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Abstract. Rough sets is a well-known approach to incomplete or imprecise data.

In the paper we briefly report how this framework was successfully encoded with

the help of one of the leading computer proof assistants in the world. Thanks to

their abstract and flexible character based essentially on binary relations, lattices

as a basic viewpoint appeared a very feasible one in the case of rough sets. We

focus on lattice-theoretical aspects of rough sets to enable the application of ex-

ternal theorem provers like EQP or Prover9 as well as to translate them into TPTP

format widely recognized in the world of automated proof search. We wanted to

have a clearly written, possibly formal, although informal as a rule, paper au-

thored by a specialist from the discipline another than lattice theory. It appeared

that Lattice theory for rough sets by Jouni Järvinen [11] (LTRS) was quite a rea-

sonable choice to be a testbed for the current formalization both of lattices and of

rough sets in Mizar.

1 Introduction

Through the years ordinary set theory appeared not to be feasible enough for modelling

incomplete or imprecise information. Even if basically built on top of Zermelo-Fraenkel

widely accepted by most mathematicians, fuzzy sets by Zadeh [22] proposed new view

for membership functions, where degree of membership taken from the unit interval

was considered rather than classical discrete bipolarity. Pawlak’s alternative approach

[16], although essentially of the same origin, was different – its probabilistic features

were underlined. Also the focus was put rather on collective properties of clusters of

objects than those of individuals as the latter can be hardly accessible.

Formalization is doing mathematics in a language formal enough to be understand-

able by computers [19] (of course, doing mathematics means also the act of proving the-

orems and correctness of definitions according to classical logic and Zermelo-Fraenkel

set theory). This activity, obviously without the use of computers is dated back to Peano

and Bourbaki as every mathematician uses more or less formal language [1]; but com-

puter certification of mathematics can be useful for many reasons – machines open new

possibilities of information analysis and exchange, they can help to discover new proofs

or to shed some light on approaches from various perspectives; with the help of such

automated proof assistants one can observe deeper connections between various areas

of mathematics. For example, lattice theory delivers interesting and powerful algebraic

model – useful in quantum theory, logic, linear algebra, and topology, to list only most

popular ones. Hence it is not very surprising that also rough [11] and fuzzy set theories



159

[22] can be modelled in this way. Studying connections between theories can be also

benefitting to lattice theory itself – see [3] for the use of upper and lower rough ideals

(filters) in a lattice.

The early works devoted to the formalization of mathematics with the help of auto-

mated proof assistants were not really connected with lattice theory. Checking Landau’s

Grundlagen... was an experiment of translating arithmetic into AUTOMATH, one of the

primary computerized proof-checkers. But first real widespread (at least for ordinary

people) use of automated theorem provers was the solution of the Robbins problem (al-

ternative axiomatization of Boolean algebras) with the help of EQP/Otter program by

William McCune, which expressed the essence of computational power of computers

in the area of equational proof search within lattice theory.

For years, there were essentially two types of activities in the computer certification

of mathematics: either formal exploration of a single important theorem, in style of

Kepler conjecture, or the computer encoding of a book or paper – all these aimed at

building large formal repository of interconnected facts formally proven. In case of

more compact research articles, the number of such efforts is quite big (even in the

Mizar Mathematical Library (MML) there are at least twenty such encoded papers), but

if the number of pages is relatively large, such projects are still rare.

The author was personally involved in the formalization projects of Compendium of

Continuous Lattices (CCL) by Gierz et al. (approximately 70% done); he also provided

more or less complete translations of papers into Mizar (Isomichi’s about classification

of subsets of topological spaces, Zhu’s [23] on the approximation spaces based on ar-

bitrary binary relations, and Rao’s on the generalized almost distributive lattices). The

author of the present paper was interested in lattice theory, focusing on formalization

issues of these structures with the help of automated proof-assistants of various kinds,

including computerized theorem provers, dedicated software for calculations and vi-

sualization, and also computer algebra systems [4]. The idea of this work arose after

having a look for Jouni Järvinen’s paper Lattice theory for rough sets [11] (which will

be called LTRS in short), hence the title of the current paper is not accidental. Our short

term goal is to provide annotated version of LTRS, where all items (definitions, propo-

sitions, and illustrative examples) will be mapped with their formal counterpart written

in Mizar.

The structure of the paper is as follows: in the next section we introduce basic

notions of lattice theory, also in mechanized setting, and discuss how it can be extended.

Section 4 is devoted to concrete implementation of rough sets with Mizar system. The

next section summarizes the pros and cons of our implementation and experiments with

the Mizar Mathematical Library. We describe also the current state of injecting LTRS

into MML. In the last section we draw some concluding remarks and plans for future.

2 Fundamentals of Lattice Theory

Lattices [10] are structures of the form

〈L,⊔,⊓〉,
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where L is a set (sometimes assumed to be non-empty), both binary operations ⊔ and

⊓ are commutative, associative, and satisfy the absorption laws. There is also an alter-

native definition of lattices as 〈L,≤〉, where ≤ is the partial ordering on L with the

existence of suprema and infima for arbitrary pairs of elements of L. Essentially then,

one can see lattices as 〈L,⊔,⊓,≤〉, where both parts are defined by one another.

It is worth noticing that lattices, especially those of them which have equational

characterizations, can be automatically explored. Famous question on another ax-

iomatization of Boolean algebras, known as the Robbins problem, was solved with

EQP/OTTER system in 1996 after sixty years of unsuccessful human research. The first

author provided also some proof developments in this problem, but with the use of

another computer proof-assistant, namely the Mizar system [9]. It was created in the

early seventies of the previous century in order to assist mathematicians in their work.

Now the system consist of three main parts: the language in which all the mathemat-

ics can be expressed, close to the vernacular used by human mathematician, which at

the same time can be automatically verified, the software which verifies the correctness

of formalized knowledge in the classical logical framework, and last but not least, the

huge collection of certified mathematical knowledge – the Mizar Mathematical Library

(MML).

In Mizar formalism [9], lattices are structures of the form

definition

struct (/\-SemiLattRelStr, \/-SemiLattRelStr, LattStr)

LattRelStr

(# carrier -> set,

L_join, L_meet -> (BinOp of the carrier),

InternalRel -> Relation of the carrier #);

end;

introduced by the first author to benefit from using binary operations and orderings at

the same time. However, defining a structure we give only information about the sig-

nature – arities of operations and their results; specific axioms are needed additionally.

Even if all of them can be freely used in their predicative variant, definitional expansions

proved their usefulness.

definition

let L be non empty LattStr;

attr L is meet-absorbing means :: LATTICES:def 8

for a,b being Element of L holds (a "/\" b) "\/" b = b;

end;

The above is faithful translation of

∀a,b∈L (a ⊓ b) ⊔ b = b.

Continuing with all other axioms, we finally obtain lattices as corresponding struc-

tures with the collection of attributes under a common name Lattice-like.

definition

mode Lattice is Lattice-like non empty LattStr;

end;
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The alternative approach to lattices through the properties of binary relations is a

little bit different, so the underlying structure is just the set with InternalRel, namely

RelStr.

definition

mode Poset is reflexive transitive antisymmetric RelStr;

end;

Boolean algebras, distributive lattices, and lattices with various operators of nega-

tion are useful both in logic and in mathematics as a whole, it is not very surprising that

also rough set theory adopted some of the specific axiom sets – with Stone and Nelson

algebras as most prominent examples.

The type LATTICE is, unlike the alternative approach where Lattice Mizar mode

was taken into account, a poset with binary suprema and infima. Both approaches are in

fact complementary, there is a formal correspondence between them shown, and even

a common structure on which two of them are proved to be exactly the same. Why can

ask the question why to have both approaches available in the repository of computer

verified mathematical knowledge available at the same time? The simplest reason is that

the ways of their generalizations vary; in case of posets we could use relational struc-

tures based on the very general properties of binary relations (even not necessarily more

general, but just different – including equivalence relations or tolerances); equationally

defined lattices are good starting point to consider e.g. semilattices or lattices with vari-

ous additional operators – here also equational provers can show their deductive power.

In this setting such important theorems as Stone’s representation theorem for Boolean

algebras was originally formulated.

The operations of supremum and infimum are "\/" and "/\", respectively – in

both approaches. The natural ordering is <= in posets and [= in lattices equationally de-

fined. Note that c= is set-theoretical inclusion. The viewpoint of posets was extensively

studied in Mizar during the big formalization project – translating into Mizar already

mentioned CCL.

3 Extending Lattice Signature

From the informal point of view, the difference between the ordering given for 〈L,⊔,⊓〉
as

x ≤ y ⇔ x ⊔ y = y

and posets defined as 〈L,≤〉 where the existence of binary suprema and infima is ax-

iomatically guaranteed is not very big. Here is the place for Leibniz’s Law (known

also under the name of equality of indiscernibles or – slightly misleading – isomorphic

copies). If it comes for real computerized proof-assistant, the problem arises. First of

all, the choice of appropriate signature for lattices is important. On the one hand, we

want to gather benefits from the use of sophisticated equational theorem provers, and

hence equational characterization is strongly desirable. We can do so choosing lattice

structure with two binary operations of supremum and infimum.

On the other hand however, one can use the properties of binary relations weaker

than the partial ordering – either preorders or even, if we go further in the stream of
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reverse mathematics, arbitrary relations with certain properties. We can observe similar

ideas in the theory of rough sets, with the example of Zhu’s papers [23], or topological

spaces with various separation axioms.

All basic formalized definitions and theorems can be tracked under the address

http://mizar.org.

4 Rough Sets and Approximation Spaces

Main disadvantage behind formalization of rough set theory [16] was that we had to

choose among two basic approaches to rough sets: either as classes of equivalence re-

lations (with further generalizations into tolerances or even arbitrary binary relations)

or as pairs consisting of the lower and the upper approximation (see [7] for detailed

description of approximation operators in Mizar).

definition let X be Tolerance_Space, A be Subset of X;

func RS A -> RoughSet of X equals :: INTERVA1:def 14

[LAp A, UAp A];

end;

The structure is defined as follows (_\/_ and _/\_ are taken componentwise):

definition let X be Tolerance_Space;

func RSLattice X -> strict LattStr means :: INTERVA1:def 23

the carrier of it = RoughSets X &

for A, B being Element of RoughSets X,

A1, B1 being RoughSet of X st A = A1 & B = B1 holds

(the L_join of it).(A,B) = A1 _\/_ B1 &

(the L_meet of it).(A,B) = A1 _/\_ B1;

end;

We have proved formally that these structures are Lattice-like, distributive, and

complete (arbitrary suprema and infima exist, not only binary ones). The properties are

expressed in the form allowing automatic treatment of such structures.

registration let X be Tolerance_Space;

cluster RSLattice X -> bounded complete;

end;

Taking into account that [= is the ordering generated by the lattice operations, we

can prove that it is just determined by the set-theoretical inclusion of underlying ap-

proximations.

theorem :: INTERVA1:71

for X being Tolerance_Space, A, B being Element of RSLattice X,

A1, B1 being RoughSet of X st A = A1 & B = B1 holds

A [= B iff

LAp A1 c= LAp B1 & UAp A1 c= UAp B1;
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Detailed survey of the lattice-theoretical approach to rough sets is contained e.g.

in Järvinen [11] paper, which enumerated some basic classes of lattices useful within

rough set theory – e.g. Stone, de Morgan, Boolean lattices, and distributive lattices, to

mention just the more general ones. All listed structures are well represented in the

MML.

Flexibility of the Mizar language allows for defining new operators on already ex-

isting lattices without the requirement of repetitions of old structures, e.g. Nelson alge-

bras are based on earlier defined de Morgan lattices (which are also of the more general

interest), also defining various negation operators is possible in this framework. Fur-

thermore, topological content widely represented in the Mizar Mathematical Library

helped us to have illustrative projections into other areas of mathematics [5]. Here good

example was (automatically discovered by us) linking with Isomichi classification of

subsets of a topological space into three classes of subsets [6].

Recently we made some results in fuzzy numbers in formalized setting, and even if

primarily we did not plan to include them here, LTRS forced us to do so. Namely, Exam-

ple 141, p. 476 in LTRS is just the construction of L-fuzzy sets, so it seems we have to

cover it also. Exactly just like in the case of rough sets (where we tried to stick to equiv-

alence relations instead of the more general case), first formalization in Mizar had to be

tuned to better reflect Zadeh’s mathematical idea [22]. The basic object RealPoset is

a poset (a set equipped with the partial ordering, i.e. reflexive, transitive, and antisym-

metric relation) – unit interval with the natural ordering defined of real numbers. We

use Heyting algebras as they are naturally connected with L-fuzzy sets. We can define

the product of the copies of the (naturally ordered) unit intervals (by the way, this was

defined in Mizar article YELLOW_1 by the first author during the formalization of CCL).

definition let A be non empty set;

func FuzzyLattice A -> Heyting complete LATTICE equals :: LFUZZY_0:def 4

(RealPoset [. 0,1 .]) |^ A;

end;

The above can be somewhat cryptic, however the next theorem explains how ele-

ments of the considered structure look like – these are just functions from A into the

unit interval.

theorem :: LFUZZY_0:14

for A being non empty set holds

the carrier of FuzzyLattice A = Funcs (A, [. 0, 1 .]);

Although the lattice operations are not stated explicitly here (which could be a kind

of advantage here), the ordering determines it uniquely via the natural ordering of real

functions. The underlying structure is a complete Heyting algebra. Of course, the type

of this Mizar functor is not only declarative – it had to be proved.

theorem :: LFUZZY_0:19

for C being non empty set,

s,t being Element of FuzzyLattice C holds

s "\/" t = max(@s, @t);
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The functor @s returns for an element of the lattice of fuzzy sets the correspond-

ing membership function (i.e. a fuzzy set). The so-called type cast is needed to prop-

erly recognize which operation max should be used – in our case it is the operation

defined for arbitrary functions. Of course, in the above definition, A is an arbitrarily

chosen non-empty set; it can be replaced by the carrier of a lattice, and the definition of

FuzzyLattice A can be tuned accordingly.

5 Where Are We Now

At the beginning of expressing things fully formally, usually it is hard to estimate the

real amount of needed work. The unreasonable delays are often caused by authors’

omissions in proof steps, where inferences suggested to be trivial appear to be hard or

even false (we met some such situations during CCL project), references for papers yet

classical in the literature of the subject (but absent in the formal repository, which has to

be overworked), and some isomorphisms in the spirit of category theory (let us assume

continuous mappings to be arrows in proper category) or logic (all we just considered

is trivial in the framework of proper modal logic).

As basic stages of our work we could enumerate:

– Choosing appropriate model for formalization – in CCL we decided to have two

series, YELLOW (bridging the gap between the current state of MML and needed

knowledge) and WAYBEL formalizing one-by-one items from the book. It appears

however, that due to highly self-containing nature of LTRS a kind of YELLOW

series practically vanishes and we will give rather a set of monographical articles

(proofs from MML will be only linked, not rewritten).

– Providing a platform for the work, with the aim of incorporating the work into the

Mizar Mathematical Library (we want to make it available to other users making it

distributed with every distribution of the Mizar system).

– Wikipedia proved that in case of wide projects a model of Wiki for collective work

wins with svn or cvs (concurrent version systems) with closed architecture (al-

though a bit of centralized control to ensure the appropriateness of changes is defi-

nitely needed).

– Back-revisions of the MML, as the Mizar repository can also benefit (generaliza-

tions, removing repetitions, making unifications). Here we mention also the pos-

sibility of proof reorganization: lemmas can be extracted, proof structure can be

flattened, if possible, etc.

– Translation of the Mizar source code into LATEX via available tools and comparing

the differences with LTRS. During the process of printing the journal Formalized

Mathematics which is a translation between vocabulary file and LATEX format given

in XML; formats are once fixed, but it is no problem at all to get instead of UAp(A)
the set A with the upper triangle (the notation used in LTRS), etc. Of course, alter-

natively one can define its own synonym, which does not bring any new semantical

information. We can mention also hyperlinked version of articles, hence anyone

can dig down to the fundamentals.
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– Statistical research on results, once we get complete formal translation. Hence be-

sides explicit references, all connections can be listed – facts from mathematical

folklore, informal omissions, detailed proof steps, and proof similarities.

As of now, we do not provide percentage of the real work done (we plan eventually

to give a one-to-one correspondence between LTRS and MML, and as of now there

is no fully annotated version accepted into the MML), but thorough insight into both

sources results in the following numbers (see Table 1).

Table 1. LTRS chapters represented in MML

Chapter Title Items Done

1. Introduction 0 0

2. Basic notions and notation 6 6

3. Orders and lattices 21 18

4. Distributive, Boolean, and Stone lattices 20 14

5. Closure systems and topologies 13 11

6. Fixpoints and closure operators on ordered sets 18 16

7. Galois connections and their fixpoints 22 16

8. Information systems 30 15

9. Rough set approximations 21 9

10. Lattices of rough sets 15 7

Total 166 112

There are three items we should briefly explain: MML lacks the part devoted to

Stone lattices (Chapter 4), although we have some 1500 lines of Mizar code covering

most of the missing content. Although the chapter with Galois connections is covered

in 70%, it is not very much used in the Mizar repository, hence low numbers in Chapter

9 and 10. Also information systems already formalized in Mizar need to be adjusted in

order to provide smooth correspondence with reducts and rough sets. In total, nearly

70% of items are covered in the current MML. In the next table, we present most rep-

resentative Mizar articles (MML identifiers, i.e. filenames) for every chapter.

The quotation from [11] “Prerequisites are minimal and the work is self-contained"

was very important for us – as after the finish we will calculate the so-called de Bruijn

factor which measures the ratio between the amount of formal text and its informal

counterpart. It is often claimed that in the case of ordinary mathematical submission its

de Bruijn factor is approximately four – but it would not be the case of LTRS, as it has

many illustrative examples.

The enumeration is continuous and examples are present in this sequence (in CCL,

some examples were not formalized by us as either they were needed to solve the ex-

ercises, or they had purely illustrative character). Essentially then, the numbers are not

fully reflecting the real state of formalization. Similar situation was during formaliza-

tion of CCL in Mizar, where C∗-algebras were used as one of the examples (and we did
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Table 2. Representation of LTRS chapters by Mizar articles

Chapter MML Id

1. N/A

2. XBOOLE_1, RELAT_1

3. ORDERS_2, LATTICE3

4. LATTICES, LATTICE2

5. PRE_TOPC, TOPS_2

6. KNASTER, YELLOW_2

7. WAYBEL_1, WAYBEL34

8. ARMSTRNG

9. ROUGHS_1, ROUGHS_2

10. INTERVA1, ROUGHS_4

not touch it at all as it would require massive work within completely different area of

mathematics we dealt with).

Many theorems and definitions are inline, i.e. they are not formulated as separate

items. Extremal example here is the list of boolean properties of sets (some 17 prop-

erties collected in Proposition 1), which of course in the MML is of the form of 17

separate theorems. We could choose either between the corollary which is a conjunct of

all these or mapping single LTRS item into multiple MML items.

Even at the first sight, among obvious notions from mathematical folklore, two basic

objects are especially correlated with our area of research: partitions (resp. coverings

in more general approach [24]) and intervals [20]. Querying MML, we discovered that

lattices of partitions were formalized already pretty well, but to our big surprise, this

was not the case of intervals, so we had to make some preparatory work by ourselves.

Instead of using the ordered pair of approximations, we can claim that both coordi-

nates are just arbitrary objects, so that we can do just a little bit reverse mathematics. It

happens even in the heart of rough set theory – correlation of indiscernibility relation

properties with those of approximation operators in style of [23] or underlying lattice

properties [11] could lead us to develop some general theory of mathematical objects.

One of the significant matchings discovered automatically with the help of our work

was that classification of rough sets basically coincides with that of objects described

by Isomichi – first class objects are precisely crisp sets, second class – rough sets with

non-empty boundary, so third class just vanishes in equivalence-based approximation

space. Details of this correspondence can be found in [6].

During our project of making both formal approaches to incomplete information

accessible in the Mizar Mathematical Library, an extensive framework was created,

besides lattices of rough sets (and also of fuzzy sets). Its summary is shown in Table 3.

Table 3 lists our MML articles about rough sets (started with ROUGHS), while the

first group contains some preliminary notions and properties needed for smooth further

work. We listed only MML items of which we are authors – among nearly 1250 files

written by over 250 people. The complete list could contain nearly 20 files containing

about 40 thousand lines of Mizar code (so it is about 2% of the MML). Not all of them
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Table 3. List of our submissions to MML concerning described topics

MML Identifier Content

INTERVA1 algebra of intervals (including lattice of rough sets)

NELSON_1 Nelson algebras

YELLOW_1 products of posets

ROBBINS1 Robbins problem and its solution

ROBBINS2 correspondence between relational structures and lattices

ROBBINS3 ortholattices and orthoposets

SHEFFER1 alternative axiomatization of Boolean lattices

LATSUM_1 the operation of addition of posets and lattices

LATTICEA prime filters and ideals in distributive lattices

POSET_2 flat posets

LATTAD_1 almost distributive lattices

ROUGHS_1 introduction to rough sets

ROUGHS_2 relational characterization of rough sets

ROUGHS_3 Zhu’s paper [23] formalized (to appear)

ROUGHS_4 topological aspects of RST

are tightly connected with the theory of rough sets – they expand the theory of intervals,

topologies, relational structures, and – last but not least – lattices, to list more notable

areas of mathematics.

Following Grätzer’s classical textbook [10] in Mizar, practically all chapters from

Järvinen work are covered, maybe except Section 8 on information systems (reducts are

poorly covered in Mizar, but e.g. the Mizar article about Armstrong systems on ordered

sets was coauthored by Armstrong himself). Also the final section on lattices of rough

sets is not sufficiently covered in the MML, because not all combinations of properties

of binary relations were considered. Our personal perspective was that [11] was even

better written from the viewpoint of a developer of MML. The fact is that the theory

is much simpler than in CCL by Gierz et al. (and it is more self-contained), although a

little bit painful – at least from the formal point of view – category theory was used in

a similar degree.

6 Conclusions and Future Work

In order to widen the formal framework within the MML, we should construct more

algebraic models both for rough and fuzzy sets (as the aforementioned Stone algebras).

Although we underlined the possibility of using external provers, we already applied

some automatic tools available in the Mizar system aiming at discovering alternative

proofs [17] and unnecessary assumptions to generalize the approach (similarly to gen-

eralizing from equivalence into tolerance relations in case of rough sets).

It is hard to describe all the formalized work which was done during this project

in such a short form; however we tried to outline the very basic constructions. We

hope to demonstrate the working prototype of annotated version of LTRS during CS&P
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2015 conference, and, of course, to incorporate it into the MML to be explored with

the help of Mizar internal tools. We hope to spend about a year of work to finish it

completely. Our work was very much inspired by Järvinen [11] and Zhu [23], although

regular formalization of this topic started back in 2000, much before both these papers.

Some copyright issues should be solved as the best solution is just to publish [11] with

links pointing out to appropriate Mizar items and proofs. In the era of expanding open

access model for research we hope some limitations can vanish – although some issues

connected with the repositories of knowledge formalized with the help of computers

are quite interesting [2] and GNU/Creative Commons model is promising.

Mizar code enables also the information exchange with other proof assistants

through its XML intermediate format. Even if the Mizar code is relatively well read-

able, LATEX version and HTML script with expandable and fully hyperlinked proofs are

available. All Mizar files are also translated into TPTP [18] (first order logic form which

can serve as a direct input for Thousands of Problems for Theorem Provers) and this

could be one of the fundamental gains for the rough set community.
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(Eds.), Advances in Soft Computing, 28, 215–226 (2005)
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