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Abstract. We present a preliminary high-level formal theory, grounded
on knowledge representation techniques and foundational ontologies, for
the uniform and integrated representation of the different kinds of (quali-
tative and quantitative) knowledge involved in the designing process. We
discuss the conceptual nature of engineering design by individuating and
analyzing the involved notions. These notions are then formally charac-
terized by extending the DOLCE foundational ontology. Our ultimate
purpose is twofold: (i) to contribute to foundational issues of design;
and (ii) to support the development of advanced modelling systems for
(qualitative and quantitative) representation of design knowledge.
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1 Engineering design: from requirements to models

Despite the variety of definitions and theories for engineering design, it is com-
mon to understand it as the activity of producing a full description of the tech-
nical product to be realised that satisfies some (market) requirements [1] (cf.
Figure 1). In this sense designing is a creative activity of conceptualization and
modelling: designers have to think out (possibly innovative) practical solutions
to satisfy customer needs and to release technical specifications1 for the produc-
tion of physical goods [2]. The designing process comprises different tasks, from
the elicitation of customers’ requirements to conceptual embodiment and detail
design [3]. During each phase cross-functional expert teams work on different
modelling aspects of the same design project. Consequently, various models are
firstly obtained with respect to the required level of detail and content, and
secondly integrated into an all-comprising representation of the product [4].

The specification of the requirement list about the properties that the future
product has to satisfy plays a fundamental role, since it represents the docu-
ment on which both the overall designing process is firstly based, and secondly
evaluated [1]. According to Pahl and colleagues [3], (product’s) properties in a
requirement list can be meant either as demands, if they have to be necessarily
met, or as wishes, if they should be taken into account whenever possible.

1 ‘Technical specification’, ‘product model’ and ‘design model’ will be interchangeably
used throughout the paper.



Fig. 1. Design engineering definition [1]. TP and TS are interchangeably used for “tech-
nical product” and “technical system”.

After the requirement list has been completed, experts start specifying the
design solution by means of various technical specifications. Examples include:

– Functional model: the main functionality of the product under design is
represented and decomposed into sub-functionalities (e.g. [3, 169-181]);

– Component model: (also called part model) describes what constructional
parts are required [5, 6]. In some theories of design, organ models are used
to represent structural elements carrying a functionality [7];

– Assembly model: specifies spatial relationships holding among components
[8]. The most common assembly relationship is part-of holding between com-
ponents; connection is also used to represent physical connection [9];

– Material model: represents the type of material used for each component
in a product. It can also be used to specify material’s properties like stress
resistance, or malleability [7];

– Geometry model: describes the product shape, typically together with its
nominal dimensions and tolerances [5].

These are however only a few cases; at the current state of the art there is no
complete, nor standardised list of models used in engineering design [6].

The importance of technical specifications is due to the fact that they deter-
mine the final properties that particular objects have to satisfy to be considered
as products of a certain type. If a particular object satisfies the properties spec-
ified by its corresponding model, it is said to conform to the model [4].

This brief introduction suggests that the main core of designing is the devel-
opment of (design) concepts, rather than their codified description, as suggested
by Figure 1. It also shows that various quantitative but also qualitative knowl-
edge aspects have to be considered. For instance, the functional aspects—a sort
of teleological information about the product—have often a qualitative nature.
Furthermore, at the early phases of the development of a product, the require-
ments and the characteristics of the product, including the geometrical ones,
are not precise. The designer still has a quite general idea of the definitive form
of the product and vague tolerances are accepted. The need to enrich quanti-
tative product models with qualitative specifications about the design intents
has been advocated for more than 20 years now [2]. However, computer-based
modelling systems are mainly focused on quantitative knowledge, whereas qual-
itative aspects are mainly expressed by text annotation for human reading. As a
consequence, design relevant models are not (computationally) represented [2].



The ultimate purpose of this work is twofold: (i) to contribute to foundational
issues of engineering design; and (ii) to support the development of advanced
modelling systems for design knowledge. However, in order to achieve these goals,
it is needed beforehand a clear understanding of what a product model is and
how it relates to its corresponding physical products. We thus present in this
paper an high level approach, based on foundational ontologies and knowledge
representation techniques, concerned with the individuation and analysis of the
general notions needed for an integrated model of design. Our proposal offers
just a conceptual base that needs to be specialized and instantiated to be useful
for the practical purposes of knowledge representation in design.

The paper is structured as follows: in Section 2 we introduce the proposed
formal model and we discuss some shortcomings and problematic issues related
to design knowledge representation. In section 3 we briefly compare our approach
with similar research initiatives.

2 Representing design product knowledge

We sketch a general and high-level theory that is capable of representing in a
uniform and integrated way both the qualitative and the quantitative aspects of
design. Manufacturing aspects are excluded from this analysis, even though our
model is compatible with a future extension that addresses these aspects. First-
order logic (FOL) is employed as representational language. This has clearly
some impacts on the technics, in particular reification technics, used to overcome
some limitations in the expressive power.

2.1 The conceptual nature of design

We want to distinguish the design of a product from both its specifications, such
as a Computer-Aided Design (CAD) file or a printed drawing on a piece of pa-
per, and from the set of objects that are possibly produced. For this purpose,
it is worth presenting our point by means of the semiotic triangle developed
in semantics. For instance, the word ‘red’ in its predicative sense is related to
the concept of being red (the intension) and to the class to things that are red
(the extension). In the case of a design, we distinguish three aspects of it (cf.
Figure 2): its specifications as the physical supports of the design, the product
type as its intension, and the class of physical products, or simply products, as
the extension of the product type. For example, John’s car (particular physi-
cal product) satisfies the technical specification of Ferrari Testa Rossa 512 TR
(product type).

Firstly, the product type is distinguished from the specification, as the same
product type may be represented by different supports, e.g., a CAD model and
a pencil-made sketch. The specification is useful to represent and communicate
aspects of the product type, but the design cannot be reduced to it.

Secondly, the product type is not identifiable with the class of products that
can be realized by means of the design. This view copes with the fact that the
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Fig. 2. Semiotic triangle for design

design may be about not yet realized products. If the design reduces to a class
of products, then, before their realizations, one could only talk about the design
in terms of future or possible objects. Although this view may be formalized by
means of modal logic, we believe that it does not capture the nature of design. In
principle, a design may exist even if the objects that are its realizations are never
produced. This does not mean that a design may be about impossible objects:
the point is that a design still exists, we can understand it, and practitioners
can interact about it, even in the case that no concrete product is ever going
to be realized. By focusing on the product type, we indeed construe the design
as a type rather than a set of tokens (physical objects). Accordingly, we shall
treat the product type as a concept in the sense made precise by the axioms we
shall introduce in the next sections. From this perspective, our interpretation of
the designing process departs from the one depicted in Figure 1. The outcome
of the process there is understood as the “description of the technical product
(TP(s))” plus “full information for possible manufacture” of a class of objects.
By contrast, even though we recognize the importance of the specification (cf.
Figure 2), we stress here the conceptual nature of the design. In the following
sections, we do not discuss specification languages for engineering purposes, nor
we will approach the analysis of manufacturing. We will rather formalize the
conceptual nature of a design.

For this purpose, we rely on the dolce ontology [10]. More specifically, we
consider an extension of dolce for representing roles [11] and the evolution of its
core, called dolce-core [12]. These extensions are significant to our aim because
they explicitly address the problem of representing the intension of concepts or
properties. However, these theories are not enough to represent some impor-
tant aspects of the design; hence, in what follows, we modify and extend them.
In a first-order (and non-modal) setting, properties (and concepts) are usually
represented by means of predicates. The method of temporal arguments [13] is a
standard technique to account for (i) the dependence on time of the classification
and (ii) the representation of change of objects through time. It consists of the
introduction of time as an additional argument of the predicates and functions
in the vocabulary that depend on time. For instance, Red(x) becomes Red(x, t).
However, as noted in [12], this technique is not adequate to represent neither
the contextual, social, or constructive aspects of concepts, nor their intensions.

To address these crucial aspects in FOL, we reify concepts into the domain
of quantification, i.e., we introduce a new kind of entities: cn(x) stands for “x
is a concept” (or more generally a property). In this way, we can predicate on
concepts, but we loose the possibility of representing classification via predica-



tion. It is then necessary to introduce a new primitive to relate the concepts to
the entities they classify, a sort of (possibly intensional) ‘instance-of’ relation,
that here we call classification: CF(x, y, t) stands for “the concept x classifies the
entity y as it is at time t”. From a design perspective CF(x, y, t) can be inter-
preted in a more restricted way as “the product y, as it is at time t, conforms
to (the specification of) the product type x”, or, more lengthily, “at time t, the
physical product y has all the properties required to satisfy (the specification of)
the product type x”. The classification relation is temporally qualified: the entity
y may change through time, thus the classification under a certain concept is,
in general, contingent. For instance, a product y that at time t conforms with
the (specifications of the) type x, could not conform anymore with x at time t′

because of the loss of some properties necessary to be classified under x. That
means that t does not individuate the time at which the classification is done but
the time at which y is considered (measured, perceived, etc.). Consequently, the
classification at time t does not necessarily implies the existence at t of the con-
cept, see (a1) where EX(y, t) stands for “the entity y exists at time t”. However,
concepts are in time (a2), they can be created or destroyed (for instance, when
no specification, including mental ones, exists any longer). Concepts created at
a given time t can then classify, according to past information, entities that do
not exist anymore at t.2

A similar modelling approach, even though (change through) time is not con-
sidered, is employed in the Industry Foundation Classes3 (IFC)—a data mod-
elling standard supported by most of the major CAD vendors—in which classi-
fication is called IfcRelDefinesByType. This relationship is used to represent
the fact that the instances of a IfcTypeProduct (a product type) satisfy the
properties defined by a IfcProduct (a physical product).

Standard extensional relations between concepts can be introduced relying
on CF, e.g., the extensional subsumption relation (d1). However, concepts have
an intensional nature, they are not reducible to their extensions, different con-
cepts may classify the same entities: the extensional subsumption is not anti-
symmetric, i.e., x⊆y ∧ y⊆x→ x=y does not hold in our theory.

a1 CF(x, y, t)→ cn(x) ∧ EX(y, t)
a2 cn(x)→ ∃t(EX(x, t))
d1 x⊆y , ∀zt(CF(x, z, t)→ CF(y, z, t))

2.2 The intensional dimension of design

For the sake of example, assume that in our domain all the round entities are
also red and vice versa. In our framework, this does not imply the identity of
the concepts (properties) being red and being round. The distinction between the
extensional and the intensional level of design is also used in design models and

2 For our goal, the time at which the classification is done is not relevant. However it
is easy to add a second temporal argument to CF to account for that.

3 http://www.buildingsmart-tech.org/ifc/IFC2x4/rc4/html/



data modelling standards. In the IFC, for example, IfcTypeProduct is under-
stood as the information common to all instances of IfcProduct. Borgo and
colleagues [14] propose to understand the former in an intensional sense, i.e., as
the properties characterising the instances of the latter.

After Carnap, the intensionality of properties is traditionally approached
in logic from a modal perspective: the co-extensionality of being red and being
round is contingent, it holds in the actual world but there are other possible
worlds where being red and being round have different extensions. In our theory,
the reference to possible worlds is not necessary although, indeed, one can still
have an informal modal understanding of intensionality. Here, the intension is
captured in a different way that is especially effective for products types.

The idea is that concepts cannot be characterized “in isolation”, they always
refer to other concepts. For instance, product types are usually characterized in
terms of simpler concepts that are typically shared by the designers involved in
a given phase, the common background of designers. This idea is quite similar
to the one followed in [11], where the identity criteria for concepts are based
on their definitions. However, in [11] the definitions of concepts are a sort of
“placeholders” of their intensions, they are not structured and they are very
weakly interlinked (by the notion ‘used’). Here we use the dolce-core quality
spaces—a formal variation of conceptual spaces [15]. The idea is to make (par-
tially) explicit what characterizes a concept in intensional terms by linking it to
some quality spaces.

Objects can be compared and characterized in terms of a variety of aspects
such as weight, shape, size, color, function, etc. Such aspects are represented
via (quality) spaces composed by basic properties (called regions in dolce-
core).4 For instance, the color space contains several basic properties, e.g.,
being red, being orange, being scarlet, etc. Basic properties in the same space
can be organized in taxonomies or in more sophisticated ways: from ordering
(weight, size) to complex topological or geometrical relations (color splinter).

We assume a finite number N of spaces spi that partition the basic properties
bcn (a3)–(a5).5 The idea is that basic properties—that still have an intensional
nature—are used, but not created, during the design process, i.e., they repre-
sent the conceptual knowledge in the background, the conceptual knowledge
that allows the product type to be characterized throughout the design phases.6

Consequently, the intensional subsumption relation v, assumed to be a classical
extensional mereology closed under sum [16], is also local to spaces (a6). Ba-

4 Quality spaces correspond to the dimensions of conceptual spaces in [15].
5 This implies that basic properties are local, private, to spaces. This choice can be

debated if one assumes that colors can be organized in different ways, or that spaces
are associated to instruments with different resolution. In this case, it seems reason-
able to assume that spaces share basic properties. Here we prefer to duplicate the
basic properties, given their quite clear conceptual nature in these cases, and add
correspondence links between them.

6 As in the case of correspondence links, one can think that there are other intensional
(logical) links among these basic properties (in the same or in different spaces). This
is a very interesting aspect that, for reasons of space, we do not consider here.



sic properties are concepts, therefore they classify entities; (a7) establishes the
link between the intension and the extension of concepts (the vice versa does
not hold). Firstly, note that, differently from dolce-core, the individual qual-
ities—a sort of tropes, e.g., the redness of my car—are not in the domain of
quantification anymore.7 Secondly, and more importantly, in dolce-core when
an object has a quality, then this quality is completely determined.8 For instance,
a uniformly colored object is always mapped to an atomic basic property, a max-
imally specified property, the maximal information one disposes of (according
to the resolution assumed in the space). A multi-colored object is mapped to
a non-atomic property. However, this property is just the sum of the colors of
all its uniformly colored parts. Differently, to account for underspecification and
tolerances, a uniformly colored object could here be mapped to a non-atomic ba-
sic property; its color is just one of the atomic parts of the non-atomic property.
This disjunctive reading is more useful in the design process, especially during
the first phases when one has only a qualitative and rough characterization of
the product type. This means that the basic properties need to be interpreted
as the properties of the whole object under classification. The properties of the
parts and of the structural aspects of a product type are quite problematic and
will be briefly discussed in Section 2.3.

As we saw, the product types are complex concepts ccn (a8) characterized in
terms of basic properties. We need then to link complex concepts to their basic
properties: CH(x, y) stands for “the complex concept x is characterized by the
basic property y” (a9). For example, Ferrari Testarossa 512 TR (product type)
is characterised by the basic properties being red, being 1500kg heavy, among
others. Complex concepts are characterized at least by two, but usually several,
basic properties, i.e., they have a multi-dimensional nature (a10).9 This is similar
to composition of spaces in more complex ones, at least if the geometry of the
complex space can be defined in terms of the geometries of its components.

a3 bcn(x)→ cn(x)
a4 bcn(x)↔

∨
i∈{1,...,N} spi(x)

a5
∧

i 6=j∈{1,...,N}(spi(x)→ ¬spj(x))

a6 xvy →
∧

i∈{1,...,N}(spi(x)↔ spi(y))
a7 xvy → x⊆y
a8 ccn(x)→ cn(x) ∧ ¬bcn(x)
a9 CH(x, y)→ ccn(x) ∧ bcn(y)

a10 ccn(x)→ ∃yz(CH(x, y) ∧ CH(x, z) ∧
∨

i∈{1,...,N}(spi(y) ∧ ¬spi(z)))

a11 ccn(x)→ (CF(x, y, t)↔ ∀z(CH(x, z)→ CF(z, y, t)))

7 This option has already been considered in [17].
8 In [15] objects are points in multi-dimensional spaces. Objects are then fully char-

acterized with respect to all the possible qualities.
9 Actually this is also the case of some basic properties, e.g., the color space has three

dimensions: hue, saturation, and brightness. One could also think that colors (or,
better, shapes) may be designed, i.e., there exist some original or proprietary color-
properties. We do not consider these aspects that, however, could be modeled by
extending CH or by assuming hue-, saturation-, and brightness-properties as basic.



Firstly, we need to guarantee that the classification under a complex concept
x reduces to the classification under all the basic properties that characterize x
(a11), i.e., the extension of x is the intersection of the extensions of all the basic
properties that characterize x. This seems to authorize to interpret CH as a sort
of intensional subsumption. However, the antisymmetry of v would imply the
identity of complex concepts with the same characterizing basic properties. This
is acceptable only if we assume that the characterization of complex concepts
is always complete. For the moment, we prefer a weaker approach that allows
also for partial characterizations of concepts, i.e., two different concepts can have
the same partial characterization. Note that these partial characterizations are
particularly interesting for hiding very specific or practical properties.

Secondly, while it seems quite reasonable to have a static view on the back-
ground knowledge, the product type under design could be intended as an evolv-
ing concept. This can be modeled by adding a temporal parameter to both CH

and CF, i.e., what characterizes a concept can vary through time, thus the classi-
fication depends also on the time at which the concept is considered: CF(x, t, y, t′)
stands for “the complex concept x, as it is at t, classifies the object y, as it is
at t′” (a12). The double temporal qualification allows to reclassify an object as
it is at t′ across the evolution through time of a given concept.10 (a11) needs
then to be substituted by (a13) where we assume the basic properties to be
static. Consequently, the extensional subsumption relations between complex
concepts may be temporally qualified as in (d2). The identity of concepts can be
intended in terms of the ‘trajectory’ across time of its characterizing properties,
i.e., (CH(x, z, t) ↔ CH(x′, z, t)) → x = x′, but weaker options that consider the
designers and/or the design process can be considered. For this reason, we do
not commit to this identity criterion.

a12 CF(x, t, y, t′)→ ccn(x) ∧ EX(x, t) ∧ EX(y, t′)
a13 ccn(x)→ (CF(x, t, y, t′)↔ ∀z(CH(x, z, t)→ CF(z, y, t′)))
d2 x t1⊆ t2y , ccn(x) ∧ ccn(y) ∧ ∀zt(CF(x, t1, z, t)→ CF(y, t2, z, t))

At this point we can also address the notion of requirement that is usually
defined as the “[p]roperty that is required to be fulfilled during the origination
phase of the object to satisfy the [customer] requirements” [1, p.317]. Customer
requirements can then be seen as the (maybe rough) idea of product that the
customers, as opposed to designers, have. Note that also the requirements, i.e.,
the customer concept, can evolve in time during the design process, maybe be-
cause of market change, or maybe because of the interaction with engineers
that discovered some unrealizable constraints. We have then two complex con-
cepts characterized in terms of intensions (their characterizing basic properties)
and extensions (the objects that they classify). This allows for both an inten-

10 Firstly, note that t is not the time at which the classification is done, it just ‘freezes’
the concept (while t′ freezes the object). Secondly, to avoid evolving concepts, one
could follow [11] and introduce a ‘revision’ relation between static concepts. Formally
the two approaches are equivalent, we preferred the first approach because it seems
more adequate for capturing the design practice.



sional and an extensional comparison. One can say that, at t, the requirements,
represented by the concept cr, are satisfied by a product type cp if c t

p ⊆ t cr.
Requirements are then a sort of necessary properties of the product. However,
this could mean that the product type is too specific, i.e., the matching exists
only when both c t

p ⊆ t cr and c t
r ⊆ t cp hold. In any case, the way in which

we realized the products can be very different from what the customer require-
ments report. An intensional matching at t may be defined in terms of CH as
CH(cr, x, t) → ∃y(y v x ∧ CH(cp, y, t)), i.e., the basic properties that character-
ize cp are intensionally subsumed by the ones that characterize cr. Again we
can strengthen this notion to a perfect matching. Finally, note that one could
distinguish two CH relations, one for necessary and one for optional properties
of product. This would allow for distinguishing, at the level of requirements,
demands from wishes. In addition, because intensions are expressed in terms of
basic properties and any space may have a metric, the level of (mis)matching
between requirements and design can be measured.

As an illustrative example, let us consider a customer asking for a product to
prepare Italian coffee. In addition to the function, her requirements regard the
height (between 16cm and 20cm) and the material (aluminium) of the product.
Assuming to dispose of the function, height, and material spaces, the required
product type can be represented by a complex concept rpt that, at the starting
time t0 is characterized by three basic properties: CH(rpt, prep it coffee, t0),
CH(rpt, 16-20cm, t0), CH(rpt, alu, t0). Assume that 16-20cm is a non-atomic ba-
sic property while alu an atomic one, even though, because properties apply
to the whole product, this does not necessarily imply the product to be ex-
clusively made of aluminium. More controversial is the case of prep it coffee

because it is unclear, for instance, whether the kind of energy used to prepare
the coffee is part of the function or pertains a separate space. For our illustrative
purposes we assume the first hypothesis and that there are at least two (inten-
sional) subfunctions (v) of prep it coffee, namely prep it coffee methane

and prep it coffee elect. The designers start to consider the requirements
(specified by the customer in some way) by assuming a designed product type dpt
(a complex concept) such that CH(dpt, prep it coffee elect, t0), CH(dpt, 16-
20cm, t0), CH(dpt, steel, t0). This choice is partially based on the expertise
of the company in developing products for induction hobs. Note that the de-
signers know that (at t0) dpt does not match rpt because steel is not a
subconcept of alu. Therefore they interact with the customer to explain the
strategical importance of having a product to prepare italian coffee to work
with induction hobs, and this constraints the material to steel. The customer
agrees on that but change the size-constraints, in this case she wants a very
small, less than 12cm high, product. The designers agree on that and at time t1
the requirements are matched: CH(rpt, prep it coffee, t1), CH(rpt,≤12cm, t1),
CH(rpt, steel, t1) and CH(dpt, prep it coffee elect, t1), CH(rpt, 10-11cm, t1),
CH(rpt, steel, t1).

11

11 Here we are totally liberal with respect to how concepts can change through time.
However, constraints on the way concepts “move” inside the spaces can be added.



2.3 Advanced and problematic aspects

Dependencies between spaces One interesting aspect of spaces is that it is
quite easy to add dependence links between basic properties, i.e., to shape the
composed space. This is the case of the color splinter: not all the combinations of
hue, saturation, and brightness correspond to a color, a given hue constraints the
possible values of brightness and saturation. In this case the consistency of the
different characteristics of a model can be guaranteed from the beginning. The
proposed framework can be extended to take into account these dependencies.
From the designing perspective, this is interesting because it makes possible to
represent the dependencies between different designing phases and design speci-
fications by means of the dependencies between the spaces that are used at these
phases. For instance, functional modeling is particularly relevant during the first
stages of the design process, where more emphasis is given on what the product
is designed to do, rather than on how this purpose will be achieved. Vice versa,
at the design embodiment stage, designers focus more on the physical properties
of the product, i.e., on how the functionality is realized. Dependencies between
functional and physical properties can help the designer in (i) understanding
how a required function constrains the product’s physical layout—a top-down
perspective: from the abstract functional view to the concrete physical one; (ii)
verifying whether the chosen physical layout can, at least in principle, fulfill
the required functionality (a bottom-up perspective); (iii) making explicit pos-
sible accidental functions, as opposed to proper functions, that could result from
(improper) usages of the product. For instance, a screwdriver has the proper
function of, it has been designed for, driving screws, while it has the acciden-
tal function of opening cans. According to de Vries [18], this analysis is very
important to individuate dangerous improper uses of products to be avoided.

Structural knowledge We have already observed the importance of the com-
ponent and assembly models. Together they allow to represent the structure
of the product, i.e., how it can be decomposed into simpler products and which
assembly constraints hold among these components. The “recursive” decomposi-
tion usually stops at standard (at least for a given company) units that are reused
in several products. Structural knowledge is then really central to any modern
design of complex products, e.g., cars or planes.12 This structure is usually rep-
resented by means of a parthood relation between product types, i.e., by a set of
necessary (and sufficient) conditions about the parts of an object. Both UML and
ER languages have primitives to represent different kinds of part-whole relations
and, in knowledge representation, mereology has now a quite long tradition (see

12 One could say that the design itself reduces to reuse components already designed.
However, as already said some properties like colors or shapes can be designed (ac-
tually, structural information seems fundamental to design new shapes). In these
cases, it is not clear to us if the designed properties are reducible to original ways
of putting together more basic properties or if an extension of a space is needed. It
would be interesting to analyze creativity in terms of spaces.



[16, 19]). However, in this way, the structure is not intended as a space of prop-
erties of the product. Consequently, one lacks a structural similarity or distance
that would offer quite precious information to guide the product development,
test, and refinement. Recently, there has been a number of proposals to build a
conceptual, and cognitively based, space for parthood [20, 21]. These approaches
are quite complex and do not really represent the assembly knowledge. More
promising, at least in our view, is the idea of representing structures as patterns
or, more precisely, as structural graphs, i.e., labelled and directed graphs which
nodes stand for product types and arcs for assembly relations. The construction
of these graphs is complex, but it allows to fully capture the structural knowl-
edge and to import or adapt standard measures of similarity between graphs to
introduce a metric in the space of structures. In addition, similar graphs could
also be useful to represent relational properties, i.e., properties that hold be-
cause the product has some relations with the external world, e.g., ergonomic
properties or affordances. This would be quite relevant for user-centered design.

Without structure-spaces, to minimally represent structural constraints, we
extend our framework with a temporally qualified classical extensional mereology
defined on objects: P(x, y, t) stands for “the object x is part of the object y at
time t”. Consider the previous example of the Italian coffee and assume that
at time t2 the designers subdivide the main functionality prepare Italian coffee
in sub-functionalities to boil water, to store powdered coffee, to filter coffee by
boiled water, to store brewed coffee and to serve coffee. Amongst the various
solutions for the embodiment of these functionalities, they decide to develop a
moka pot product type (moka) with, among the others, three components (that
are themselves product types): boiler pot (pot), coffee container (container),
and filter (filter) that are characterized (in terms of CH) by the first three
functions discussed above (plus additional heigh and material properties). In the
proposed theory, this structural constraint is represented by (f1), but because a
structure space does not exist, it is not possible to understand if this constraint
matches the original one about the function of the whole object.

f1 CF(moka, t2, x, t)→ ∃yzw(CF(pot, t2, y, t) ∧ CF(container, t2, z, t) ∧
CF(filter, t2, w, t) ∧ P(y, x, t) ∧ P(z, x, t) ∧ P(w, x, t))

3 Discussion and related work

We presented a high-level modelling approach based on conceptual spaces and
ontology engineering methods for the formal representation and integration of
(qualitative and quantitative) aspects of design. Foundational issues related to
engineering design and the integration of different aspects of design knowledge
have been discussed in various research areas, from knowledge representation
approaches, to theories of design and philosophy of technology.

The conceptual view proposed in this paper is mostly based on the engineer-
ing literature. According to Pahl and colleagues, the goal of designing is “the
mental creation of a new product” [3, p.1]. Along the same lines, Lindemann [6]
distinguishes between the content of a design model (e.g. geometric content) and



its specification by means of a representational language (2D geometry). Despite
the emphasis on the “mental” side of design given in [3], a design does not have
to be confused with its mental representation in our theory. Kroes stresses the
difficulty to capture this conceptual nature of design: “When referring to a car
design [model], for instance, what is meant is not usually its production plan but
something that has more to do with the properties of the car itself [...]. It is not
easy to grasp what this ‘something’ is” [22, p.146]. In section 2.1 concepts are
intensionally understood as properties that their corresponding instances have
to satisfy. In this sense, a (complex) concept (product type) is a bundle of basic
properties defined by designers to satisfy customers’ requirements.

In the philosophical analysis of engineering design proposed by Vermaas and
colleagues [23], designing tasks are mainly aimed at providing a description for
a technical product: “[...] the core of technical designing lies in finding a descrip-
tion DS of an artefact with a physical structure S that is able to effectively and
efficiently fulfil a certain function F” [23, p.28] (emphasis ours). In this perspec-
tive, DS is a document specified in a modelling language suited for engineering
purposes. The authors thus focus on specification as the core dimension of de-
sign, while we have rather focused on its conceptual nature. The two approaches,
however, are not contrasting but rather orthogonal, since concepts have to be
specified for representational and communication purposes.

Knowledge representation has been primarily focused on the physical makeup
of products, while little (if any) attention has been given to design models. For
instance, the Core Product Model (CPM) [24] associates the class artifact

to (requirement) specification, meaning that the former has to satisfy the
latter’s properties. However, neither the difference between requirements prop-
erties and design specifications properties is discussed, nor it is clear whether
specification refers to an encoded description, or its content.

In ontology engineering, the Information Artifact Ontology (IAO) [25] has
been explicitly developed to represent information entities, that is, the content
of encoded descriptions. The IAO thus shares in some degree the same pur-
pose of the work hereby presented. There are however some relevant distinctions
to be noted: (i) the IAO directly links a representation to the physical object
that it is about. In our approach, concepts mediate this relationship (cf. Figure
2), since they cannot be reduced to their extensions, as argued in Section 2.1.
(ii) information content entity (concept in our terminology) is only weakly
characterised as an entity that existentially depends on some representation and
is about something else. In our theory, there is no such a dependence, since a
product type is not necessarily specified in a physical medium. Additionally,
we have provided a more detailed characterisation of concepts by taking into
account the theories of quality spaces in dolce-core.
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