aspects of the software development lifecycle.

5.1 Validation

It would be of interest to check if important rules/constraints of the domain
are being met. For example, in the web domain, all the “Link” edges must have
exactly one source and one target element. Conformance to such rules can be
achieved by applying model validation to the drawing. In our scenario we use
the Epsilon Validation Language (EVL), to validate that the above constraint
(see Listing 1.1). The “source” and “target” keywords used in the code are the
names the modellers provided in the Source and Target elements of the “Link”
properties (see Fig. 1). Similarly, the keyword “linksTo” is the identifier of the
“Role in source” property (see Fig. 1). The EVL statements, can be run against



the drawings, are written once and can be re-used for all the projects.

context Link {
constraint SourceAndTargetExist {

guard : s e l f . isTypeOf ( Link )
check : ( s e l f . l inksTo . sourcePage . a l l . s i z e == 1) and ( s e l f . l inksTo . targetPage . a l l .

s i z e >= 1)
message : ”Link edges should have exac t ly one source node and at l e a s t one

ta rge t node”
}

}

Listing 1.1. Example of EVL rule for validating the Link edges.

5.2 Next Release Problem

The Next Release Problem (NRP) is a multi-objective optimisation problem.
The best set of requirements that should be implemented into the next soft-
ware release, staying within the budget, is calculated. Burton et al. [18] offer
a tool, as part of the Capability Acquisition Technique with Multi-Objective
Search (CATMOS) methodology, that uses genetic algorithms and Pareto fronts
to identify the optimal solutions calculating the possible trade-offs between the
requirements of different stakeholders. The optimal solutions are visualised based
on the total cost and total satisfaction they offer. Details on how the CATMOS
suite works to find the optimal solutions are beyond the scope of this paper.

In this section we demonstrate the automatic transformation of the stored
requirements into code that can be consumed by the CATMOS capability ac-
quisition suite in [18] to solve the Next Release Problem.

Based on the scenario presented above, the developers just need to add and
annotate two new types on the drawing. The first one is of type “Cost” (see
Fig. 3) and defines the estimated cost to implement each component. The sec-
ond is a “Dependency” edge and shows the dependency between two or more
requirements. The drawing is now ready to be consumed by a model-to-text
transformation expressed in the Epsilon Generation Language (EGL) and auto-
matically generate the code needed to run the CATMOS tool. The EGL script
is written once and can be then re-used.

3	  
0	  

4	  
2	  

5	  

1	  

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1600	  

1800	  

2000	  

2200	  

2400	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

Pr
ic
e	  

Sa)sfac)on	  

(a) The optimal solutions (b) The solution #2

Fig. 4. The results of the CATMOS suite

The results of running the CATMOS are shown in Fig. 4. Fig. 4(a) shows all
the possible optimal solutions for different budgets. The horizontal axis presents
the total satisfaction that each solution offers, while the vertical represents, the
cost of implementing each solution. Based on the budget, clients can pick the
most appropriate solution knowing that this set of requirements is the optimal



for the amount of money they want to spent. An example is given in Fig. 4(b). In
this solution, the client can have the FR2 (Home Page), FR3 (Contact Us) and
FR5 (Restaurant Presentation) requirements developed, which is the optimal set
of requirements for a budget of 1100 units of money.

5.3 Code and Test Cases Generation

Code and test cases can be generated from the drawings. In this scenario, we use
EGL to generate code for the structural and navigational parts of the described
application. Code that implements the behavioural requirements (workflows) is
not generated, yet. Plans for this process are presented in Section 6. In addition
to that, we generate Selenium-Webdriver7 test cases directly from the specifica-
tion for the structural and navigational aspect of the application. The test cases
can be used as primary artefacts for a Test-Driven Development approach where
the developers create the structure and navigation from scratch.

6 Conclusions and Future Work

We presented a method that can be used to elicit and store requirements of ap-
plications. The method allows non-technical stakeholders to ‘draw’ the require-
ments with no previous training offering a low entry barrier for industrial use. It
offers a flexible structure level to the requirements document (from completely
un-structured to highly structured) without restricting the types of requirements
that can be expressed. Finally, it can be used as a starting point for a number of
MDE methodologies like code and test cases generation suites. It is highlighted
though, that this approach could be beneficial in domains where the graphical
representation of requirements adds value. In contrast, in domains where tex-
tual representations are more appropriate, the drawing overhead of the approach
should be taken into account.

In the future, we aim to connect using M2M transformations, the require-
ments drawn using FlexRE with other MDE suites like WebRatio, which can
perform full code generation.

Acknowledgments

This work was carried out in cooperation with Digital Lightspeed Solutions
Ltd, and was supported by the EPSRC through the LSCITS initiative and part
supported by the EU, through the MONDO FP7 STREP project (#611125).

References

1. Domberger, S., Hall, C., Li, E.A.L.: The determinants of price and quality in
competitively tendered contracts. The Economic Journal (1995) 1454–1470

7 http://docs.seleniumhq.org/projects/webdriver/



2. Abbott, B.: Requirements set the mark. Infoworld (2001) 45–46
3. Epner, M.: Poor project management number-one problem of outsourced e-

projects. Research Briefs, Cutter Consortium 7 (2000)
4. Lowe, D.: Web system requirements: an overview. Requirements Engineering 8(2)

(2003) 102–113
5. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: Graphml

progress report structural layer proposal. In: Graph Drawing, Springer (2002)
501–512

6. Kolovos, D.S., Matragkas, N., Rodŕıguez, H.H., Paige, R.F.: Programmatic muddle
management. XM 2013–Extreme Modeling Workshop (2013) 2

7. Fernandes, K.J.: Interactive situation modelling in knowledge-intensive domains.
International Journal of Business Information Systems 4(1) (2009) 25–46

8. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing web sites. Computer Networks 33(1) (2000) 137–157

9. Ossher, H., Bellamy, R., Simmonds, I., Amid, D., Anaby-Tavor, A., Callery, M.,
Desmond, M., de Vries, J., Fisher, A., Krasikov, S.: Flexible modeling tools for
pre-requirements analysis: conceptual architecture and research challenges. ACM
Sigplan Notices 45(10) (2010) 848–864

10. Kaindl, H., Smialek, M., Svetinovic, D., Ambroziewicz, A., Bojarski, J.,
Nowakowski, W., Straszak, T., Schwarz, H., Bildhauer, D., Brogan, J., et al.: Re-
quirements Specification Language Definition: Defining the ReDSeeDS languages.
Institute of Computer Technology, Vienna University of Technology (2007)

11. Escalona, M., Koch, N.: Metamodeling the requirements of web systems. Web
Information Systems and Technologies (2007) 267–280

12. Jose Escalona, M., Aragon, G.: NDT. a model-driven approach for web require-
ments. Software Engineering, IEEE Transactions on 34(3) (may-june 2008) 377
–390

13. Molina, F., Pardillo, J., Toval, A.: Modelling web-based systems requirements
using WRM. In Hartmann, S., Zhou, X., Kirchberg, M., eds.: Web Information
Systems Engineering WISE 2008 Workshops. Volume 5176 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg (2008) 122–131

14. Caine, S.H., Gordon, E.K.: PDL: a tool for software design. In: Proceedings of the
May 19-22, 1975, national computer conference and exposition. AFIPS ’75, New
York, NY, USA, ACM (1975) 271–276

15. Ross, D., Schoman, K.E., J.: Structured analysis for requirements definition. Soft-
ware Engineering, IEEE Transactions on SE-3(1) (jan. 1977) 6 – 15

16. Sommerville, I.: Software Engineering. 6th Edition. Addison Wesley Publishing
Company Inc, Essex, England (2001)

17. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.: The design
of a conceptual framework and technical infrastructure for model management
language engineering. In: Engineering of Complex Computer Systems, 2009 14th
IEEE International Conference on, IEEE (2009) 162–171

18. Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.:
Solving acquisition problems using model-driven engineering. In: Modelling Foun-
dations and Applications. Springer (2012) 428–443


