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Abstract. We present a novel way to draw SPARQL aggregate queries via 
diagrammatic query language – ViziQuer. Since the introduction of SPARQL 
different graphical languages have been proposed to make SPARQL more user-
friendly. In SPARQL 1.1 aggregate queries were introduced that are key to 
meaningful query formulation. However, diagrammatic query languages lacked 
this important end-user feature to make the diagrammatic SPARQL extensions 
powerful enough.  
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1 Introduction 

SPARQL [1] is de facto query language for RDF [2] databases. Semantic 
RDF/SPARQL technologies offer a higher-level view on data compared to the classical 
relational databases (RDB) with SQL query language. Thus, semantic technologies 
enable more direct involvement of various domain experts in data set definition, 
exploration and analysis. Still, the textual form of SPARQL queries hinders its direct 
usage for IT professionals and non-professionals alike.  

The diagrammatic query languages introduced to help formulating SPARQL 
queries, for instance, an earlier version of ViziQuer [3], or Optique VQS [4], do not 
support aggregate query formulation that is available in SPARQL 1.1. In a real-case 
scenario [5] it was identified that users could formulate basic SPARQL queries via 
graphical notation and that they were satisfied with the diagrammatic solution for very 
basic queries. Still they lacked expressive power to calculate different aggregated data. 

The demonstration will show creation of aggregate SPARQL queries in the ViziQuer 
notation that is the main novelty of this paper. An extended outline of the design of the 
visual aggregate queries appears as [6]. This demo and paper present a novel and more 
refined SPARQL query generation algorithm that relies on explicit distinctness list 
notion for aggregate queries thus allowing correctly capturing a wider range of intuitive 
queries within the diagrammatic notation. 
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2 Basic Query Notation 

The visual/diagrammatic query definition is based on the data schema definition as 
OWL ontology or RDF Schema. We use the following example mini-University onto-
logy that is presented in Figure 1 in graphical OWLGrEd ontology editor notation [7]. 

 
Fig. 1. A mini-University ontology fragment in the OWLGrEd notation (cf. owlgred.lumii.lv) 

 
A query in ViziQuer is a graph of class instance nodes connected with links 

corresponding to triples connecting these instances. Each node shows the instance class 
name (e.g. Registration, Student in Fig.2), possibly an explicit instance reference (e.g. 
R and S), as well as conditions (e.g. mark>=4) and selection instances and attributes 
(e.g. R and mark for Registration class). One of the classes in the query is marked as 
the main query class (shown as orange round rectangle) while all other classes (shown 
as violet rectangles) are called condition classes [8]. The semantics of a basic query is 
to find all instance graphs matching the pattern defined by the query and list the 
selection instances and/or attributes for each instance graph. The order by, limit and 
offset clauses for the query can be marked within the main query class, as well. 

There can be affirmative (black solid line), optional (blue/light dashed line) or 
negation (red line with stereotype {not}) links within the query. The default 
interpretation of optional or negation link is to mark the entire subgraph placed behind 
the link (from the viewpoint of main query class) as optional or negated respectively. 
A negation link with {condition} stereotype is interpreted as the non-existence of the 
respective link between its end instances (the query graph is required to have a spanning 
tree consisting of all its non-condition links). 

 
Fig. 2. Basic query examples 
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PREFIX ont: <http://lumii.lv/ontologies/UnivExample.owl#>

SELECT ?sn ?cn ?R ?mark WHERE {?R ont:student ?Student. 

  ?Student a ont:Student. ?Student ont:studentName ?sn.

  ?R ont:course ?Course. ?Course a ont:Course. 

  ?Course ont:courseCredits ?courseCredits. 

  ?Course ont:courseName ?cn. FILTER (?courseCredits >=6)
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SELECT ?nCode ?n ?p WHERE { ?S a ont:Student. 

  ?S ont:studentName ?n. OPTIONAL{?S ont:personID ?p.}

  OPTIONAL{?S ont:nationality ?Nationality.

    ?Nationality ont:nCode ?nCode. 

    ?Nationality a ont:Nationality.}

  FILTER NOT EXISTS{?Registration ont:student ?S.
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SELECT ?S WHERE {?S a ont:Student.
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3 Introducing Aggregate Queries 

The aggregation options can be included into the queries just by introducing into class 
instance attribute lists aggregate expressions where an SPARQL aggregate function 
(e.g. count, sum, avg) is applied to a non-aggregated (i.e. plain) attribute expression, 
for instance, as in sum(courseCredits) in Fig. 3. 

The semantics idea is to compute aggregate values taking as the grouping set all non-
aggregated attributes specified in the query. A direct implementation of this idea would, 
however, lead to counterintuitive results since the aggregated instance attribute value 
would be included into the aggregation as many times as the instance appears in some 
instance graph matching the query. We offer a more refined semantics that we explain 
for the case, if all aggregate attributes are placed within single class of the query, we 
call it aggregation class. In the case of aggregate attributes in different classes separate 
subqueries are to be made for each aggregation class with their results merged (cf. [6]).  

The SPARQL query generation follows three steps: (i) the raw query with aggrega-
tion function arguments (plain attributes) instead of aggregate attributes is generated; 
(ii) the distinctness list for aggregation computation over the raw query is formed, 
consisting of all attributes (both non-aggregated and aggregated ones alike) and 
instances of so-called multiplicative classes. The multiplicative class set by default 
includes the main query class and the grouping class; the set can be extended by 
ascribing the <<all>> stereotype to a class in the query, a class can be excluded from 
the set by the <<exists>> stereotype; (iii) the aggregation over the distinctness-list 
selection from the raw query is formed by aggregating the aggregation attributes and 
grouping on all non-aggregated attributes. 

Figure 3 depicts two variants of the natural language query “find all nationalities and 
the sum of credit points of courses taken by students of this nationality”. The first query 
counts every course once per nationality, while the second one - once per nationality 
and student, since the Student class is in the multiplicative class set for the query and 
therefore an extra ?S appears in the query distinctness list (leading possibly to counting 
credit points of a single course several times per nationality).  

 
Fig. 3. Simple aggregation demonstration 

 
The ViziQuer tool supports also explicit subquery introduction via {group} 

stereotype on affirmative and optional links [6], useful both for more involved query 
formulation (e.g. “find all courses passed by at least 10 students with mean mark (over 
all passed courses) at least 7”) and for merging the results of aggregate queries with 
different multiplicative class sets. 
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4 Discussion and Conclusions 

The demonstrated ViziQuer tool is freely available online at viziquer.lumii.lv and the 
users are welcome to download it, import their ontologies/RDF schemas and start 
creating visually their own SPARQL queries. The introduced notation raises a hope of 
introducing a wider range of specialists to direct use of RDF/SPARQL-organized data 
as the ViziQuer tool will assist in creating complex statistical queries (the need for ini-
tial user training is foreseen). The potential usage scenarios for the ViziQuer tool invol-
ve both exploring SPARQL endpoints [3] and re-engineering relational databases [9]. 

There is an important practical query pattern “find all x with their related most 
common y” (e.g. find all courses with the most often received marks in them) that can 
be expressed in a slightly extended diagrammatical query notation, still queries of this 
kind cannot be naturally expressed in SPARQL. A practical workaround to this problem 
would be either to re-formulate such queries to return larger result sets from which the 
needed results can be obtained e.g. in a spreadsheet, or to translate visual queries 
directly into SQL, if there is a relational database behind the SPARQL endpoint.  

The use cases have also shown the possibility of attribute expression creation and 
translation. Still, the standard SPARQL functions [1] appear insufficient for practical 
queries e.g. concerning duration calculation. Notably, the Virtuoso RDF data store [10] 
supports the extensions allowing the necessary date and interval value handling. 
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