
On the Use of OWL Reasoning for Evaluating Access
Control Policies

Fabio Marfia
Politecnico di Milano
DEIB - Department of

Information, Electronics and
Bioengineering
Via Ponzio, 34/5

20133, Milano - Italy
fabio.marfia@polimi.it

Mario Arrigoni Neri
University of Bergamo

Department of Computer
Engineering and Mathematical

Methods
viale Marconi, 5

24044, Dalmine (BG) - Italy
mario.arrigonineri@unibg.it

Filippo Pellegrini
Politecnico di Milano
DEIB - Department of

Information, Electronics and
Bioengineering
Via Ponzio, 34/5

20133, Milano - Italy
filippo1.pellegrini@mail.polimi.it

Marco Colombetti
Politecnico di Milano
DEIB - Department of

Information, Electronics and
Bioengineering
Via Ponzio, 34/5

20133, Milano - Italy
marco.colombetti@polimi.it

ABSTRACT
We present a Description Logics approach to the manage-
ment of XACML policies. We explain how policies can be
mapped to a DL axiomatization, and how authorization re-
quests can be answered using standard DL reasoning tools.
Our model represents a valid substratum for managing poli-
cies whose expressivity can not be captured by standard
engines. Furthermore, advanced security functionalities, as
Policy Harmonization and Policy Explanation, can be im-
plemented in the context of the present model.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls

General Terms
Management, Security

Keywords
Access Control, Policy Languages, Description Logics, Rea-
soning

1. INTRODUCTION
As data engineers decided to create application-independent
logical mechanisms of data storage in the ’60s, and first
database systems became available, the chance of modeling

logically-independent policy management systems has been
considered in the last decade.

As a matter of facts, an increasing number of distributed ap-
plications have been meeting complex problems in manag-
ing distribution and access authorizations of contents in the
last years. Description and enforcement of policies can be-
come a very complex task in large systems. An independent
Policy Management architecture represents a scalable and
re-usable environment for: formally specifying policies (Pol-
icy Editing and Storing); automatically asserting, according
to the specified policies, whether an agent is authorized to
commit an act, or not (Policy Evaluation); automatically
resolving conflicts between policies (Policy Harmonization);
generating human-readable explanations of the causes of a
specific policy evaluation (Policy Explanation); eventually
enforce an agent to commit an act or perpetrate penaliza-
tion acts against agents, as a response to policy violations
(Policy Enforcement).

Several standard languages have been defined for the formal
representation of policies in such type of environment. How-
ever, in fact, the current de facto standard in access control
policy languages is represented by XACML [8].

XACML defines standard protocols for transmitting creden-
tials, requesting resources, defining and storing access poli-
cies; together with the definition of a general security layer,
made up of different and specialised software components [7].
Such a layer deals with the aforementioned tasks of allow-
ing policy administrators to edit and store policies, handling
conflicts between contradictory decrees, providing a ultimate
response for access requests, together with an explanation
of such a response eventually.

We present an implementation of an XACML-compliant frame-
work in this paper, based on OWL and reasoning technolo-

71



gies. The expression and application of deontic propositions
is well known in literature, however, as far as we know, this
is the first time they are applied with the specific aim of
providing a solution for an XACML security layer, even if
activities for formalizing XACML policies with Description
Logics (DL) were done in the past, for Policy Harmonization
purposes [3].

Relying many core functionalities on DL reasoning activ-
ities, performances result worse than any known XACML
engine’s. Consequently, the present approach has to be con-
sidered in cases where current XACML technologies are un-
able to capture the expressiveness of the policies involved,
or as a substratum for providing advanced functionalities as,
e.g., Policy Explanation.

The paper proceeds as follows: we present the modular
structure of the framework in Section 2. We explain how
DL axioms are generated from a collection of XACML poli-
cies, and how policy evaluation is done in Section 3.

2. THE POLICY FRAMEWORK
As described in [7], the XACML standard defines a gen-
eral framework for receiving data requests and handling re-
sponses according to an arbitrarily large collection of poli-
cies, that are stored in a repository according to a standard
XML-compliant model. The subsequent architectural com-
ponents are defined for the framework:

• Policy Enforcement Point (PEP): Point which in-
tercepts user’s access request to a resource, makes a
evaluation request to the PDP to obtain the access
evaluation (i.e. access to the resource is approved or
rejected), and acts on the received evaluation;

• Policy Decision Point (PDP): Point which evalu-
ates access requests against authorization policies be-
fore issuing access responses;

• Policy Administration Point (PAP): Point which
manages access authorization policies;

• Policy Information Point (PIP): The system en-
tity that acts as a source of attribute values;

• Context Handler: the Context Handler deals with
the coordination of the communications between PDP,
PEP and PIP; in particular, it acts in order to return
the output of the PDP to the PEP as a response for
an access request, consisting eventually in a retrieved
resource.

The technology behind the PEP, that is developed in order
to enforce or regulate access to resources, is strongly do-
main dependent and it is not matter of the current work.
The PDP is provided with a Policy Evaluator component
that interfaces with a DL Reasoner. Policy evaluations and
explanations are generated by the PDP as a result of a rea-
soning activity on three different ontologies:

1. A Policy Terminological Box (TBOX), that is the
expression of the active policies and it is obtained as a
result of an algorithmic translation from an XACML
collection of policies. Tasks such as providing an in-
terface for policy editing to policy administrators, syn-
chronizing the TBOX ontology with XACML policies,

harmonizing conflict between policies, are delegated to
the PAP.

2. A Domain TBOX, representing a meaningful por-
trayal of the application domain. It is arbitrarily ex-
pressive and it is thought to cover the whole collection
of concepts and relations involved in the application
domain.

3. A Domain Assertional BOX (ABOX), gathering
the different descriptions of the individuals and re-
sources involved in the application domain. They are
represented as an instantiations of the concepts and
relations depicted in the Domain TBOX.

Both Domain TBOX and ABOX are stored and managed
by the PIP.

3. POLICIES AS AXIOMATIC
PROPOSITIONS

As presented in Section 2, the PAP allows a policy admin-
istrator to edit and store policies in the form of an XACML
collection. XACML represents the XML-compliant descrip-
tion of the policies in the environment, while the DL form of
the same collection is represented by an OWL TBOX. Poli-
cies are translated from the former representation to the
latter automatically.

Kolovski et al. [3] present how to formalize XACML poli-
cies, using a more complex syntax than DL, defined DDL−.
That is done according to three types of XACML combining
algorithms (see also [7]): permit-overrides, deny-overrides,
first-applicable. We decided to reduce the expressivity of
the XACML collection specifiable by the PAP, in respect
to the aforementioned formalisation, as follows: the policy
collection is reduced to a set of XACML rules, applying ac-
cording to the policy combining algorithm deny-overrides
only. The algorithm takes into consideration every rule, and,
then, if both access deny and permit apply, an access deny
is returned as a response. Whether nothing is found to be
applied in the whole set of rules, a final general policy is
defined in order to deny any access. Such approach allows
to rely on standard DL technologies for reasoning without
involving the DDL− formalisation, obtaining better perfor-
mances and an easier policy representation. We believe that
such simplification is a sufficient approach for satisfying the
requirements of many real-life environments in which, for se-
curity reasons, every access is denied ex-ante, while policies
are applied for modifying such default behaviour.

In order for the rules to be properly translated into an OWL
TBOX, they can not be expressed arbitrarily: we have then
identified five different policy archetypes, according to which
the policies must be defined. The identified archetypes cover
a wide range of expressiveness, in particular the three stan-
dard models IBAC (Identity Based Access Control), RBAC
(Role Based Access Control) and ABAC (Attribute Based
Access Control) are covered by the model.

The five different policy archetypes are shown in Table 1.
Each policy can be composed with others using AND or OR
conjunctions in our model, as foreseen by XACML proto-
col, in order to generate complex rules. Furthermore, each

72



Table 1: Policy Archetypes

ID
Access Con-
trol Reference

Description Example

1 IBAC
A single subject is allowed to access to one or more re-
sources

John Andrews can read Healthcare Assistant
Documents

2 RBAC
A group of subjects is allowed to access to one or more
resources

Medical Consultants can write a Medical Regula-
tion Document

3 ABAC
Only subjects with specific attributes are allowed to ac-
cess to one or more resources

Females can not read Andrology Documents

4 ABAC
Only subjects in a specific relation with another subject
with specific attributes are allowed to access to one or
more resources

A tutor of a person that is not of age can read
document 305871

5 N/A
Only subjects in a specific relation with another subject
are allowed to access to the resources that refer to the
latter subject

A subject can read all the records of the ward
he/she works in

policy can be positive or negative, allowing the policy ad-
ministrator to permit or deny access to specific resources.

We describe two between the five policy archetypes, together
with policy examples, in Section 3.1, while specifying how
each type of policy is translated into a set of axioms. We
describe how policies can be combined with AND or OR
conjunctions in Section 3.2. We present how the PDP can
obtain policy evaluations from the generated axioms in Sec-
tion 3.3.

3.1 Policy Archetypes

3.1.1 Type 3 - ABAC Simple Policy
The Type 3 archetype represents the permission released or
denied to a single subject characterized by one or more at-
tributes, for the access to a resource or a group of resources.
A sample XACML Type 3 rule is shown in Table 1, allowing
every subject with dataProperty hasGender equal to "F" to
read the group of resources AndrologyDocument. The pol-
icy is translated into a TBOX ontological policy with the
subsequent procedure. First, an OWL class is generated,
containing only the individuals characterized by the afore-
mentioned property:

Class:

hasGender_F_Class

equivalentTo:

hasGender value "F"

Then, the functional Identity Property
identityOn_hasGender_F_Class is defined for the gener-
ated class, representing the property of each member of the
class pointing to the member itself:

Class:

hasGender_F_Class

equivalentTo:

identityOn_hasGender_F_Class some Self

The same is done for the group of resources, represented in
the Domain TBOX ontology by the class AndrologyDocu-

ment:

Class:

AndrologyDocument

equivalentTo:

identityOn_AndrologyDocument some Self

Finally, the negative permission to be annotated, CanNotRead,
is defined as a superproperty of a specific property chain, as
follows:

objectProperty:

identityOn_hasGender_F_Class o

topObjectProperty o

identityOn_AndrologyDocument

SubPropertyOf:

CanNotRead

All the individuals with the dataProperty hasGender value

"F" are connected in this way with the property CanNotRead

to each resource belonging to the class AndrologyDocument.

3.1.2 Type 5 - Triangular Relation Policy
The Type 5 policy archetype puts in relation the subject and
the resource generating the permission only in the case that
a common individual is in a specific connection with both of
them. The added permission property represents the side of
a triangle in such a case, where its vertexes are represented
by the subject, the resource and the individual in common.
A sample Type 5 rule is shown in Table 1, allowing every
subject to read every MedicalRecord of the ward in which
he worksIn.

The OWL axiomatic expression of such a policy is character-
ized by a single property chain expressed as a subproperty
of the involved permission property:

objectProperty:

worksIn o

ownsRecord

SubPropertyOf:

canRead

3.2 Combining Policies
As stated, the presented policies can be also expressed to-
gether in a single XACML rule using AND or OR opera-
tors. As it can be understood, each archetype differs from
the others for the way in which the subject requirements
are expressed only, while the expression of permission and
resources (a single one, or a group) are the same. So, a
joined expression of two policies can be, for example, allow-
ing a Medic that is male to read every AndrologyDocument.
That is an expression of a Type 2 + Type 3 policy.

In case that many policies are joined with an OR conjunc-

73



tion, it is sufficient to translate each policy singularly into a
TBOX policy. In case that many policies are joined with an
AND conjunction, the approach changes whether none, one
or more Type 5 policy are present. In case that no Type 5
policy is present, a new class is defined as an intersection of
all the classes that identify the subject requirements for ev-
ery policy. Then, a new Identity Property is created for the
class and the positive or negative permission is assigned as
a superproperty of the property chain between the created
Identity Property, the topOjbectProperty and the Identity
Property on the resources, as it is done for any of the Type
1 to 4 archetypes.

In case that one Type 5 policy is present, a new class is
defined as an intersection of all the classes that identify the
subject requirements for every policy of Type 1 to 4. Then,
a new Identity Property is created for the class and the posi-
tive or negative permission is assigned as a superproperty of
the property chain between the just created Identity Prop-
erty and the two object properties involved in the Type 5
policy.

Expression of an axiomatic policy is not possible, using DL,
in case of AND conjunction between more than one Type
5 policies. That because specification of double paths be-
tween the same identities is involved, and it is not possible.
However, the issue can be addressed using SWRL Rules [6].

3.3 Policy Evaluation
Once the XACML policies are correctly translated into a
Policy TBOX by the PAP, when the PDP receives an XACML
access request from the Context Handler (more formally, an
XACML Context [7]), it retrieves the Policy TBOX from the
PAP and the Domain TBOX and ABOX from the PIP.

After that, the task of Policy Evaluation reduces itself to
the process of querying the set of the retrieved ontologies,
for verifying whether they logically entail or not two spe-
cific theorems: the one stating that the subject can do the
requested action on the requested resource (positive permis-
sion theorem), and the one stating that the subject can not
do the requested action on the requested resource (negative
permission theorem).

Whether only the positive permission theorem is found, a
positive authorization is returned by the PDP to the Con-
text Handler. A negative authorization is returned in any
other case. As an example, we can assume that the per-
mission request for john_andrews to read the document
document_305871 is received by the PDP from the Context
Handler. Two DL queries [1] are sent, then, to the set of
ontologies for retrieving the two subsequent theorems:

1. john_andrews canRead document_305871.

2. john_andrews canNotRead document_305871.

If theorem 1 is found only, the response of the PDP is a
positive authorization. Otherwise, the response is a negative
authorization.

4. CONCLUSION AND FUTURE WORK
We measured the algorithm performances in respect to the
best known XACML engines [5]. While policy conversion

to DL is executed within a reasonable time, Policy Decision
performances are worse than any known XACML engine, in
the order of 100x in time approximately. Anyway, we believe
that our solution can be a reasonable alternative in a real-
life scenario to ordinary XACML engines for the subsequent
reasons:

• An optimized code and an efficient hardware can sup-
port a usable PDP engine for real-time interactions in
real-life environments;

• DL expressiveness can be used to define policies which
complexity can not be caught by ordinary XACML
engines;

• External applications can generate interesting portrays
of the regulation state by accessing to the framework
semantics for an end-user;

• Automatic agents may regulate their behaviour by read-
ing and reasoning on provided policies;

• Advanced complex tasks can be exploited that are al-
most impossible for ordinary XACML frameworks; as
Policy Explanation, or Policy Harmonization.

Policy Explanation can be provided together with the re-
sponse using OWL Explanation technology [2], as already
done by Marfia [4]. A Policy Harmonization service based
on the OWL policy representation can be developed for the
framework, accordingly to what presented by Kolovski et al.
[3].

5. REFERENCES
[1] DL Query guide - Protégé DLQueryTab.

http://protegewiki.stanford.edu/wiki/DLQueryTab,
2008.

[2] M. Horridge, B. Parsia, and U. Sattler. Laconic and
Precise Justifications in OWL. In Proceedings of the 7th
International Conference on The Semantic Web, ISWC
’08, pages 323–338, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] V. Kolovski, J. Hendler, and B. Parsia. Analyzing Web
Access Control Policies. In Proceedings of the 16th
International Conference on World Wide Web, WWW
’07, pages 677–686, New York, NY, USA, 2007. ACM.

[4] F. Marfia. Using Abductive and Inductive Inference to
Generate Policy Explanations. In M. Obaidat,
A. Holzinger, and P. Samarati, editors, Proceedings of
International Conference on Security and Cryptography
(SECRYPT 2014). SciTePress, 2014.

[5] A. Mourad and H. Jebbaoui. SBA-XACML: Set-based
approach providing efficient policy decision process for
accessing Web services. Expert Syst. Appl.,
42(1):165–178, 2015.

[6] SWRL: A Semantic Web Rule Language Combining
OWL and RuleML.
http://www.w3.org/Submission/SWRL/, 2004.

[7] OASIS XACML Version 3.0 Specification.
http://docs.oasis-open.org/xacml/3.0/xacml-3.

0-core-spec-cs-01-en.pdf, 2013.

[8] OASIS eXtensible Access Control Markup Language
(XACML).
https://www.oasis-open.org/committees/xacml/,
2013.

74


