
SPARQL Aggregate Queries made easy with

Diagrammatic Query Language ViziQuer

Kārlis Čerāns1, Jūlija Ovčiņņikova, Mārtiņš Zviedris

karlis.cerans@lumii.lv, julija.ovcinnikova@lumii.lv, martins.zviedris@lumii.lv
Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, Riga, LV-1459, Latvia

Abstract. We present a novel way to draw SPARQL aggregate queries via
diagrammatic query language – ViziQuer. Since the introduction of SPARQL
different graphical languages have been proposed to make SPARQL more user-
friendly. In SPARQL 1.1 aggregate queries were introduced that are key to
meaningful query formulation. However, diagrammatic query languages lacked
this important end-user feature to make the diagrammatic SPARQL extensions
powerful enough.

Keywords: Visual query creation, SPARQL, RDF, Aggregate queries

1 Introduction

SPARQL [1] is de facto query language for RDF [2] databases. Semantic
RDF/SPARQL technologies offer a higher-level view on data compared to the classical
relational databases (RDB) with SQL query language. Thus, semantic technologies
enable more direct involvement of various domain experts in data set definition,
exploration and analysis. Still, the textual form of SPARQL queries hinders its direct
usage for IT professionals and non-professionals alike.

The diagrammatic query languages introduced to help formulating SPARQL
queries, for instance, an earlier version of ViziQuer [3], or Optique VQS [4], do not
support aggregate query formulation that is available in SPARQL 1.1. In a real-case
scenario [5] it was identified that users could formulate basic SPARQL queries via
graphical notation and that they were satisfied with the diagrammatic solution for very
basic queries. Still they lacked expressive power to calculate different aggregated data.

The demonstration will show creation of aggregate SPARQL queries in the ViziQuer
notation that is the main novelty of this paper. An extended outline of the design of the
visual aggregate queries appears as [6]. This demo and paper present a novel and more
refined SPARQL query generation algorithm that relies on explicit distinctness list
notion for aggregate queries thus allowing correctly capturing a wider range of intuitive
queries within the diagrammatic notation.

1 Supported, in part, by Latvian State Research program NexIT project No.1 “Technologies of

ontologies, semantic web and security”.

2 Basic Query Notation

The visual/diagrammatic query definition is based on the data schema definition as
OWL ontology or RDF Schema. We use the following example mini-University onto-
logy that is presented in Figure 1 in graphical OWLGrEd ontology editor notation [7].

Fig. 1. A mini-University ontology fragment in the OWLGrEd notation (cf. owlgred.lumii.lv)

A query in ViziQuer is a graph of class instance nodes connected with links

corresponding to triples connecting these instances. Each node shows the instance class
name (e.g. Registration, Student in Fig.2), possibly an explicit instance reference (e.g.
R and S), as well as conditions (e.g. mark>=4) and selection instances and attributes
(e.g. R and mark for Registration class). One of the classes in the query is marked as
the main query class (shown as orange round rectangle) while all other classes (shown
as violet rectangles) are called condition classes [8]. The semantics of a basic query is
to find all instance graphs matching the pattern defined by the query and list the
selection instances and/or attributes for each instance graph. The order by, limit and
offset clauses for the query can be marked within the main query class, as well.

There can be affirmative (black solid line), optional (blue/light dashed line) or
negation (red line with stereotype {not}) links within the query. The default
interpretation of optional or negation link is to mark the entire subgraph placed behind
the link (from the viewpoint of main query class) as optional or negated respectively.
A negation link with {condition} stereotype is interpreted as the non-existence of the
respective link between its end instances (the query graph is required to have a spanning
tree consisting of all its non-condition links).

Fig. 2. Basic query examples

Student
studentNam e

personID

AcademicProgram
programName Course

courseName

courseCredits :integerRegistration
mark:integer

Nationality
nCode

includes

course 1

enrolled 1

nationality 0..1

takes

student 1

Registration
R

mark>=4

R

mark

Course
courseCredits>=6

cn=courseName

Student
sn=studentName

Student
S

n=studentName

optional p=personID

For all registrations with mark at least 4 for courses with at least

6 credit points list registration instance URI, as well as

corresponding mark, student name and course name.

PREFIX ont: <http://lumii.lv/ontologies/UnivExample.owl#>

SELECT ?sn ?cn ?R ?mark WHERE {?R ont:student ?Student.

 ?Student a ont:Student. ?Student ont:studentName ?sn.

 ?R ont:course ?Course. ?Course a ont:Course.

 ?Course ont:courseCredits ?courseCredits.

 ?Course ont:courseName ?cn. FILTER (?courseCredits >=6)

 ?R a ont:Registration. ?R ont:mark ?mark. FILTER (?mark >=4)}

Registration
mark>=7

Nationality
nCode

Optional and negated links, optional attributes

SELECT ?nCode ?n ?p WHERE { ?S a ont:Student.

 ?S ont:studentName ?n. OPTIONAL{?S ont:personID ?p.}

 OPTIONAL{?S ont:nationality ?Nationality.

 ?Nationality ont:nCode ?nCode.

 ?Nationality a ont:Nationality.}

 FILTER NOT EXISTS{?Registration ont:student ?S.

 ?Registration a ont:Registration.

 ?Registration ont:mark ?mark. FILTER(?mark >=7)}}

Student
S

S

AcademicProgram
P

Find all students taking all courses in the academic

program they are enrolled in

SELECT ?S WHERE {?S a ont:Student.

 ?P a ont:AcademicProgram. ?S ont:enrolled ?P.

 FILTER NOT EXISTS{ ?C a ont:Course. ?P ont:includes ?C.

 FILTER NOT EXISTS{ ?S ont:takes ?C.}}}
Course

C

student

course

nationality

student {not}

enrolled

takes {not} {condition}

includes {not}

3 Introducing Aggregate Queries

The aggregation options can be included into the queries just by introducing into class
instance attribute lists aggregate expressions where an SPARQL aggregate function
(e.g. count, sum, avg) is applied to a non-aggregated (i.e. plain) attribute expression,
for instance, as in sum(courseCredits) in Fig. 3.

The semantics idea is to compute aggregate values taking as the grouping set all non-
aggregated attributes specified in the query. A direct implementation of this idea would,
however, lead to counterintuitive results since the aggregated instance attribute value
would be included into the aggregation as many times as the instance appears in some
instance graph matching the query. We offer a more refined semantics that we explain
for the case, if all aggregate attributes are placed within single class of the query, we
call it aggregation class. In the case of aggregate attributes in different classes separate
subqueries are to be made for each aggregation class with their results merged (cf. [6]).

The SPARQL query generation follows three steps: (i) the raw query with aggrega-
tion function arguments (plain attributes) instead of aggregate attributes is generated;
(ii) the distinctness list for aggregation computation over the raw query is formed,
consisting of all attributes (both non-aggregated and aggregated ones alike) and
instances of so-called multiplicative classes. The multiplicative class set by default
includes the main query class and the grouping class; the set can be extended by
ascribing the <<all>> stereotype to a class in the query, a class can be excluded from
the set by the <<exists>> stereotype; (iii) the aggregation over the distinctness-list
selection from the raw query is formed by aggregating the aggregation attributes and
grouping on all non-aggregated attributes.

Figure 3 depicts two variants of the natural language query “find all nationalities and
the sum of credit points of courses taken by students of this nationality”. The first query
counts every course once per nationality, while the second one - once per nationality
and student, since the Student class is in the multiplicative class set for the query and
therefore an extra ?S appears in the query distinctness list (leading possibly to counting
credit points of a single course several times per nationality).

Fig. 3. Simple aggregation demonstration

The ViziQuer tool supports also explicit subquery introduction via {group}

stereotype on affirmative and optional links [6], useful both for more involved query
formulation (e.g. “find all courses passed by at least 10 students with mean mark (over
all passed courses) at least 7”) and for merging the results of aggregate queries with
different multiplicative class sets.

Course
C

ss=sum

(courseCredits)

Course
C

ss=sum

(courseCredits)

Nationality
N

nCode

SELECT ?nCode ?ss WHERE{

{SELECT (SUM(?courseCredits) as ?ss) ?nCode WHERE{

 {SELECT DISTINCT ?N ?C ?nCode ?courseCredits WHERE{

 ?N a ont:Nationality. ?N ont:nCode ?nCode. ?S a ont:Student.

 ?S ont:nationality ?N. ?C a ont:Course. ?S ont:takes ?C.

 ?C ont:courseCredits ?courseCredits.}}} GROUP BY ?nCode}}

SELECT ?nCode ?ss WHERE{

{SELECT (SUM(?courseCredits) as ?ss) ?nCode WHERE{

 {SELECT DISTINCT ?N ?C ?S ?nCode ?courseCredits WHERE{

 ?N a ont:Nationality. ?N ont:nCode ?nCode. ?S a ont:Student.

 ?S ont:nationality ?N. ?C a ont:Course. ?S ont:takes ?C.

 ?C ont:courseCredits ?courseCredits.}}} GROUP BY ?nCode}}

Nationality
N

nCode

<<all>>

Student
S

Student
S takes

nationality

nationality

takes

4 Discussion and Conclusions

The demonstrated ViziQuer tool is freely available online at viziquer.lumii.lv and the
users are welcome to download it, import their ontologies/RDF schemas and start
creating visually their own SPARQL queries. The introduced notation raises a hope of
introducing a wider range of specialists to direct use of RDF/SPARQL-organized data
as the ViziQuer tool will assist in creating complex statistical queries (the need for ini-
tial user training is foreseen). The potential usage scenarios for the ViziQuer tool invol-
ve both exploring SPARQL endpoints [3] and re-engineering relational databases [9].

There is an important practical query pattern “find all x with their related most
common y” (e.g. find all courses with the most often received marks in them) that can
be expressed in a slightly extended diagrammatical query notation, still queries of this
kind cannot be naturally expressed in SPARQL. A practical workaround to this problem
would be either to re-formulate such queries to return larger result sets from which the
needed results can be obtained e.g. in a spreadsheet, or to translate visual queries
directly into SQL, if there is a relational database behind the SPARQL endpoint.

The use cases have also shown the possibility of attribute expression creation and
translation. Still, the standard SPARQL functions [1] appear insufficient for practical
queries e.g. concerning duration calculation. Notably, the Virtuoso RDF data store [10]
supports the extensions allowing the necessary date and interval value handling.

References

1. SPARQL 1.1 Overview. W3C Recommendation 21 March 2013 [WWW]
http://www.w3.org/TR/sparql11-overview/

2. Resource Description Framework (RDF), http://www.w3.org/RDF/
3. Zviedris, M.; Barzdins, G.: ViziQuer: A Tool to Explore and Query SPARQL Endpoints.

In: The Semantic Web: Research and Applications, LNCS, 2011, Volume 6644/2011, pp.
441-445

4. Soylu, A.; Giese, M.; Jiménez-Ruiz, E.; Kharlamov, E.; Zheleznyakov, D.; Horrocks, I.:
OptiqueVQS: Towards an Ontology based Visual Query System for Big Data. In: MEDES.
2013.

5. Barzdins, G.; Liepins, E.; Veilande M.; Zviedris M.: Semantic Latvia Approach in the
Medical Domain. In Proc. of 8th International Baltic Conference on Databases and
Information Systems. H.M.Haav, A.Kalja (eds.), TUT Press, pp. 89-102. (2008).

6. Cerans, K.; Ovcinnikova, J.; Zviedris, M.: Towards Graphical Query Notation for Semantic
Databases. In Proc. of BIR’2015, LNBIP, Springer 2015, vol. 229.

7. Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, A.: UML Style Graphical Notation and Editor
for OWL 2. In Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, p. 102-113.

8. Zviedris, M.; Liepins, R.: Readability of a diagrammatic query language. In VL/HCC 2014
IEEE Symposium on, S. 227–228. IEEE, 2014.

9. Cerans, K.; Barzdins, G.; Bumans, G.; Ovcinnikova, J.; Rikacovs, S.; Romane, A.; Zviedris,
M.: A Relational Database Semantic Re-Engineering Technology and Tools. In Baltic
Journal of Modern Computing (BJMC), Vol. 3 (2014), No. 3, pp. 183-198.

10. Blakeley, C.: RDF Views of SQL Data (Declarative SQL Schema to RDF Mapping),
OpenLink Software, 2007.

