Scaling Out Sound and Complete Reasoning for
Conjunctive Queries on OWL Knowledge Bases

Sambhawa Priya

Department of Computer Science and Engineering, Lehigh University
19 Memorial Drive West, Bethlehem, PA 18015, USA
sps210@lehigh.edu

Abstract. One of the challenges the Semantic Web community is fac-
ing today is the issue of scalable reasoning that can generate responsive
results to complicated queries over large-scale OWL knowledge bases.
Current large-scale semantic web systems scale to billions of triples but
many such systems perform no reasoning or rely on materialization. On
the other hand, most state-of-the-art, sound and complete DL reason-
ers are main memory-based and fail when given ontologies that include
enormous data graphs in addition to expressive axioms. Thus, until now,
reasoning has been restricted to either limited expressivity or limited size
of the data. The focus of this thesis is to develop a scalable framework
to perform sound and complete reasoning on large and expressive data
graphs for answering conjunctive queries over a cluster of commodity ma-
chines. In order to achieve our goal, we outline our approach to address
the following challenges: partitioning large and expressive datasets across
the cluster for distributed reasoning, and allocating reasoning and query-
execution tasks involved in processing conjunctive queries to nodes of the
cluster. We include evaluation results for our preliminary framework.

Keywords: distributed reasoning, partitioning, conjunctive queries, scal-
able framework

1 Problem Statement

Objective of the Research: This thesis focuses on how to scale out sound
and complete reasoning for answering conjunctive queries over real-world ontolo-
gies with increasingly large data graphs over commodity clusters. Our goal is to
design a framework that can scale to clusters of commodity machines for an-
swering complex queries over large-scale knowledge bases characterized by small
but expressive TBox and very large ABox. In order to reach this objective, we
plan to address the following research questions: How to partition expressive
datasets across the cluster such that traditional DL reasoners can answer sub-
problems independently at each partition? How to recombine these results to get
sound and complete answers? How to co-locate partitions to reduce communica-
tion overheads? How to allocate reasoning and query-execution tasks involved in
processing conjunctive queries to different nodes of the cluster? Note, we restrict



our application to handle queries about instances (i.e. ABox queries ) and not
the classes and properties (i.e. TBox queries) in the ontology.

Motivation and Relevance: A framework that allows reasoning for answer-
ing queries over large linked datasets can be a useful tool for finding insights
from large graphs of data coming from diverse sources such as medicine and
health-care, finance, social networks, government and the Internet of Things.
Our proposed system can allow users to quickly answer questions of interest
without creating application specific code or performing domain specific graph
analyses.

Challenges and Opportunities: The main challenges we want to be able to
address are as follows:

a) Partitioning large, highly networked and expressive datasets across the clus-
ter for distributed reasoning to answer conjunctive queries: The partitioning
approach [1] we used in our preliminary implementation [2] works only for
SHIF DL. This approach might be limited by power law and, in case of
highly networked data, might generate very large partitions. The challenge
is to extend the expressivity of the approach and generalize it to handle very
expressive, highly networked and complex datasets.

b) Assigning the data-partitions and query-execution tasks to the nodes in the
cluster such that the reasoning and query-execution tasks involved in pro-
cessing the conjunctive queries are efficiently performed: Most existing works
[3, 6] on scalable and distributed processing of conjunctive queries do not take
reasoning into account or rely on materialization. On the other hand, exist-
ing works on parallel implementation of backward-chaining reasoning [7] do
not address the challenge of computing conjunctive queries that involve DL
reasoning. We want to address a combination of both of these issues in a
scalable manner.

2 Proposed Approach

In order to address the challenges listed above, our proposed approach is as fol-
lows: Adopting a divide-and-conquer approach, we plan to explore partitioning
of large and expressive datasets so that reasoning can be performed on subsets of
data in a distributed environment where CPUs and memory of many commodity
machines are harnessed. We plan to devise strategies to select partitions relevant
to a query which, not only takes into account the property or the constant terms
appearing in the query, but also incorporates the reasoning involved in answer-
ing that query. We plan to explore techniques to allocate the data partitions
to nodes such that the load is evenly balanced across the cluster and the cost
of communicating intermediate query results between the nodes is minimized.
Time taken to perform expressive reasoning over semantic web datasets can be
vulnerable to the order in which the query clauses are evaluated. In order to ad-
dress this, we propose to implement and evaluate techniques for reasoning-aware
query planning and develop strategies for allocating subqueries to compute nodes
to perform distributed reasoning for answering conjunctive queries efficiently.



Related Work: A few authors [4, 5] have proposed approach for partitioning
large OWL TBox based on the structure of class hierarchy and dependencies be-
tween the TBox elements. However, our focus is on such knowledge bases where
the TBox is small enough to be replicated on each compute node of the cluster
but the ABox is very large and requires partitioning across the cluster for scal-
able reasoning. Most of the previous work on parallel and distributed reasoning
on semantic web datasets has been limited to forward chaining for less expres-
sive logic such as RDFS, while our focus is on performing backward-chaining
reasoning on rich description logics, beginning with SHIF and pushing towards
achieving a distributed system for SHROIQ. Oren et al. [8] combine parallel
hardware with distributed algorithms to implement a system called MARVIN
for scalable RDFS reasoning. Weaver et al. [9] derive an ‘embarrassingly paral-
lel” algorithm for materializing complete RDFS closure using C/MPI. WebPIE
[10] has been used to compute the transitive closure of up to 100 billion triples,
using the OWL Horst fragment (which is less expressive than SHIF'). Allegro-
Graph reports that a prerelease has been tested on up to 1 trillion triples [12],
but the reasoning is limited to little more than RDFS (subsumption, domain,
range) plus inverses, sameAs, and transitivity. One of the few known systems to
perform backward chaining (in combination with materialization) is QueryPIE
[7], a parallel engine for OWL Horst reasoning that has scaled to 1 billion triples
using an 8 machine cluster. However, they show query evaluation for only single
pattern queries, not conjunctive queries. Triple stores [13,14] build specialized
indices and apply many join optimization techniques to improve processing of
conjunctive queries expressed in SPARQL. Gurajada et. al. [6] developed a dis-
tributed triple store with novel join-ahead pruning technique for the distributed
processing of SPARQL queries. However, none of these triple stores perform any
reasoning. Mutharaju et. al. [11] present an approach for distributed reasoning
for OWL 2 EL ontologies where the main reasoning task is classification where as
our focus is on distributing DL reasoning for conjunctive queries where finding
all the answers to a conjunctive query is the primary reasoning task.

3 Implementation of the Proposed Approach

Partitioning of large and expressive datasets: In our preliminary work [2],
we utilize a partitioning technique for OWL Lite datasets proposed by Guo and
Heflin [1]. Since this technique is restricted to SHIF DL, we plan to explore
how this partitioning technique can be extended to SHOIN and SHROIQ.
One idea is to use theory approximation [15] to create a SHIF approximation of
a more expressive set of axioms. In particular, if this approximation is a lower-
bound on the models of the original theory, then any logical consequences of
the original theory will also be logical consequences of the approximation. In-
troducing such approximations may lead to unsoundness resulting in partitions
that will include triples that do not need to be grouped together, resulting in
larger than needed partitions. However, since sound and complete reasoners are
used to perform reasoning over each partition, the inferred knowledge will still



be sound and complete. We will evaluate using datasets of different sizes and
expressivity to determine the limitations of the approximation approach. The
approach described in [1] may be limited by power law which is characteristic
of real-world, large and networked data. We plan to analyze the partitionability
of such datasets, taken from Linked Data and synthetic data sources to investi-
gate the limitations of the technique and adapt it to handle such arbitrary data
graphs. In [1], after the ontology axioms have been analyzed, assertional triples
that have common subjects or objects and interrelated predicates are placed in
a common partition. This implies that it is possible to scale-out partitioning by
creating a MapReduce version of the algorithm where the key is generated from
the triple’s subject and/or object and predicate.

Distributing data partitions across the cluster: The data-partitions can
be distributed across the cluster during the query execution time or prior to all
queries. For query-time distribution, we can select partitions relevant to a given
query and distribute them among the compute nodes that results in even load
balancing and minimized cost of transferring intermediate join-results. We can
sequentially load partitions on compute nodes using multiple threads to even
out the disk-access cost. Query-time distribution can be ineflicient when dealing
with multiple concurrent queries. However, in our first implementation, we will
implement a framework to handle only one query at a time, and later adapt it
to support multiple concurrent queries. We can also distribute data partitions
across the cluster prior to all queries. The fundamental question here is how
to determine the best data allocation for a mix of unknown queries. We want
to explore whether we can can use heuristics to create a reasonable allocation
for a query mix that fits certain basic assumptions. For example, we know that
partitions containing the same predicate are more likely to be relevant to the
same query triple pattern and, hence, should be spread across nodes in order to
maximize their utilization. When processing a query, we can identify if the load
is unbalanced and depending upon the query-processing task allocation on the
nodes, we can determine if shuffling a subset of partitions between certain nodes
can achieve a better load balance.

Reasoning-aware query planning for distributed query execution: The
order of query clause evaluation is critical to the query response time. Processing
selective query triple patterns and joins early can reduce the volume of intermedi-
ate results and can reduce the query processing time. Typical query optimization
algorithms use statistics about the data such as the number of triples matching
a given predicate, the number of distinct subjects/objects for each predicate, the
distribution of these values using histograms, and statistics on the joined triple
patterns [16]. However traditional SPARQL query optimization does not con-
sider that reasoning can produce results with significantly different cardinalities
than those estimated from the raw data. We plan to compute reasoning statistics
as part of data partitioning process. In the long term, heuristics from previous
queries can be cached and used for query planning when statistics fall short. For
executing these query plans on the cluster, we need to allocate the query plan
components to different nodes such that the reasoning and join-execution tasks



can be efficiently performed over the cluster. We plan to implement a master-
slave architecture where the master will create a reasoning-aware logical query
plan and a corresponding physical query plan to map the data and query tasks
to different slaves; and slaves nodes will process their respective physical query
plans concurrently, interleaving sound and complete reasoning for triple patterns
with distributed join processing using a message-passing protocol. We plan to
study the impact of our distributed query-answering framework on query perfor-
mance using different query patterns involving complex reasoning on large scale
real-world and synthetic datasets.

Current Implementation: We developed a preliminary framework [2] for par-
allel reasoning on partitioned dataset where we first partition the knowledge
base using the strategy developed by Guo and Heflin [1] and then the execute
reasoning tasks on data-partitions in parallel on independent machines. We im-
plemented a master-slave architecture that distributes an input query (expressed
in SPARQL query language) to the slave processes on different machines. All
slaves run in parallel, each performing sound and complete reasoning using a
tableau-based reasoner (Pellet) to execute each subgoal of the given conjunctive
query on its assigned set of partitions. As a final step, the master joins the re-
sults computed by the slaves. We use an off-the-shelf database to store the results
of query subgoals and to perform the final join on the results of the conjuncts.
However, we have identified a few drawbacks in our preliminary framework: each
compute node performs reasoning on every partition assigned to it, irrespective
of the partition’s relevance to the subgoal; and the relational database becomes
a bottleneck while inserting and joining large intermediate results. As described
in the previous section, we plan to implement an improved architecture, which,
for a given query, generates reasoning-aware query plan and distributes relevant
data partitions and query processing tasks across the cluster. We plan to imple-
ment our own distributed join-processing framework that will utilize a message
passing protocol.

4 Empirical Evaluation Methodology

General Strategy: We plan to evaluate both a) the partitioning strategies for
large and expressive datasets with different connectivity patterns, and b) the
performance of our distributed reasoning framework. We will vary the size of
the data, the size of the query (i.e., the number of query triple patterns), the
number of compute nodes, the partitioning approach, and query optimization
strategies for distributed query processing.

Hypotheses:

1. Applying theory approximation to more expressive set of axioms, as dis-
cussed in Section 3, will result in coarser ABox partitions but will preserve
independence of resulting partitions.

2. Loosely connected datasets with weak axioms will produce a large number of
smaller partitions. Vice versa for highly connected datasets with rich axioms.



3. It is possible to scale-out the partitioning technique by exploiting the MapRe-
duce version of the algorithm where the key of each triple is generated from
it’s predicate, subject and/or object.

4. There exist data distribution strategies that can improve average query per-
formance on an unknown mixes of queries while making minimal assumptions
about those query.

5. Selectivity statistics about query triple patterns and their joins can be com-
puted during the partitioning process without materialization of all triples
and these statistics can be utilized to construct more efficient query plans.

6. Our distributed reasoning framework will perform better with rich queries
involving complex reasoning and more number of join triple-patterns than
the queries involving weak axioms and fewer triple patterns.

In table 1, we list the metrics and the datsets that we plan to use in our
evaluation. Since there is a dearth of synthetic and real-world datasets that have
large-scale data graph with very expressive DL axioms and realistic queries that
can be used for testing our framework, we would like to explore the creation
of synthetic datasets with tunable expressivity and queries with wide range of
properties with respect to number of conjuncts, selectivity and diameter of the
query graph. We would also like to augment some real world datasets with hand-
crafted DL axioms to test our framework.

Table 1. Metrics and Datasets

Metrics

With respect to partitioning:
partitioning time, the total number of partitions, the size of resulting partitions
(minimum, median, mean, maximum), and the standard deviation of partition size.
With respect to distributed reasoning:
query response time, utilization of compute nodes, amount of communication.
Datasets
Synthetic Datasets:
Lehigh University Benchmark (LUBM)[17], University Benchmark (UOBM) [18]
Real-world datasets and ontologies:
DBPedia, Yago, Barton, DBLP, LinkedMDB, and Linked Life Data,
Billion Triple Challenge datasets.

Preliminary Evaluation Results and Lessons Learned: In our prelim-
inary framework [2], we conducted the experiments on LUBM data (LUBM-50,
LUBM-100 and LUBM-200) to evaluate performance of the partitioner and found
that the partitioning system scales well. It was possible to create very small par-
titions (for LUBM-200 with 27.6M triples, the largest partition had fewer than
6800 triples). Our experiments on the preliminary parallel reasoning framework
using up to 32 nodes demonstrates significant parallelism, with 32 nodes being
3.5x faster than 8 nodes (see figure 1). The speedups fall short of embarrassing
parallelism, mostly due to the setup cost (time spent distributing the query to



the slaves) and performing join to get the final answers. More details on this
evaluation can be found in [2].

—+— LUBM-50 e

Fig. 1. Speed up for LUBM-50, LUBM-100 and LUBM-200 on 8, 16 and 32 processes.

5 Open Issues and Future Directions

Most existing scalable systems for processing conjunctive queries do not take
reasoning into account. On the other hand, existing works on scalable reason-
ing are limited to forward chaining or reasoning on less expressive logic and
do not handle conjunctive queries involving DL reasoning. In this thesis, we
address both the issues by proposing a scalable and distributed framework for
performing sound and complete reasoning for answering conjunctive queries over
increasingly large data graphs involving expressive DL axioms. We plan to ad-
dress the following core open issues in the future: a) partitioning large, highly
networked and expressive datasets across the cluster for distributed reasoning, b)
determining the best data allocation strategy for a mix of unknown queries such
that load is evenly balanced and communication cost is minimized across the
cluster, and c) assigning reasoning-aware query-plan components to the nodes
for efficient processing of the reasoning and query-execution tasks involved in
processing the conjunctive queries.
Stage of doctoral work: Middle.

Acknowledgement: I would like to thank Prof. Jeff Heflin (adviser) and
Prof. Michael Spear (co-adviser) for their valuable comments on this paper.

References
1. Y. Guo and J. Heflin . A Scalable Approach for Partitioning OWL Knowledge Bases.

In Proc. of the 2nd International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS2006). Athens, Georgia. 2006.



2. S. Priya, Y. Guo, M. Spear, and J. Heflin. Partitioning OWL Knowledge Bases for
Parallel Reasoning. In Eighth IEEE International Conference on Semantic Comput-
ing (ICSC 2014), Newport Beach, CA, 2014.

3. J. Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL Querying of Large
RDF Graphs. In Proceedings of Conference on VLDB. 4(11):1123-1134. 2011.

4. H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept hi-
erarchies. In Proc. 3rd International Semantic Web Conference, Hiroshima, Japan,
November 7-11, 2004.

5. A. Schlicht and H. Stuckenschmidt. A Flexible Partitioning Tool for Large On-
tologies. In Proc. of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (Sydney, Australia, December 9-12,
2008). IEEE Computer Society 482-488.

6. S. Gurajada, S. Seufert, I. Miliaraki and M. Theobald: TriAD: A Distributed Shared-
Nothing RDF Engine based on Asynchronous Message Passing, Proceedings of the
2014 ACM International Conference on Management of Data (SIGMOD 2014),
Snowbird, UT, USA, 2014.

7. J. Urbani, F. van Harmelen, S. Schlobach, H. E. Bal: QueryPIE: Backward Reason-
ing for OWL Horst over Very Large Knowledge Bases. International Semantic Web
Conference (1) 2011: 730-745

8. E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. Teije, and F. van Harmelen.
MARVIN: A platform for large scale analysis of Semantic Web data, In: Proceedings
of the WebSci’09: Society On-Line, 18-20 March 2009, Athens, Greece.

9. J. Weaver and J. Hendler. Parallel materialization of the finite RDFS closure for
hundreds of millions of triples, In Proceedings of the ISWC ’09, 2009.

10. J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen and Henri Bal. OWL rea-
soning with WebPIE: calculating the closure of 100 billion triples, Journal of Web
Semantics, Vol 10, 2012.

11. R. Mutharaju, P. Hitzler, P. Mateti, and F. Lcu. Distributed and Scalable OWL
EL Reasoning. In Proceedings of the 12th Extended Semantic Web Conference,
Portoroz, Slovenia, To Appear, 2015.

12. Franz Inc. AllegroGraph RDFStore Benchmark Results, 2014.
http://franz.com/agraph/allegrograph/agraph benchmarks.lhtml.

13. T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF Graphs.
In Ugur C etintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul,
editors, SIGMOD Conference, pages 627640. ACM, 2009.

14. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A Federated Repository
for Querying Graph Structured Data from the Web. In ISWC/ASWC 07, Proceed-
ings of the 6th international The semantic web and 2nd Asian conference on Asian
semantic web conference, LNCS, volume 4825, pages 211224. Springer, 2007.

15. B. Selman and H. Kautz. Knowledge Compilation Using Horn Approximations. In
Proceedings of Ninth National Conference on Artificial Intelligence (AAAT 1991),
1991, 904-909.

16. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL basic
graph pattern optimization using selectivity estimation. In Proceedings of the 17th
International Conference on World Wide Web, WWW 2008, Beijing, China, April
21-25, 2008, pages 595604. ACM, 2008.

17. Y.Guo and Z.Pan and J.Heflin. LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics, 3(2), 158-182, 2005.

18. L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan and S. Liu. Towards a complete OWL on-
tology benchmark. In Proceedings of the 3rd European conference on The Semantic
Web (ESWC’06), pages 125-139, Springer, 2006.



