Translation of Instance Data using RDF and
Structured Mapping Definitions

Mehmet Aydar and Austin Melton

Kent State University, Department of Computer Science
{maydar, amelton}@kent.edu
http://www.kent.edu/cs

Abstract. We present a healthcare information interoperability project
in development. The idea behind the system is achieving semantic inter-
operability of different healthcare data models, by enabling translation of
instance data based on structured mapping definitions, and using RDF' as
a common information representation. We have developed a framework
that allows the domain experts to define linkages between different data
elements and utilizes the mappings to translate the data models from one
format to another.

1 Introduction

A healthcare IT environment breeds incredibly complex data ecosystems. Clin-
ical data exist in multiple layers and forms ranging from the heterogeneous of
structured, semi-structured, and unstructured data captured in enterprise-wide
electronic medical record and billing systems, through a wide variety of depart-
mental, study, and lab-based registries and databases. In many cases the data
need to be retrieved from multiple independent sources. Because of the lack of
interoperability between disparate data sources, retrieving data from multiple
sources is extremely time consuming, wasteful and costly.

Interoperability can be achieved by adopting standards and translations be-
tween different standards. There exist many different standards in healthcare,
each having its own uses and advantages. It is unrealistic to have one univer-
sal standard that fits all the use cases. Therefore an efficient way of translation
between different data models is needed. Since each data model can be in a dif-
ferent format, adopting a common information representation model is unavoid-
able for the translation. In this sense, RDF (Resource Description Framework)
[5] is a good choice since it is schemaless and is a commonly accepted informa-
tion representation model by the semantic web community. Translation requires
mappings between the sets of data elements in the different data models. Cap-
turing the mappings between the data models in a structured format enables
auto-generation of the translation code.

2 Translation of Instance Data

Figure 1 illustrates the main components of the translation framework and their
interactions as proposed in this work. The red labels help show how the trans-



2 Translation of Instance Data using RDF and Structured Mapping Definitions

}_

Data Models Capture — —

Data Metadata & Mappings
Models
Database

Data source 1 e

——n

Data source 2 -~

Data source 3
Read

Mappings
for:

Data source N

i

Ul for Metadata & Mappings

o T |
P =H

Convert
to RDF

CSV Output

p — & P

Translation Engine ‘

Fig. 1. Translation of instance data

lation components work together. The metadata for each data source (1) are
captured and saved in the metadata repository or database (2). Further, the
data managers define the linkages (mappings) between the data elements using
a user-friendly interface, and these linkages are also saved in the metadata repos-
itory (3). In preparation for a translation, the defined mappings from the source
data model to the target data model are retrieved (4). The source instance data
are represented or lifted to RDF format (5). Then the translation engine uses
the source RDF data, the target data model metadata, and the mappings from
the source data model to the target data model to translate the source instance
data into target data (6). The translation engine produces the results in a CSV
(comma separated values) file format, and these results are conveyed to the flat-
tened target data model (7). More details about the components are given in
the following sections.

2.1 Metadata Repository & Mapping Tool

For each of the data sources, a data dictionary is captured and stored in a
metadata repository [7]. In our work a data dictionary includes data model
details for classes, attributes, attribute values, and their associations to each
other. As an example, for a relational data model, the metadata consists of tables,
table fields, allowed field value sets for the fields, as well as the relationships
between different metadata elements such as parent-child relationships.

The metadata repository also includes a mapping schema. The goal is to en-
able storing the mappings between different data models in a structured format.



Translation of Instance Data using RDF and Structured Mapping Definitions 3

The mapping schema is designed so that a target field can be mapped to from
multiple candidate source fields that belong to one or more candidate source
data models with field-level priorities, and a value set translation from source
values to target values, and a pre-defined transformation logic from source fields
to the target field. A user-friendly interface is used by the data managers to view
the data dictionaries, manage the term definitions and define mappings between
different data elements. In addition, the interface also has a test module that
lets the data managers write and execute tests to validate their mappings.

2.2 Translation Engine

The flexibility of RDF allows different schemata and models to be converted,
represented and connected via RDF. In this work, the translation engine per-
forms the translation on the RDF representation of the source data elements.
The conversion from a source data format to the RDF representation differs for
each data model, i.e., a different RDF data conversion routine is executed for
each data format. The conversion from source instance data to the RDF rep-
resentation happens on the fly during the translation process; only the specific
source instance data, which is required by the mapping, is converted.

The usage of a metadata repository provides valuable benefits in data inter-
operability. Capturing the mapping knowledge in a structured format provides
connectivity between disparate data elements, and it enables an automatic gen-
eration of the data translation code to some extent. This leads to more trans-
parency in the transformation process; i.e., in case of any data error it helps to
track the source of the problem by checking the documented data mappings.

Data value translation enables the translation of a concept term in one data
code system into an equivalent concept term in another data code system. For
instance, a male gender can be represented with the term “Male” in one system
while it is represented with the term “M” in another system. The associations
in the documented value mappings are used to discover the term conversion
from “Male” to “M”. In many cases a single target data field is mapped to from
more than one source data field. In this case the translation engine needs to
know the priority of the source fields and/or a derivation logic to translate from
multiple source fields. The priorities and the derivation logic can be defined by
the data managers using the mapping interface. The translation engine is then
able to generate the translation code by utilizing the defined priorities and the
derivation logic.

3 Discussion

Healthcare data interoperability requires the necessary tools, an efficient roadmap
and a strong commitment from relevant communities. Several studies have been
suggested for this purpose. For instance, the Yosemite Project [4] suggests an
ambitious roadmap for healthcare information interoperability on a global scale,
by using RDF as a universal information representation and creating a hub for
crowd-sourcing translation rules.



4 Translation of Instance Data using RDF and Structured Mapping Definitions

In this work we presented a framework to achieve interoperability between
different healthcare data models. It tries to alleviate the lack of interoperability
solutions and works fairly well on a small scale. However, our approach may
need improvements for use on a larger scale. In our work, we assumed that
there is already a defined data dictionary in place for each data source. This
assumption may not be correct for all data sources. Also, manually defining
the mappings can also require significant amounts of time due to the size of the
healthcare data. As future work, we plan to work on the following improvements:
(1) Creating OWL ontologies for the source data models along with a mapping
ontology, instead of using a relational schema. (2) Converting the user interface
of the Metadata & Mapping to a web based collaborative interface utilizing
common semantic web tools such as Web-Protege [6]. (3) Having the translation
engine output the translated results into RDF format and then convert them
back to the target data model format as suggested in the Yosemite Project [4].
(4) Auto-generating the data dictionary from the RDF representation of a data
source. (5) Auto-generating mappings between different data models using graph
node similarity metrics and suggesting the auto-generated mappings to the data
managers, utilizing our previous studies [1, 3, 2].

Acknowledgments Our work is implemented in the Cleveland Clinic Cardi-
ology Application Department to support interoperability between legacy data
models. The authors would like to thank the Kent State University Semantic
Web Research Group (SWRG) members, Cleveland Clinic Cardiology Applica-
tion Group members and Semantic Web Health Care and Life Sciences (HCLS)
Interest group members for their helpful feedback.

References

1. Mehmet Aydar, Serkan Ayvaz, and Austin C Melton. Automatic weight generation
and class predicate stability in rdf summary graphs. In Workshop on Intelligent
Ezploration of Semantic Data (IESD2015), co-located with ISW(C2015, 2015.

2. Mehmet Aydar and Austin C Melton. Rinsmatch: a suggestion-based instance
matching system in rdf graphs. In Workshop on Ontology Matching (OM-2015),
co-located with ISWC2015, 2015.

3. Serkan Ayvaz, Mehmet Aydar, and Austin C Melton. Building summary graphs
of rdf data in semantic web. In Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th International. IEEE, 2015.

4. David Booth et al. Yosemite manifesto on rdf as a universal healthcare exchange
language, 2013.

5. Graham Klyne and Jeremy J Carroll. Resource description framework (rdf): Con-
cepts and abstract syntax. 2006.

6. T Tudorache, J Vendetti, and N Noy. Web-protege: A lightweight owl ontology
editor for the web. sdr. Cit. on p, 2008.

7. Wikipedia. Data dictionary — wikipedia, the free encyclopedia, 2015. [Online;
accessed 3-July-2015].



