
Tableau Reasoners for Probabilistic Ontologies
Exploiting Logic Programming Techniques

Riccardo Zese1, Elena Bellodi1, Fabrizio Riguzzi2, and Evelina Lamma1

1 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

{riccardo.zese,elena.bellodi,evelina.lamma,fabrizio.riguzzi}@unife.it

Abstract. The adoption of Description Logics for modeling real world
domains within the Semantic Web is exponentially increased in the last
years, also due to the availability of a large number of reasoning algo-
rithms. Most of them exploit the tableau algorithm which has to manage
non-determinism, a feature that is not easy to handle using procedural
languages such as Java or C++. Reasoning on real world domains also
requires the capability of managing probabilistic and uncertain infor-
mation. We thus present TRILL, for “Tableau Reasoner for descrIption
Logics in proLog” and TRILLP , for “TRILL powered by Pinpointing
formulas”, which implement the tableau algorithm and return the prob-
ability of queries. TRILLP , instead of the set of explanations for a query,
computes a Boolean formula representing them, speeding up the compu-
tation.

Introduction

The Semantic Web aims at making information regarding real world domains
available in a form that is understandable by machines [7]. The World Wide Web
Consortium is working for realizing this vision by supporting the development
of the Web Ontology Language (OWL), a family of knowledge representation
formalisms for defining ontologies based on Description Logics (DLs). Moreover,
uncertain information is intrinsic to real world domains, thus the combination
of probability and logic theories becomes of foremost importance.

Efficient DL reasoners, such us Pellet, RacerPro and HermiT, are able to exe-
cute inference on the modeled ontologies, but only a few number of reasoners are
able to manage probabilistic information. One of the most common approaches
for reasoning is the tableau algorithm that exploits some non-deterministic ex-
pansion rules. This requires the developers to implement a search strategy in an
or-branching search space able to explore all the non-deterministic choices done
during the inference in order to find all the possible explanations for the query.

In this paper, we present two systems which implement a tableau reasoner
in Prolog: TRILL for “Tableau Reasoner for descrIption Logics in proLog”
and TRILLP for “TRILL powered by Pinpointing formulas”, able to reason on



SHOIQ DL and on ALC DL respectively. Prolog search strategy is exploited
for taking into account the non-determinism of the tableau rules. They use the
Thea2 library [18] for translating OWL files into a Prolog representation in which
each axiom is mapped into a fact. TRILL and TRILLP can check the consis-
tency of a concept and the entailment of an axiom from an ontology, and can
compute the probability of the entailment following DISPONTE [13], a seman-
tics for probabilistic ontologies based on the Distribution Semantics [15], one of
the most widespread approaches in probabilistic logic programming. The avail-
ability of a Prolog implementation of a DL reasoner which follows DISPONTE
will also facilitate the development of probabilistic reasoners that can integrate
probabilistic logic programming with probabilistic DLs.

Description Logics

DLs are knowledge representation formalisms that are at the basis of the Se-
mantic Web [1, 2] and are used for modeling ontologies. They possess nice com-
putational properties such as decidability and/or low complexity.

Usually, DLs’ syntax is based on concepts and roles which correspond respec-
tively to sets of individuals and sets of pairs of individuals of the domain. We
now describe ALC and we refer to [11] for a description of SHOIQ.

Let C, R and I be sets of atomic concepts, atomic roles and individuals,
respectively. Concepts are defined by induction as follows. Each C ∈ C is a
concept, ⊥ and > are concepts. If C, C1 and C2 are concepts and R ∈ R, then
(C1uC2), (C1tC2) and ¬C are concepts, as well as ∃R.C and ∀R.C. A TBox T
is a finite set of concept inclusion axioms C v D, where C and D are concepts.
We use C ≡ D to abbreviate the conjunction of C v D and D v C. An ABox
A is a finite set of concept membership axioms a : C, role membership axioms
(a, b) : R, equality axioms a = b and inequality axioms a 6= b, where C ∈ C,
R ∈ R and a, b ∈ I. A knowledge base (KB) K = (T ,A) consists of a TBox T
and an ABox A and is usually assigned a semantics in terms of interpretations
I = (∆I , ·I), where ∆I is a non-empty domain and ·I is the interpretation
function that assigns an element in ∆I to each a ∈ I, a subset of ∆I to each
C ∈ A and a subset of ∆I ×∆I to each R ∈ R.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the KB, written K |= Q. The entailment test may be reduced
to checking the unsatisfiability of a concept in the knowledge base, i.e., the
emptiness of the concept. For example, the entailment of the axiom C v D
may be tested by checking the unsatisfiability of the concept C u ¬D while the
entailment of the axiom a : C may be tested by checking the unsatisfiability of
a : ¬C.

Querying Description Logics KBs

The problem of finding explanations for a query has been investigated by various
authors [16, 8, 6, 9]. It was called axiom pinpointing in [16] and considered as



a non-standard reasoning service useful for tracing derivations and debugging
ontologies. In particular, minimal axiom sets or MinAs for short, also called
explanations, are introduced in [16].

Definition 1 (MinA). Let K be a knowledge base and Q an axiom that follows
from it, i.e., K |= Q. We call a set M ⊆ K a minimal axiom set or MinA for Q
in K if M |= Q and it is minimal w.r.t. set inclusion.

The problem of enumerating all MinAs is called min-a-enum in [16]. All-
MinAs(Q,K) is the set of all MinAs for query Q in the knowledge base K.

The tableau algorithm is able to returns a single MinA. To solve min-a-enum,
reasoners written in imperative languages, like Pellet [17], have to implement a
search strategy in order to explore the entire search space of the possible ex-
planations. A tableau is an ABox represented as a graph G where each node
corresponds to an individual a and is labeled with the set of concepts to which
a belongs. Each edge 〈a, b〉 in the graph is labeled with the set of roles to which
the couple (a, b) belongs. A tableau algorithm proves an axiom by refutation,
starting from a tableau that contains the negation of the axiom and repeatedly
applying a set of consistency preserving tableau expansion rules until a clash
(i.e., a contradiction) is detected or a clash-free graph is found to which no more
rules are applicable. If no clashes are found, the tableau represents a model for
the negation of the query, which is thus not entailed. The Prolog language al-
lows developers of reasoning algorithms to exploit Prolog’s backtracking facilities
instead of implementing a search strategy from scratch.

In [3] the authors consider the problem of finding a pinpointing formula in-
stead of All-MinAs(Q,K). The pinpointing formula is a monotone Boolean
formula in which each Boolean variable corresponds to an axiom of the KB.
This formula is built using the variables and the conjunction and disjunction
connectives. It compactly encodes the set of all MinAs. Let assume that each
axiom E of a KB K is associated with a propositional variable, indicated with
var(E). The set of all propositional variables is indicated with var(K). A valu-
ation ν of a monotone Boolean formula is the set of propositional variables that
are true. For a valuation ν ⊆ var(K), let Kν := {t ∈ K|var(t) ∈ ν}.

Definition 2 (Pinpointing formula). Given a query Q and a KB K, a mono-
tone Boolean formula φ over var(K) is called a pinpointing formula for Q if for
every valuation ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.

In Lemma 2.4 of [3] the authors proved that the set of all MinAs can be ob-
tained by transforming the pinpoiting formula into DNF and removing disjuncts
implying other disjuncts. The example below illustrates axiom pinpointing and
the pinpointing formula.

Example 1 (Pinpointing formula). The following KB is inspired by the ontology
people+pets [12] and show also the Boolean variables associated to axioms:
F1 = ∃hasAnimal.Pet v NatureLover, F2 = (kevin,fluffy) : hasAnimal, F3 =
(kevin, tom) : hasAnimal, F4 = fluffy : Cat, F5 = tom : Cat, F6 = Cat v Pet.
It states that individuals that own an animal which is a pet are nature lovers



and that kevin owns the animals fluffy and tom, which are cats. Moreover, cats
are pets. Let Q = kevin : NatureLover be the query, then All-MinAs(Q,K)
= {{F2, F4, F6, F1}, {F3, F5, F6, F1}}, while the pinpointing formula is ((F2 ∧
F4) ∨ (F3 ∧ F5)) ∧ F6 ∧ F1.

TRILL and TRILLP

Both TRILL and TRILLP implement a tableau algorithm, the first solves min-
a-enum while the second computes the pinpointing formula representing the set
of MinAs. They can answer concept and role membership queries, subsumption
queries and can test the unsatifiability of a concept of the KB or the inconsis-
tency of the entire KB. TRILL and TRILLP are implemented in Prolog, so the
management of the non-determinism of the rules is delegated to the language.

We use the Thea2 library [18] for converting OWL DL KBs into Prolog.
Thea2 performs a direct translation of the OWL axioms into Prolog facts. For
example, a simple subclass axiom between two named classes Cat v Pet is
written using the subClassOf/2 predicate as subClassOf(‘Cat’,‘Pet’).

Deterministic and non-deterministic tableau expansion rules are treated dif-
ferently. Non-deterministic rules are implemented by a predicate that, given the
current tableau Tab, returns the list of tableaux created by the application of the
rule to Tab. Deterministic rules are implemented by a predicate that, given the
current tableau Tab, returns the tableau obtained by the application of the rule
to Tab. The computation of All-MinAs(Q,K) is performed by simply calling
findall/3 over the tableau predicate.

The code of TRILL and TRILLP is available at https://sites.google.

com/a/unife.it/ml/trill. Experiments presented in [19] show that Prolog is
a viable language for implementing DL reasoning algorithms and that their per-
formances are comparable with those of state-of-art reasoners. In order to popu-
larize DISPONTE, we developed a Web application called “TRILL-on-SWISH”
and available at http://trill.lamping.unife.it. We exploited SWISH [10],
a recently proposed Web framework for logic programming that is based on vari-
ous features and packages of SWI-Prolog. TRILL-on-SWISH is based on SWISH
[10] and allows users to write a KB directly in the web page or load it from a
URL, and run TRILL to execute queries.

Computing the Probability

The aim of our work is to implement algorithms which can compute the proba-
bility of queries to KBs following DISPONTE [13]. DISPONTE applies the dis-
tribution semantics [15] of probabilistic logic programming to DLs. A program
following this semantics defines a probability distribution over normal logic pro-
grams called worlds. Then the distribution is extended to a joint distribution
over worlds and queries from which the probability of a query is obtained by
marginalization.



In DISPONTE, a probabilistic knowledge base K contains a set of probabilistic
axioms which take the form p :: E where p is a real number in [0, 1] and E is a
DL axiom. The probability p can be interpreted as an epistemic probability, i.e.,
as the degree of our belief in the truth of axiom E. For example, a probabilistic
concept membership axiom p :: a : C means that we have degree of belief p
in C(a). The idea of DISPONTE is to associate independent Boolean random
variables to the axioms. To obtain a world w we decide whether to include each
axiom or not in w. A world therefore is a non probabilistic KB that can be
assigned a semantics in the usual way. A query is entailed by a world if it is true
in every model of the world.

To compute the probability of queries to KBs following the DISPONTE se-
mantics, we can first perform min-a-enum. Then the explanations must be made
mutually exclusive, so that the probabilities of individual explanations are com-
puted and summed. This can be done by assigning independent Boolean random
variables to the axioms contained in the explanations and define the Disjunc-
tive Normal Form Boolean formula fK which models the set of explanations
K. Thus fK(X) =

∨
Ex∈All-MinAs(Q,K)

∧
Ei∈ExXi where X = {Xi|(Ei) ∈

All-MinAs(Q,K)} is the set of Boolean random variables. TRILLP , instead,
computes directly a pinpointing formula which is a monotone Boolean formula
that represents the set of all MinAs.

Irrespective of which representation of the explanations we choose, a DNF or
a general pinpointing formula, we can apply knowledge compilation and trans-
form it into a Binary Decision Diagram (BDD), from which we can compute the
probability of the query with a dynamic programming algorithm that is linear
in the size of the BDD.

A BDD for a function of Boolean variables is a rooted graph that has one
level for each Boolean variable. A node n in a BDD has two children: one cor-
responding to the 1 value of the variable associated with the level of n, in-
dicated with child1(n), and one corresponding to the 0 value of the variable,
indicated with child0(n). The leaves store either 0 or 1. A BDD performs a
Shannon expansion of the Boolean formula f(X), so that, if X is the vari-
able associated with the root level of a BDD, the formula f(X) can be rep-

resented as f(X) = X ∧ fX(X) ∨ X ∧ fX(X) where fX(X) (fX(X)) is the
formula obtained by f(X) by setting X to 1 (0). Now the two disjuncts are
pairwise exclusive and the probability of f(X) being true can be computed as

P (f(X)) = P (X)P (fX(X))+(1−P (X))P (fX(X)) by knowing the probabilities
of the Boolean variables of being true.

Conclusions

In this paper we have presented the algorithm TRILL for reasoning on SHOIQ
KBs and the algorithm TRILLP for reasoning on ALC KBs.

In the future we plan to apply various optimizations to our systems in order
to better manage the expansion of the tableau. In particular, we plan to carefully
choose the rule and node application order. We are also studying an extension of



our systems for managing KBs integrating rules and DL axioms. Moreover, we
plan to exploit TRILL for implementing algorithms for learning the parameters
of probabilistic DISPONTE KBs, along the lines of [4, 5, 14].

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of knowledge
representation, chap. 3, pp. 135–179. Elsevier (2008)

3. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput.
20(1), 5–34 (2010)

4. Bellodi, E., Riguzzi, F.: Learning the structure of probabilistic logic programs. In:
Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS, vol.
7207, pp. 61–75. Springer (2012)

5. Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams
for probabilistic logic programs. Intel. Data Anal. 17(2), 343–363 (2013)

6. Halaschek-Wiener, C., Kalyanpur, A., Parsia, B.: Extending tableau tracing for
ABox updates. Tech. rep., University of Maryland (2006)

7. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRCPress (2009)

8. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. Ph.D. thesis, The Grad-
uate School of the University of Maryland (2006)

9. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825,
pp. 267–280. Springer (2007)

10. Lager, T., Wielemaker, J.: Pengines: Web logic programming made easy. TPLP
14(4-5), 539–552 (2014), http://dx.doi.org/10.1017/S1471068414000192

11. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Sem. 6(4), 291–308 (2008)

12. Patel-Schneider, P, F., Horrocks, I., Bechhofer, S.: Tutorial on OWL (2003)
13. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic

ontologies. In: Bobillo, F., et al. (eds.) URSW 2012. CEUR Workshop Proceedings,
vol. 900, pp. 3–14. Sun SITE Central Europe (2012)

14. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Learning probabilistic
description logics. In: URSW III. LNCS, vol. 8816, pp. 63–78. Springer (2014)

15. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: ICLP 1995. pp. 715–729. MIT Press (1995)

16. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003. pp.
355–362. Morgan Kaufmann (2003)

17. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

18. Vassiliadis, V., Wielemaker, J., Mungall, C.: Processing OWL2 ontologies using
thea: An application of logic programming. In: OWLED 2009. CEUR Workshop
Proceedings, vol. 529. CEUR-WS.org (2009)

19. Zese, R., Bellodi, E., Lamma, E., Riguzzi, F., Aguiari, F.: Semantics and inference
for probabilistic description logics. In: URSW III. LNCS, vol. 8816, pp. 79–99.
Springer (2014)


