
Specifying Functional Programs with Intuitionistic First

Order Logic

Marcin Benke

Institute of Informatics, University of Warsaw⋆

Abstract. We propose a method of specifying functional programs (in a subset

of Haskell) using intuitionistic first order logic, that works well for inductive

datatypes, higher-order functions and parametric polymorphism.

1 Introduction

Will we ever know the answer to all questions? Can one enter the same river twice?

These and similar questions have been asked again and again since classical times and

even long before that. Yet, ironically, the classical logic views the world as fixed and

cognizable. A model of classical logic is a static structure with complete information

about the relations between its elements. Such is the outlook that justifies the infamous

tertium non datur: p ∨ ¬p.

Software development is one of the disciplines, where one is recurringly, and often

painfully reminded that such outlook is not only idealized, but often naïve: there is no

one static world, but a multiverse of branching and merging worlds.; not only are we far

from having all answers, they are rarely final even when we have them. Indeed there is

a lot of bitter truth to the adage that the only constant is change.

Intuitionistic logic offers an attractive option for modelling a world of constant

change and incomplete information. A Kripke model consists of a multitude of worlds,

connected by an ordering relation. This relation may be time (earlier and later state

of the world), but not necessarily so; nor need this order be linear; commit graph in a

version control system gives a decent approximation, though we can and sometimes do

consider models with infinite number of worlds as well.

One of the selling points of functional programming is its potential for easier and

better specification and verification. While this potential is indisputable, the tools and

methods to realise it are still lacking (see e.g. [1]).

Most approaches use either first order classical logic (e.g. [2, 6]) or higher-order

logic (e.g. [4]). In this paper we propose a method of specifying Haskell programs

using intuitionistic first order logic, that works well for inductive datatypes, higher-

order functions and parametric polymorphism.

⋆ This work has been supported by Polish NCN grant NCN 2012/07/B/ST6/01532.

58

2 The Logic

2.1 Core Logic

Our logic is essentially a variant of λP from [5] extended with constructs for existential

quantifiers, alternative, conjunction and falsity. There are no separate constructs for

implication or negation, as these can be easily encoded.

Γ ::= {} | Γ, (x : φ) | Γ, (α : κ)
κ ::= ∗ | (Πx : φ)κ
φ ::= α | (∀x : φ)φ | φM | (∃x : φ)φ | φ ∧ φ | φ ∨ φ | ⊥
M ::= x | (λx : φ.M) | (M1M2) | [M1, M2]∃x:φ.φ |

abstract 〈x : φ1, y : φ2〉=M1 in M2 | 〈M1, M2〉φ1∧φ2
|

π1M | π2M | in1,φ1∨φ2
M | in2,φ1∨φ2

M |
case M1 in (left x : φ1.M2)(right y : φ2.M3)
εφ(M)

2.2 Notation and Extensions

Additional connectives

a → b ≡ ∀:a.b

a ↔ b ≡ a → b ∧ b → a

¬a ≡ a → ⊥

A Universe of values V : ⋆ is assumed. Quantifiers usually range over this universe,

hence

∀x.φ ≡ ∀x : V.φ

Axiom schemas of the form

schema name(P:kind) : formula

are to be understood as a finite set of formulas: one for every predicate symbol of the

appropriate kind in the signature.

Proof sketches are rendered in a Mizar-like notation (cf. e.g. [3, 8, 7])

Haskell code is written using so called “Bird-tracks”, e.g.

> id :: a -> a

> id x = x

Note The approach described in this document is “untyped” in the sense that we don’t

use Haskell type declarations, but derive our own types. Hence we might call our ap-

proach “owntyped” (there is also a strong connection with refinement types). On the

other hand, we still use data type declaration as a source of useful information.

59

3 Datatypes

In this section we illustrate our method on some example Haskell datatypes and func-

tions, starting with the simplest ones and progrsssing towards more complex ones.

3.1 Bool

> data Bool = False | True

We can characterize Bool by the following axiom

axiom defBool : ∀ x. Bool(x) ↔ x=False ∨ x=True

or by an axiom schema

schema elimBool(P):

(P(False) ∧ P(True)) → ∀ x. Bool(x) → P(x)

Now consider the following definition

bnot False = True

bnot True = False

This definition can be characterized as follows

axiom defBnot : bnot False = True ∧ bnot True = False

Now let’s prove that not takes Bool to Bool (in Mizar-like notation):

theorem typeBnot : ∀ x.Bool(x) → Bool(bnot x)

proof

consider x st Bool(x)

then x = False ∨ x = True by defBool

thus thesis by cases

suppose x = False

then bnot x = True

then thesis

suppose x = True

then bnot x = False

thus thesis

end

An alternative proof of typeBnot, using elimBool

theorem typeBnot : ∀ x.Bool(x) → Bool(bnot x)

proof

consider x st Bool(x)

Bool(True) ∧ Bool(False) by defBool

then Bool(bnot False) ∧ Bool(bnot True) by defBnot

let P(x) = Bool(bnot x)

thus thesis by elimBool(P)

end

60

This seems like an overkill and can probably be proved automatically. However,

note that our statement is substantially stronger than a simple type assertion: it also

states that bnot terminates for all inputs. Now, what about a function that doesn’t?

Consider

bad True = True

bad False = bad False

In Haskell, bad :: Bool -> Bool, but a theorem like

∀ x.Bool(x) → Bool(bad x)

is not provable. On the other hand, we can prove

theorem notSoBad : ∀ x.(Bool(x) ∧ x /= False)

→ Bool(bad x)

3.2 Nat

> data Nat where { Z :: Nat; S :: Nat → Nat }

env Z, S : V

axiom introNat : Nat(Z) ∧ ∀ n. Nat n → Nat (S n)

schema elimNat (P:V→ *) =

(P Z

& ∀ n. Nat n → P n → P(S n)

) → ∀ m. P m

Alternative (and equivalent?) elimination

schema elimNat (P:V→ *) =

(P Z

& (∀ n. P n → P (S n))

) → ∀ m. P m

Now we can define some functions

> plus Z x = x

> plus (S n) x = S(plus n x)

axiom plusDef : ∀ x.plus Z x = x

∧ ∀ n x.plus (S n) x = S(plus n x)

Some properties

61

theorem plusType : ∀ x y. Nat(x) → Nat(y) → Nat(plus x

y)

proof

∀ y. plus Z y = y by plusDef

then ∀ y.Nat(y) → Nat(plus Z y)

∀ n x. Nat(plus n x) → Nat(S (plus n x)) by introNat

then ∀ n x. Nat(plus n x) → Nat(plus (S n) x) by

plusDef

thus thesis by elimNat(P) where

P n = ∀ y.Nat(plus n y)

end

predicate PlusZ(n : V) = plus x Z = x

theorem plusZR : ∀ n. Nat(n) → plusZ(n)

proof

plus Z Z = Z by plusDef

∀ n.plus n Z = n → S(plus n Z) = S n by equality

∀ n.plus (S n) Z = S(plus n Z) by plusDef

then ∀ n.plus n Z = n → plus (S n) Z = S n

thus thesis by elimNat(plusZ)

end

3.3 Lists

To avoid confusion, we write the list type as List a and the corresponding predicate

as List rather than use the usual [a]. In practice this is just amatter of syntactic sugar.

> data List a = Nil | Cons a (List a)

Lists can be axiomatised as follows:

env List : V→ * → *, Nil : V, Cons : V → V

schema introList(T:V→ *)

= List(T)([])

& (T(x)&List(xs) → List(Cons x xs))

schema elimList(T,P:V→ *)

= P(Nil)

& (∀ x xs. T(x) & P (xs) → P(Cons x xs))

→ ∀ xs. List(T)(xs) → P(xs)

Sample theorem for map

> id x = x

> map f Nil = Nil

> map f (Cons x xs) = Cons (f x) (map f xs)

axiom mapDef : map f Nil = Nil & ∀ f x xs...

theorem mapType(T,U: V→ *) : (∀ x. T(x) → U(f x))

62

→ (∀ xs. List(T)(xs) → List(U)

(map f xs))

theorem mapId(T:V→ *) : ∀ xs.map id xs = xs

proof

let P(xs:V) = map id xs = xs

have P(Nil) & ∀ x xs.P(xs) → P(Cons x xs) by mapDef

thus thesis by elimList(P)

Consider a (slightly convoluted) example of a function summing a list:

sum :: List Nat -> Nat

sum Nil = Z

sum (Cons n ns) = case n of

Z -> sum (Cons n ns)

(S m) -> S(sum (Cons m ns))

this can be characterized as follows:

axiom sumNil : sum Nil = Z

axiom sumCons

: ∀ n ns. (n = Z → sum (Cons n ns) = sum ns)

∧ (∀ m. n = S m

→ sum (Cons n ns) = S(sum (Cons n ns))

4 Polymorphic Functions

If types translate to predicates, then one might think quantification over types might

requiring quantifying over predicates. But we may avoid this reading “for all types a

and values x of type a” as simply “for all x (regardless of type)”.

const :: a -> b -> a

const x y = x

--# axiom forall x y. const x y = x

5 Conclusions and Future Work

We have proposed a method of specifying Haskell programs using intuitionistic first or-

der logic, that works well for inductive datatypes, higher-order functions and parametric

polymorphism. On the other hand, one big remaining challenge is handling also ad-hoc

polymorphism, i.e. type classes. One idea we’ve toyed with went along the following

lines (in a notation slightly different to what we have used so far):

class Functor f where

fmap :: forall a b.(a->b) -> f a -> f b

-- fmap_id :: forall a.f a -> Prop

63

-- # require fmap_id = forall x. fmap id x === x

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just f x

-- # axiom Functor_im(Nothing)

-- # axiom forall x.Functor_im(Just x)

-- # conjecture forall i. Functor_im(i) -> fmap id i = i

This is not yet completely satisactory and needs more work.

References

1. Baranowski, W.: Automated verification tools for Haskell programs. Master’s thesis, Univer-

sity of Warsaw (2014)

2. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Hipspec: Automating inductive proofs

of program properties. In: In Workshop on Automated Theory eXploration: ATX 2012 (2012)

3. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized

Reasoning 3(2) (2010), http://jfr.unibo.it/article/view/1980

4. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An automated prover for properties of

recursive data structures. In: Flanagan, C., König, B. (eds.) Tools and Algorithms for the

Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 7214, pp.

407–421. Springer Berlin Heidelberg (2012), http://dx.doi.org/10.1007/978-

3-642-28756-5_28

5. Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism, Studies in Logic

and the Foundations of Mathematics, vol. 149. Elsevier (2006)

6. Vytiniotis, D., Jones, S.P., Rosén, D., Claessen, K.: Halo: Haskell to logic through denota-

tional semantics. Acm Sigplan Notices 48:1, s. 431-442 (2013)

7. Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reasoning 29(3-4), 389–

411 (2002), http://dx.doi.org/10.1023/A:1021935419355

8. Wiedijk, F.: Formal proof sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.) Types for

Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4,

2003, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3085, pp. 378–393.

Springer (2003), http://dx.doi.org/10.1007/978-3-540-24849-1_24

