
Gabriella Cortellessa, Daniele Magazzeni,

Marco Maratea, Ivan Serina (Eds.)

IPS 2015
Proceedings of the 6th Italian Workshop on Planning
and Scheduling

Ferrara, Italy, September 22, 2015

Copyright c©2015 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners.

Editors’ address:
CNR - Consiglio Nazionale delle Ricerche
Istituto di Scienze e Tecnologie della Cognizione
Via San Martino della Battaglia, 44
00185 Rome - Italy
gabriella.cortellessa@istc.cnr.it

King’s College London
Department of Informatics
Strand, London WC2R 2LS, United Kingdom
daniele.magazzeni@kcl.ac.uk

Università degli Studi di Genova
Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi
viale F. Causa,15
16145 Genova, Italy
marco@dibris.unige.it

Università degli Studi di Brescia
Dipartimento di Ingegneria dell’Informazione
Via Branze 38
25123 Brescia, Italy
ivan.serina@unibs.it

Preface

This volume contains the papers presented at IPS 2015, the 6th Italian Workshop on Plan-
ning and Scheduling (http://ips2015.istc.cnr.it), held within the XIV Con-
ference of the Italian Association for Artificial Intelligence (AI*IA 2015), in Ferrara, Italy,
on September 22nd, 2015.

The aim of this series of workshop is to bring together researchers interested in different
aspects of planning and scheduling, and to introduce new researchers to the community.
Although the primary target of IPS workshops is the Italian community of planning and
scheduling, the aim is also to attract an international gathering, fostering contributions
and participations from around the world. In particular, this year 12 papers were accepted
for presentation at the workshop, involving many authors from Italy and other European
countries.

The papers mainly focus on applications of planning and scheduling, metrics and tools,
heuristics and planning and scheduling algorithms applied to several domains.

Gabriella Cortellessa, Daniele Magazzeni, Marco Maratea, Ivan Serina

Workshop Organizers

i

Programme Chairs

Cortellessa, Gabriella CNR - Consiglio Nazionale delle Ricerche, Italy
Magazzeni, Daniele King’s College London, United Kingdom
Maratea,Marco Università degli Studi di Genova, Italy
Serina, Ivan Università degli Studi di Brescia, Italy

Programme Committee

Baioletti, Marco Università degli Studi di Perugia, Italy
Bernardini, Sara King’s College London, United Kingdom
De Benedictis, Riccardo CNR - Consiglio Nazionale delle Ricerche, Italy
De Giacomo, Giuseppe Sapienza Università di Roma, Italy
Della Penna, Giuseppe Università degli Studi dell’Aquila, Italy
Dimopoulos, Yannis University of Cyprus, Cyprus
Fratini, Simone ESA/ESOC, Germany
Garrido, Antonio Universitat Politecnica de Valencia, Spain
Geffner, Hector Universitat Pompeu Fabra, Spain
Gerevini, Alfonso Emilio Università degli Studi di Brescia, Italy
Giunchiglia, Enrico Università degli Studi di Genova, Italy
Kuter, Ugur Smart Information Flow Technologies, US
Linares Lopez, Carlos Universidad Carlos III de Madrid, Spain
Mccluskey, Lee University of Huddersfield, United Kingdom
Mercorio, Fabio Università degli Studi di Milano Bicocca, Italy
Micalizio, Roberto Università degli Studi di Torino, Italy
Oddi, Angelo CNR - Consiglio Nazionale delle Ricerche, Italy
Orlandini, Andrea CNR - Consiglio Nazionale delle Ricerche, Italy
Patrizi, Fabio Free University of Bozen-Bolzano, Italy
Policella, Nicola ESA/ESOC, Germany
Rasconi, Riccardo CNR - Consiglio Nazionale delle Ricerche, Italy
Refanidis, Ioannis University of Macedonia, Greece
Saetti, Alessandro Università degli Studi di Brescia, Italy
Schaerf, Andrea Università degli Studi di Udine, Italy
Vallati, Mauro University of Huddersfield, United Kingdom
Venable,Kristen Brent Tulane University and IHMC, US

ii

Contents

Regular Papers

Evaluating Autonomous Controllers: An Initial Assessment
Pablo Muñoz, Amedeo Cesta, Andrea Orlandini, Marı́a D. R-Moreno 1

Quality Metrics to Evaluate Flexible Timeline-Based Plans
Alessandro Umbrico, Andrea Orlandini, Marta Cialdea Mayer 17

New Heuristics for Timeline-Based Planning
Riccardo De Benedictis, Amedeo Cesta 33

On the Use of Landmarks in LPG
Francesco Benzi, Alfonso E. Gerevini, Alessandro Saetti, Ivan Serina 49

Automated Planning for Urban Traffic Control: Strategic Vehicle Routing to Re-
spect Air Quality Limitations
Lukáš Chrpa, Daniele Magazzeni, Keith McCabe, Thomas L. McCluskey, Mauro
Vallati 65

A Discrete Differential Evolution Algorithm for Multi-Objective Permutation Flow-
shop Scheduling
Marco Baioletti, Alfredo Milani, Valentino Santucci 80

Web Services and Automated Planning for Intelligent Calendars
George Markou, Anastasios Alexiadis, Ioannis Refanidis 88

Social Continual Planning in Open Multiagent Systems
Matteo Baldoni, Cristina Baroglio and Roberto Micalizio 95

Papers not included here and published elsewhere

ROSPlan: Planning in the Robot Operating System
Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Ridder, Ar-
nau Carrera, Narcı́s Palomeras, Natalia Hurtos, Marc Carreras.
Appeared in the Proceedings of the Twenty-Fifth International Conference on Au-
tomated Planning and Scheduling, ICAPS 2015, pp. 333–341. Jerusalem, Israel,
June 7-11. AAAI Press.

A Multi-Objective Large Neighborhood Search Methodology for Scheduling Prob-

iii

CONTENTS

lems with Energy Costs
Angelo Oddi, Riccardo Rasconi, Amedeo Cesta.
Appeared in IEEE Computer Society (ed.) Int. Conf. on Tools with Artificial
Intelligence (ICTAI 2015). Vietri Sul Mare, Italy (2015).

Combining Temporal Planning with Probabilistic Reasoning for Autonomous Surveil-
lance Missions
Maria Fox, Derek Long, Sara Bernardini.
Submitted to Autonomous Robots. Springer.

Offline and Online Plan Library Maintenance in Case-Based Planning
Alfonso E. Gerevini, Anna Roubı́cková, Alessandro Saetti, Ivan Serina.
Appeared in Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013:
Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 8249,
pp. 239–250. Springer International Publishing (2013).

iv

Evaluating Autonomous Controllers:
An Initial Assessment

Pablo Muñoz1, Amedeo Cesta2, Andrea Orlandini2, and
Maŕıa Dolores R-Moreno1

1 Universidad de Alcalá, Alcalá de Henares, SPAIN,
{pmunoz,mdolores}@aut.uah.es

2 ISTC-CNR – Italian National Research Council , Rome, ITALY
{amedeo.cesta,andrea.orlandini}@istc.cnr.it

Abstract. This work describes the progress of a research line started
two years ago that aims at creating a framework to assess the perfor-
mance of planning-based autonomy software for robotics. In particular it
focuses on an open problem in the literature: the definition of a method-
ology for fairly comparing different approaches to deliberation, while
synthesizing a tool to automate large test campaigns for different auton-
omy architectures under the same robotic platform. We have produced a
framework, called OGATE, that supports the integration, testing and op-
erationalization of autonomous robotic controllers. It allows to run series
of plan execution experiments while collecting and analyzing relevant pa-
rameters of the system under a unified and controlled environment. The
software platform supports also for the definition of different metrics for
evaluating different aspects of a plan-based controller. This paper, first
presents the framework capabilities and the methodology to support ex-
periments, then, briefly describes an autonomous controller that follows
a timeline-based deliberation, and finally presents some results obtained
exploiting OGATE to perform tests to analyze the performance of the
controller over a targeted robot.

1 Introduction

Modern robotics platforms are becoming increasingly sophisticated and capa-
ble. The deployment of Artificial Intelligence (AI) planning technologies for
robotic autonomy is considered an important technological advancement to en-
dow robots with enhanced abilities once addressing real world scenarios. In this
regard, the interleaving of automated planning and execution is a crucial ref-
erence problem for Planning and Robotics research communities. Focusing on
the literature in autonomous controllers, we can observe several approaches em-
ploying different technologies for planning and execution – see [10, 2, 3, 18, 22]
for some examples.

One limitation in current research that is shared by different research initia-
tives is the rather specific validation methodologies, experimental settings and
assessment analysis usually performed in a manner that is hardly exportable and

1

scarcely reproducible on different platforms. This lack of methodology leads to
perceive the different evaluations more like a “proof of concept” [8] for specific
case studies. Then, an interesting open issue consists in defining an evaluation
methodology for autonomous controllers capable of being exportable and repro-
ducible with different plan-based schemes for autonomous robotics so as to allow
comparisons on the basis of common reference points.

The authors current research initiative is dedicated to the design and de-
velopment of a software framework to support and facilitate the deployment
of control architectures for robotics platforms [17]. In general, the aim is to
address the above mentioned open issue by means of the combination of both
(i) a research effort to discriminate the key factors in planning and execution
in order to evaluate the performance of a generic autonomous controllers and
(ii) an engineering effort to identify requirements to design and implement a
general purpose environment to support testing and validation for plan-based
autonomous robotics platforms. This paper reports on the current progress of
this initiative aiming at providing a well defined methodology and a software
framework to assess the performance evaluation of autonomous controllers. In
particular, we have defined a methodology that is operationalized in a general
and domain independent software framework, called On-Ground Autonomy Test
Environment (OGATE), that allows to define relevant metrics according to spe-
cific evaluation goals, to define a set of application scenarios to be exploited in
order to evaluate autonomous controllers over actual robotic platforms or asso-
ciated simulators under controlled and reproducible experimental conditions.

Related Works. Evaluating and characterizing autonomous controllers have been
investigated in different perspectives. On the one hand, there are theoretical
works that aim to define the relevant parameters to measure for an autonomous
system [1, 12] and those who try to create valid methodologies for the test-
ing process [13, 11]. On the other hand, there are robotics competitions which
allow us to compare different solutions for the same problem with different plat-
forms/controllers [21, 5]. Notwithstanding the relevance of such works, they are
mainly focused on functional capabilities and exploit really specific evaluation
criteria [19, 16], while others rely on expensive or exclusive robotic platforms. In
any case, the complexity of exploiting these systems in automated test campaigns
remains an open issue.

Paper structure. The rest of the paper is structured as follows. First, we present
a set of general metrics applicable to plan-based autonomous controllers and
our proposed methodology to deal with their evaluation. In the next section we
provide a general view of the OGATE tool, that is able to perform automatic
campaigns to evaluate autonomous controllers. A planetary exploration case
study and the robotic platform employed to assess experimental campaigns are
presented. Then, considering an autonomous controller in the specific case study,
we present and discuss the evaluation of the performance of such controller as
a function of the considered metrics within OGATE. Finally, some conclusions
end the paper.

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

2

2 Evaluation of autonomous controllers

One of the contribution of the paper is to define a general evaluation methodology
for supporting the assessment process of autonomous controllers when applied
to a robotics platform. In this regard, a sequence of evaluation steps has been
identified and is discussed in the following.

In general terms, given an autonomous controller to be assessed, a set of
evaluation objectives should be isolated and some specific performance metrics
should be identified and defined accordingly. Then, a set of suitable tests should
be defined and performed so as to collect relevant information constituting a
quantitative basis for the evaluation process. Finally, a synthetic view of mea-
surements should be generated, e.g., through PDF reports, to point out the
performance of the controller according to the evaluation objectives and metrics
defined in the first phase. More in detail, the methodology proposed to analyze
and evaluate autonomous controllers can be thought as the composition of three
sequential phases: evaluation design, tests execution and, report and assessment.

Evaluation Design. First, it is required to identify which is the evaluation
objective. In fact, according to the evaluation target different aspects may result
relevant (or not). For instance, measuring the deliberation time or considering
the number of dispatched goals in different scenarios could provide relevant in-
formation about the behavior of the autonomous controller. In this case, very
specific parameters can be considered and analyzed. More in general, a set of
parameters applicable to any deliberative system should be considered in order
to enable also the possibility to compare performance of different control systems
in the same operative scenario.

According to evaluation objectives, a metrics definition task is to define
parameters that should be measured during execution. This is key as the result of
the evaluation strongly depends on the selected metrics. It is important to define
(at least) a small set of metrics that can be applicable to different autonomous
controllers. Later in the paper, we will provide a set of general applicable metrics
which we exploit in our experiments to assess performance evaluation.

Then, the definition of different scenarios and configurations to be
tested should be implemented. The scenarios can be defined as the set of con-
straints and goals that the autonomous controller takes as input. However, to also
deal with uncertainty, scenarios should be defined considering external agents
that can dynamically generate additional goals or possible failures that may
occur during execution. Such scenarios definition requires advanced capabilities
such as replanning and failure recovering schemes. More than one scenario can be
defined in order to investigate the behavior of the autonomous controller under
different conditions. We consider three general cases with which an autonomous
controller shall deal: (i) nominal execution, when everything goes as expected;
(ii) dynamic goal injection, an extension of the nominal execution in which
one or more goals are dynamically included during the system operation; and (iii)
execution failure, when some components of the system induce a not nominal

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

3

behavior so as to force the controller adapting its plan to overcome the contin-
gency. Failures in that case can be due to external perturbations, mechanical
failures or degradation of the system over time.

Tests Execution. Performing tests entails the execution of each scenario that is
to be monitored. Typically, uncertain and/or uncontrollable tasks are part of the
problem, so, each scenario should be performed several times, to collect average
behaviors and metric values.

In this regard, a scenario instantiation step is required to generate the set
of models needed to define a suitable set of planning domains and required goals.
Also, autonomous controllers can be deployed with different internal settings
and, thus, scenarios instantiation should consider also to enable the execution
of tests under different conditions.

Then, actual tests execution is needed. This is an important step for in-
stantiating, executing, monitoring and collecting the data after several execu-
tions of an autonomous controller in a given scenario. During the tests execution
modifications of the nominal execution should be considered, by automatically
injecting goals or failures to also test not nominal scenarios.

Report and Assessment. Once all the tests are completed, a report on the
information gathered during the several executions shall be provided. Reports
contains an insight of the controller behaviors, providing values for each metric
as well as generating compact views, e.g., by means of graphical representations
to support the users while analyzing system performances.

In fact, the information provided within reports is to inform users and enable
a performance assessment allowing an objective evaluation of the control
architecture in the different considered scenarios. After execution, a huge amount
of generated data is expected and then a general representation for the data
produced is to be defined.

2.1 Metrics definition and graphical report

Definition and presentation of metrics deserve a more detailed discussion and,
in the following, a detailed formalization is provided. In the above methodology,
a set of metrics M is considered, being a metric denoted as µi ∈M and defined
in a range µlb

i ≥ µi ≥ µub
i with µlb

i and µub
i are (respectively) the lower and

upper bounds for the i metric. Also, for each metric an extra parameter is to
be considered, i.e., the weight, µW

i , that represents the relevance of the metric
within the global evaluation. Considering the size of M (i.e., the number of
defined metrics) as n, the sum of all weights is supposed to be 100:

n∑

i=0

µW
i = 100 (1)

After execution, the average value for each measured metric, µV
i , is considered

in the report and this value is considered to compute a metric score µS
i as follows:

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

4

µS
i =

[
100−

(
100

|µub
i − µlb

i |
· µV

i

)]
· ε

C

εT
(2)

considering that the upper bound of the metric is the worst score. If the metric
value is out of the defined range, its score is 0. Last factor, εC/εT , expresses
the impact of execution failures in the metrics scores, being εC the number of
correct executions and εT the total runs.

In order to objectively evaluate and compare autonomous controllers we need
to use a common set of metrics. In this way, for the evaluation presented in
this paper we have gathered the following metrics that can be measured in any
autonomous controller:

Operational time. Is the time spent by each part of the controller to update its
internal state and schedule its goals for execution

Goal processing time. The time required for each part of the controller to analyze
what are its particular objectives.

State processing time. Is the time required by each part of the controller to
analyze the incoming information from other part of the system, such as the
sensors or other layers states required to evaluate its own status.

Deliberation time. Is the time spent by the controller in generating a long-term
plan to achieve its goals.

In the current metrics set presented before we are not taking into consideration
the execution time as part of the evaluation. However, it is possible to define
metrics in which the execution time is relevant (as a factor of the µS

i).

It is worth underscoring that we are not measuring the time that the functional
layer takes to complete the actions: our methodology is focused on the delib-
eration and executive capabilities of a controller. Also, some highly specialized
works are focused on analyze the functional support –i.e. [8].

Graphical report. As stated before, a suitable way to provide reports is by
means of graphical representations. For example, in Autonomous Levels For
Unmanned Systems (ALFUS) [16] and Performance Measures For Unmanned
Systems (PerMFUS) [12], a three axis representation based on the mission and
environment complexity and human independence is presented.

In a similar way, here, a circular graphic representation, such as the one de-
picted in fig. 1, is proposed to represent the autonomous controller performance.
Such representation presents three different areas. Namely, starting from the
center, the Global Score (GS), the execution times and the metrics scores area.

The Global Score (GS) presented in the center of the figure represents a
synthetic evaluation for the architecture in a scale between 0 and 10, that can
be compared with the Sheridan’s model [20]. In that model, the score increases
with the level of autonomy demonstrated by the controller, being 10 a fully
autonomous system. In our evaluation, a higher score represents a better evalu-
ation as a function of the defined metrics. To compute the GS value, only metrics

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

5

Fig. 1. The OGATE graphical report.

scores are considered, being the score directly proportional to the filled area of
the ring, and computed as follows:

GS =

∑n
i=0

(
µS
i · µW

i

)

1000
(3)

Surroundings the GS area, three circular bars are depicted. These bars rep-
resent the average time required by the considered autonomous controller to
complete each scenario. Starting from the center, these bars represent: the ex-
ecution time in (i) nominal execution, (ii) in dynamic goal injection and (iii)
execution failures.

Finally, the external ring in the chart is decomposed into four quadrants.
The smallest circumference of the ring represents the smallest score for a metric
(µS

i = 0, when the metric score is equal or bigger to its upper bound), while the
outside circumference is the best value (µS

i = 100, or a metric value closer to the
lower bound). In each quadrant there are one or more metric scores represented
as a filled circular sector. So, depicting a metric requires metric weight (µW

i

provided by the user) and metric score (µS
i obtained from the execution using

eq. 2). As a result, the higher is the weight of the metric and its score, the higher
is the filled area of the ring. Then, a evaluation with a GS of 10 is this one in
which the metrics score fills all the ring.

This methodology constitutes a generic and reproducible process to evaluate
autonomous controllers while considering varying execution scenarios. In this
regard, the definition of metrics, i.e., weights, bounds and experimental cases,
is the basic step on which rely to reproduce the evaluation results. Also, with
the proposed minimal metrics set and graphical representation, we can analyze
and compare different aspects of controllers performance in an straightforward
manner.

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

6

3 The OGATE framework

Autonomous controllers are often tested using hand tailored testbenchs. Such ef-
forts require a great work that is specifically done for the controller and platform
under study and, thus, hardly exportable and reproducible.

OGATE constitutes an engineering effort that, taking advantage of the re-
search effort described above, aims to facilitate the definition, execution and
reporting of large testbenchs that can be shared and reproduced between dif-
ferent researchers. In this regard, OGATE is a testing environment that can
be exploited in order to implement a suitable sequence of evaluation steps for
supporting the objective assessment of autonomous controllers.

To achieve these objectives OGATE provides services for instantiating, ex-
ecuting and monitoring the required components of an autonomous controller,
while generating reports after tests execution with the collected information un-
der a unified and controlled environment. Furthermore, OGATE also constitutes
an interactive tool to help designers and operators of autonomous controllers
providing an interface for in-execution control and inspection of the controlled
system during execution.

Figure 2 provides a conceptual vision of the OGATE system in which the
three relevant modules that constitutes the framework are depicted. These mod-
ules are directly related to the main services provided: instantiation is responsi-
bility of the Mission Specification module, while execution and monitor are car-
ried out by the Mission Execution. Finally, the Graphical User Interface (GUI)
enables the user to interact with the system in a friendly manner, trying to
encapsulate the complexity of the controlled system.

When we have defined the tests objective, metrics and the controller to eval-
uate, we need to provide OGATE the required information that enables the
system to attach the different configurations of the controller under study, the
scenarios and the relevant parameters to measure. This is done by means of
an eXtensible Markup Language (XML) configuration file that can be created
within the OGATE GUI. The tool is general and does not provide the metrics to
measure, is responsibility of the user to define them. In OGATE the metrics are
represented by its name and the required values to perform the evaluation pre-
sented previously –at least the value range, relevance of the metric in the final
evaluation and position in the graphical report. The configuration of the au-
tonomous controller entails some engineering knowledge of the controller, while
configuring the scenarios –goals and metrics– is more related to operators and
planning experts skills. Also, the platform (real or simulated) exploited for the
tests shall be properly provided.

A particular capability of the OGATE system is the possibility of automat-
ically generate different scenarios and controller configurations by exploiting a
template schema. In the OGATE configuration file it is possible to define dif-
ferent parameters –i.e goals, initial conditions among others– as templates, and,
for each template, provide a set of instances. Before execution, OGATE is able
to combine all instances possibilities to automatically attach the configuration
files to create different scenarios and configurations to be tested.

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

7

Fig. 2. OGATE concept.

With the information provided in the XML configuration file, OGATE per-
forms the execution by activating the different components of the autonomous
controller, accordingly to the configurations provided. Then, the tool is in charge
of supervising and monitoring the controller execution by inspecting internal
monitors of the different components and retrieving relevant information about
its performance. When testing challenging scenarios –dynamic goal injection or
execution failures–, OGATE is also responsible of modifying the nominal exe-
cution by interacting with the controlled system sending the required telecom-
mands and/or telemetry messages that lead to include a new goal in the con-
trolled system or to modify the execution outcomes. The telemetry/telecommands
required shall be provided by the user in a format that is understood by the au-
tonomous controller; OGATE acts as a relay by simulating the operator –goal
injection– or the functional support –execution failure.

Finally, the collected information are exploited to generate detailed reports
to support assessments based on the analysis of the considered metrics. In this
way, OGATE –at the end of the execution– provides a graphical report as the
one presented in fig. 1, but also the temporal profiles of the selected metrics
and their representative values –minimum, maximum, average and aggregated
value– in a Comma Separated Values (CSV) file that can be assessed with other
analysis tools. Also, during execution, the OGATE GUI provides to the user the
representative metrics values and temporal profiles in real-time.

In order to control and to retrieve data from the controlled system, some
parts of the autonomous controller shall be accessible during execution. To deal
with this requirement, OGATE implements a set of interfaces to enable external
system interconnection. Those parts which implement interfacing with OGATE
are called OGATE plugin. By means of these interfaces, the status of a plugin
can be monitored and modified by OGATE, while also the relevant metrics can
be gathered and provided to the user during execution. The implementation
of such interfaces in the autonomous controller shall be done to exploit the
OGATE capabilities; anyway, a similar effort shall be done in order to perform
hand tailored tests campaigns. In this sense, the benefits of exploit OGATE are

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

8

related to the saved effort related to prepare the tests campaign and the later
data collection and analysis.

Regarding this, to work with OGATE, first it is required to perform an
engineering effort to implement the required interfaces to enable the control
and data inspection of the relevant parts of the autonomous controller and,
then, provide the XML configuration file, including the controller configuration,
scenarios description and metrics to measure. With this information, OGATE
automatically performs tests execution, data gathering and report generation
at the end of the execution. Technically, OGATE is implemented in Java and
the communication with the autonomous controller is done by means a simple
message protocol constructed over TCP/IP.

Finally, OGATE has been designed to directly connect the planning and/or
execution layers of an autonomous controller. So, performing experiments with
either simulated or actual robotic platforms is not relevant

4 A planetary exploration case study

To assess the test campaign presented later in this paper, we have employed
a planetary exploration case study employing the DALA robotic platform. In
particular, DALA is an iRobot ATRV robot that provides a number of sensors
and effectors, allowing to be used for autonomous exploration experiments. It
can use vision based navigation, as well as a Sick laser range finder, being the
vision system formed by two cameras mounted on top of a Pan-Tilt Unit (PTU).
Also, it has a panoramic camera and a communication facility

In this paper to execute tests, the DALA rover has been simulated by means
of a software environment3 based on OPRS [14], that offers the same robotic
functional interface as well as fully replicating the physical rover behaviors (i.e.,
random temporal duration for uncontrollable tasks).

The objective of the robotic platform is to address a planetary exploration
problem. The mission goal is a list of required pictures to be taken in differ-
ent locations with an associated PTU configuration. During the mission, the
Ground Control Station (GCS) may be not visible for some periods. Thus, the
robotic platform can communicate only when the GCS is visible. A graphical
representation of the problem is presented in fig. 3.

The rover must operate following some operative rules to maintain safe and
effective configurations. The conditions that it must hold during the overall
mission are: (C1) while the robot is moving the PTU must be in the safe position;
(C2) pictures can only be taken if the robot is still in one of the requested
locations while the PTU is pointing at the desired direction; (C3) once a picture
has been taken, the rover has to communicate the picture to the GCS; (C4) while
communicating, the rover has to be still; and (C5) while communicating, the
GCS has to be visible.

3 DALA software simulator courtesy of Felix Ingrand and Lavindra De Silva from
LAAS-CNRS.

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

9

Fig. 3. Example of the planetary exploration with DALA.

5 The GOAC controller

Thanks to the Robotic Department of the European Space Agency (ESA) we
have been able to use the Goal Oriented Autonomous Controller (GOAC) [6],
an effort from the agency to create a reference platform for robotic software for
different space missions. The GOAC architecture is the integration of several
components: (i) a timeline-based deliberative layer which integrates a planner,
called OMPS [9], built on top of Advanced Planning & Scheduling Initiative
(APSI) – Timelines Representation Framework (TRF) [7] to synthesize flexible
temporal action plans and revise them according to execution needs; (ii) a Teleo-
Reactive Executive (TREX) [22] to synchronize the different components under
the same timeline representation; and (iii) a functional layer which combines
Generator Of Modules (GenoM) [15] with a component based framework for
implementing embedded real-time systems Behaviour Interaction Priority (BIP);
[4].

GOAC aims to constitute a general purpose autonomous controller capable to
be tailored for different missions/platforms. In that sense, a GOAC instance is a
determined and functional configuration to successfully accomplish an objective.
The aspect that determines the capabilities of the architecture is the number and
hierarchy of the TREX reactors. A reactor is an entity that operates over one
or more timelines by (a) deliberating over their required status to achieve the
mission goals and/or (b) modifying the status of the timelines as a result of an
operation or for an environment change.

In this paper, we exploit a rather simple instance with two reactors as shown
in fig. 4: a Deliberative reactor and a Command dispatcher reactor. The first one
is responsible of performing the deliberative task given a domain and a problem
encoded in Domain Definition Language (DDL) and Problem Definition Lan-
guage (PDL) respectively, following a sense-plan-act paradigm. The deliberative
reactor can operate with two different planning policies: a single goal policy, in
which goals are planned as a sequnce (i.e., one after the other), following a sort
of batch schema; or, a all goals policy, in which a unique planning step gener-
ates a solution plan for all the goals. The Command dispatcher is in charge of

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

10

Fig. 4. GOAC instance used in this paper.

executing commands and collecting execution feedback, being connected to the
functional layer.

A plan in GOAC has the form presented in fig. 5, in which the involved time-
lines are depicted. The Deliberative reactor generates the different transitions
accordingly to the constraints and temporal relations defined in the domain,
while the Command dispatcher encodes the planned values into actual com-
mands for the rover and uses the feedback provided by the functional layer to
produce observations on the low-level timelines that represent the current status
for the robot systems.

Finally, it is worth observing that in GOAC the planning and execution are
interleaved: while the functional layer is executing a command, the executive
is permanently observing the environment, so, it is capable of detect changes
and respond in a short time by exploiting reactive planning schemes, instead of
perform a replanning process, often more expensive.

6 Experimental results

This section presents the evaluation of the performance for the GOAC au-
tonomous controllers using the planetary exploration case study with the DALA
robotic platform introduced above. The evaluation takes advantage of the OGATE
framework to automatically perform the tests under different circumstances –
nominal execution, dynamic goal injection and execution failure. The experi-
ments have been ran on a PC endowed with an Intel Core i5 CPU (2.4GHz) and
4GB RAM.

More specifically, to perform the tests execution, a suitable GOAC plugin
for OGATE has been implemented in order to send to OGATE all the rele-
vant information from the internal components. Also, the different configuration
parameters for the GOAC system have been adapted to exploit the OGATE
template system. In this way, different templates have been defined to identify
the deliberative planning policy, mission goals, temporal uncertainty in action
durations and the number of communication opportunities. More in particular,
for the different templates we have provided the following set of instances vary-
ing the complexity of the problem and the execution conditions: (i) planning
policy, selecting between the single goal or the all goals; (ii) plan length by

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

11

Fig. 5. A plan for the planetary exploration in GOAC.

increasing the number of requested pictures (from 1 to 3); (iii) plan flexibility
or temporal uncertainty, in which for each uncontrollable activity (i.e., robot
and PTU movements as well as camera and communication tasks), a minimal
duration is set, but temporal flexibility on activity termination is considered, i.e.,
the end of each activity presents a tolerance ranging from 0 to 10 seconds; and
(iv) plan choices as function of the number of communication opportunities
spanning from 1 to 4. In general, among all the generated problems instances,
the ones with higher number of required pictures, higher temporal flexibility,
and higher number of visibility windows result as the hardest.

Then, OGATE has been exploited to: (i) generate the considered scenarios,
(ii) carry out all the different controller executions and (iii) collect performance
data from the controller. For each execution setting, 10 runs have been performed
and average values for the defined metrics are reported. After the collection of
performance information in all the considered scenarios, OGATE is able to gen-
erates a report containing a wide set of charts corresponding to different control
configurations, planning problem instances and execution settings. Finally, for
the 10 executions we have considered 4 nominal executions, 3 with goal injection
and 3 for execution failure. For the dynamic injection scenario, a new picture
is requested between the seconds 40 and 60 after the mission begin and, for
the execution failure, a miss-configuration of the PTU occurs during its first
reorientation.

For measuring performance, we exploited the metrics presented earlier in
the paper. The metrics are captured for both reactors in the GOAC controller
and the following ranges (in seconds) have been considered for the one picture
scenario: [0, 4] for the operational time; [0 ,1] for the goal processing time; [0, 7]
for the state processing time; and [0, 4] for the deliberation time. The ranges for
the metrics have been obtained analyzing the results of different executions of
the GOAC architecture in the considered scenarios. Also, as more pictures are
required, these times are bigger, thus we have increased the previous ranges to

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

12

Table 1. OGATE score for all instances clustered by the testbench parameters using
two planning policies.

Plan Choices 1 2 3 4 1 2 3 4

Plan Length 1 picture

Plan Flexibility All goals Single goal

0 5.11 5.82 5.70 5.94 5.25 5.25 5.25 5.22
5 5.78 5.80 4.60 5.48 5.24 5.18 5.78 5.72
10 5.74 3.64 3.07 2.77 5.24 5.43 4.96 5.73

Average 4.92 5.36

Plan Length 2 pictures

Plan Flexibility All goals Single goal

0 5.92 5.48 5.86 5.79 5.49 5.39 5.30 5.28
5 5.42 5.73 6.81 5.70 5.91 5.83 5.18 5.83
10 4.80 1.63 4.67 4.07 6.13 4.30 3.09 3.92

Average 4.94 5.14

Plan Length 3 pictures

Plan Flexibility All goals Single goal

0 4.21 0.00 0.00 0.00 6.11 5.14 5.15 5.11
5 5.44 0.00 0.00 0.00 5.99 5.82 5.86 5.80
10 4.65 1.13 0.00 0.00 5.83 3.27 1.47 2.27

Average 1.06 4.80

be fair in the evaluation. Finally, all the metrics have the same weights, being
each quadrant reserved for each metric in the graphical evaluation.

Considering all the possible combinations, we obtain 72 possible instances of
the GOAC controller. For each of them we obtained a graphical report such as
the one presented in fig. 1 – that particular one shows the scenario for one picture
with the single goal policy, 4 communications opportunities and 10 seconds of
temporal flexibility. As we cannot provide a detailed discussion on each possible
scenario, we will focus on the Global Scores computed for each instance, as stated
in table 1.

A first straightforward evidence that can be elicited observing the Global
Score is that the controller performs similarly with 1 and 2 pictures for both
planning policies but has a performance fall for the all goals when executing
scenarios with 3 pictures that does not occur with the single goal.

In all the tested scenarios, the GOAC deliberative component is able to
generate a valid plan, but the controller fails in properly completing its execution
in some of them. In particular, the execution failure scenario is never completed:
when the deliberative component receives the PTU miss-configuration, it does
not correspond to its planned states, producing a failure that leads to a system
halt. Otherwise, the nominal and dynamic goal injection scenarios are usually
completed, except in particular cases of the all goals policy : for 1 picture with
2 and 3 communications opportunities and 10 seconds of temporal flexibility;
for 2 pictures with 2 communications opportunities and 10 seconds of temporal
flexibility; and, for 3 pictures, the all goals has several problems to achieve the

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

13

mission goals except for the one communication opportunity scenario, in which
completes the nominal and dynamic goal injection scenarios for all temporal
flexibilities. Instead, the single goal policy only fails to perform the dynamic goal
injection scenario for the hardest cases: 3 pictures with 3 and 4 communications
opportunities and 10 seconds of temporal flexibility. If we analyze the average
values for the different planning policies clustering only the scenarios by the
number of pictures, we can see that there is no relevant difference between both
planning policies for 1 and 2 pictures, but, for 3 pictures, the single goal policy
seems to be more adequate to be deployed. In fact, the single goal policy usually
outscores the all goals policy.

7 Conclusions

This paper has presented some recent results in addressing the open issue of eval-
uating the performance of a planning and execution system. To deal with this
problem the paper first proposes a methodology to properly guide the testing
phase and achieve an objective evaluation. Second, it describes the operational-
ization of such methodology in a software environment, called OGATE, that is
able to perform large test campaigns for different challenging scenarios without
user interaction.

The described approach has been used to test the GOAC autonomous con-
trollers. The paper has presented a minimum set of metrics over which the con-
troller performance has been profiled. It is worth underscoring that performing
such tests without the described tool requires a large amount of time and a non
trivial work to set up different configurations and retrieve information related
to the considered metrics. The experiments have been able to characterize the
different planning policies of the GOAC deliberative component and the perfor-
mance of the system as a function of the complexity of the given problem.

Among future works, the definition of a more thorough set of standard metrics
constitutes a key immediate step. Additionally, OGATE will be used to com-
pare different plan-based deliberative platforms on the same benchmark tests (a
natural extension of the current status).

Acknowledgements

Pablo Muñoz is supported by the European Space Agency (ESA) under the Net-
working and Partnering Initiative (NPI) Cooperative systems for autonomous
exploration missions. CNR authors are partially supported by the Italian Min-
istry for University and Research (MIUR) and CNR under the GECKO Project
(Progetto Bandiera “La Fabbrica del Futuro”). Authors want to thank to the
ESA’s technical officer Mr. Michel Van Winnendael for his continuous support.

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

14

References

1. Ad Hoc ALFUS Working Group: Autonomy Levels for Unmanned Systems (AL-
FUS) Framework – Framework Models. Tech. Rep. 1011-II-1.0, National Institute
of Standards and Technology (December 2007)

2. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for
autonomy. Field Robotics, Special Issue on Integrated Architectures for Robot
Control and Programming 17, 315–337 (1998)

3. Aschwanden, P., Baskaran, V., Bernardini, S., Fry, C., R-Moreno, M.D., Muscet-
tola, N., Plaunt, C., Rijsman, D., Tompkins, P.: Model-unified planning and execu-
tion for distributed autonomous system control. In: Association for the Advance-
ment of Artificial Intelligence (AAAI) 2006 Fall Symposia. Washington DC, USA
(October 2006)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: 4th IEEE Int. Conference on Software Engineering and Formal Methods.
Washington DC, USA (September 2006)

5. Behnke, S.: Robot competitions – ideal benchmarks for robotics research. In: 2006
IEEE/RSJ International Conference on Robots and Systems (IROS) Workshop on
Benchmarks in Robotics Research. Beijing, China (October 2006)

6. Ceballos, A., Bensalem, S., Cesta, A., Silva, L.D., Fratini, S., Ingrand, F., Ocón, J.,
Orlandini, A., Py, F., Rajan, K., Rasconi, R., Winnendael, M.V.: A Goal-Oriented
Autonomous Controller for Space Exploration. In: ASTRA 2011 - 11th Symposium
on Advanced Space Technologies in Robotics and Automation. Noordwijk, the
Netherlands (April 2011)

7. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an end-to-end plan-
ning application from a timeline representation framework. In: IAAI-09. Proc. of
the The Twenty-First Innovative Applications of Artificial Intelligence Conference.
Pasadena, CA, USA (July 2009)

8. Fontana, G., Matteucci, M., Sorrenti, D.G.: RAWSEEDS: Building a benchmarking
toolkit for autonomous robotics. In: Amigoni, F., Schiaffonati, V. (eds.) Methods
and Experimental Techniques in Computer Engineering, pp. 55–68. SpringerBriefs
in Applied Sciences and Technology, Springer International Publishing (2014)

9. Fratini, S., Pecora, F., Cesta, A.: Unifying Planning and Scheduling as Timelines
in a Component-Based Perspective. Archives of Control Sciences 18(2), 231–271
(2008)

10. Gat, E.: Integrating planning and reacting in a heterogeneous asynchronous archi-
tecture for controlling real-world mobile robots. In: the Tenth National Conference
on Artificial Intelligence (AAAI). pp. 809–815. San Jose, CA, USA (July 1992)

11. Gertman, D.I., McFarland, C., Klein, T.A., Gertman, A.E., Bruemmer, D.J.: A
methodology for testing unmanned vehicle behavior and autonomy. In: Perfor-
mance Metrics for Intelligent Systems (PerMIS’07) Workshop. Washington, D.C.
USA (August 2007)

12. Huang, H.M., Messina, E., Jacoff, A., Wade, R., McNair, M.: Performance mea-
sures framework for unmanned systems (PerMFUS): Models for contextual metrics.
In: Performance Metrics for Intelligent Systems (PerMIS’10) Workshop. Baltimor,
MD, USA (September 2010)

13. Hudson, A.R., Reeker, L.H.: Standardizing measurements of autonomy in the Ar-
tificially Intelligent. In: Performance Metrics for Intelligent Systems (PerMIS’07)
Workshop. Washington, D.C. USA (August 2007)

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

15

14. Ingrand, F., Chatila, R., Alami, R., Robert, F.: PRS: A high level supervision and
control language for autonomous mobile robots. In: in Proc. of the 1996 IEEE
International Conference on Robotics and Automation (ICRA’96). Minneapolis,
MN, USA (September 1996)

15. Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F.: GenoM3: Building
middleware-independent robotic components. In: 2010 IEEE Proc. of the Interna-
tional Conference on Robotics and Automation. Anchorage, Alaska, USA (May
2010)

16. McWilliams, G.T., Brown, M.A., Lamm, R.D., Guerra, C.J., Avery, P.A., Kozak,
K.C., Surampudi, B.: Evaluation of autonomy in recent ground vehicles using the
autonomy levels for unmanned systems (ALFUS) framework. In: Performance Met-
rics for Intelligent Systems (PerMIS’07) Workshop. Washington, D.C. USA (Au-
gust 2007)

17. Muñoz, P., Cesta, A., Orlandini, A., R-Moreno, M.D.: First steps on an on-ground
autonomy test environment. In: 5th IEEE International Conference on Space Mis-
sion Challenges for Information Technology (SMC-IT). IEEE (2014)

18. Nesnas, I., Simmons, R., Gaines, D., Kunz, C., Diaz-Calderon, A., Estlin, T.,
Madison, R., Guineau, J., McHenry, M., Shu, I.H., Apfelbaum, D.: CLARAty:
Challenges and steps toward reusable robotic software. Advanced Robotic Systems
3(1), 23–30 (2006)

19. Orebäck, A., Christensen, H.I.: Evaluation of architectures for mobile robotics.
Journal of Autonomous Robots 14, 33–49 (2003)

20. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels
of human interaction with automation. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 30(3), 286–297 (May 2000)

21. del Pobil, A.P.: Why do we need benchmarks in robotics research? In: 2006
IEEE/RSJ International Conference on Robots and Systems (IROS) Workshop
on Benchmarks in Robotics Research. Beijing, China (October 2006)

22. Py, F., Rajan, K., McGann, C.: A Systematic Agent Framework for Situated Au-
tonomous Systems. In: AAMAS-10. Proc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (2010)

P. Muñoz et al. Evaluating Autonomous Controllers: An Initial Assessment

16

Quality Metrics to Evaluate Flexible Timeline-based
Plans

Alessandro Umbrico1, Andrea Orlandini2, Marta Cialdea Mayer1

1 Dipartimento di Ingegneria
Università degli Studi Roma Tre

2 Istituto di Scienze e Tecnologie della Cognizione
Consiglio Nazionale delle Ricerche, Roma

Abstract. Timeline-based Planning has been successfully applied in several con-
texts to solve Planning and Scheduling (P&S) problems. A key enabling feature
of the timeline-based approach to planning is its capability of dealing with tempo-
ral flexibility. Temporal flexibility is an important feature in real world scenarios.
Indeed, it can be exploited by an executive system for robust on-line execution
of flexible plans in order to absorb possible delays during the execution. In this
regard, it is useful to define quality metrics to evaluate the robustness of flexible
timeline-based plans. In this paper, a set of quality metrics for flexible timeline-
based plans are defined and discussed when applied to a specific timeline-based
framework. In fact, we consider the framework EPSL, developed to support the
design of P&S applications, that allows the definition of different planners en-
dowed with specific heuristics. Then, an experimental analysis is presented ex-
ploiting the planners to solve planning problem instances related to a real-world
manufacturing case study. And, finally, an evaluation of planners performance is
presented and discussed comparing results also considering robustness of gener-
ated plans.

1 Introduction

The Timeline-based approach to planning has been successfully applied in several real
world scenarios, especially in space like contexts [1,2,3,4]. Besides these applications,
several timeline-based Planning and Scheduling (P&S) systems have been deployed to
define domain specific applications, see for example EUROPA [5], IXTET [6], APSI-
TRF [7]. Like in classical planning [8], it is important to consider different aspects of
the plans generated by timeline-based P&S systems, in order to evaluate their quality.
Some temporal metrics have been defined in the literature for temporal networks (often
used to represent timeline-based plans) and scheduling [9,10]. In general these met-
rics characterize the robustness of a schedule by considering the temporal constraints
between its activities.

Analogously, the robustness of a timeline-based plan can be evaluated by means of
similar measures, which are to be defined without relying on the underlying temporal
network (TN). This is particularly important when time flexibility is taken into account.
In fact, representing a flexible timeline-based plan as a TN (or a schedule) entails a sort
of simplification of the associated plan structure causing a lost of information on the

17

“dependencies” among its components which can usefully be taken into account. Such
information is useful both to generate the plan, as described in [11], and to make a more
detailed analysis of the temporal features which are relevant to evaluate the overall plan
robustness. For instance, some timeline in the plan can “dominate” the behavior of other
timelines, since its temporal deviations are most likely to propagate to the others.

This paper represents a first step towards the characterization of temporal qualities
of flexible timeline-based plans. After a brief presentation of the basic concepts un-
derlying flexible timeline-based planning, some of such metrics are introduced. Their
concrete application is shown by using planners implemented in the EPSL (Extensi-
ble Planning and Scheduling Library) framework [12]. EPSL is a domain independent,
modular and extensible software environment supporting the development of timeline-
based applications. Recently, some improvements concerning the representation and
solving capabilities of EPSL have been presented in [11]. Specifically, the framework is
enriched with the capability to model and reason on renewable resources and domain
independent heuristics supporting the planning process. The general structure of EPSL
allows for preserving “past experiences” by providing a set of ready-to-use algorithms,
strategies and heuristics that can be combined together. In this way, it is possible to
develop and evaluate different solving configurations in order to find the one which
better addresses the features of the particular planning problem to be solved. This paper
resorts to the EPSL framework and its application to a real-world manufacturing case
study, in order to evaluate and compare the performances of planners using different
heuristics and the robustness of the generated plans.

2 Flexible Timeline-based Planning

This section briefly introduces the main concepts to define flexible timeline-based plans,
along the lines of [13]. The timeline-based approach to P&S aims at controlling a com-
plex system by synthesizing temporal behaviors of its features in terms of timelines. A
planning domain is modeled as a set of features, represented by multi-valued state vari-
ables, that must be controlled over time. Causal and temporal constraints specify, for
each feature, the set V of the values the variable may assume, the allowed value transi-
tions (by means of a function T : V → 2V), and the allowed minimum and maximum
duration of each valued interval (by means of a function D associating to each value
v ∈ V a pair of time values). Moreover, the values of different state variables may be
linked by (so-called) synchronization rules, requiring that, for every time interval where
a given state variable x has the value v, there exist other time intervals where either the
same or other state variables assume some given values, which are related by some
temporal relation. All these constraints are specified in the domain specification. The
planning process aims at synthesizing temporal flexible plans that satisfy the domain
constraints and fulfill some given goals.

The evolution of a single temporal feature over a temporal horizon is called the
timeline of that feature. In general, plans synthesized by temporal P&S systems may be
temporally flexible. They are made up of flexible timelines, describing transition events
that are associated with temporal intervals (with given lower and upper bounds), instead
of exact temporal occurrences. In other words, a flexible plan describes an envelope of

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

18

possible solutions aimed at facing uncertainty during actual execution. In this regard,
they can be exploited by an executive system for robust execution. Some formalizations
have been recently proposed to describe timelines and timeline-based plans [13,14].

Broadly speaking a timeline consists of a sequence of values that are temporally
qualified by means of tokens. A token specifies the temporal interval (start and end
times) assigned to a specific value over a timeline. Flexible tokens specify a flexible in-
terval for values over timelines (i.e. values have a start interval and end interval, instead
of time points) and, as proposed in [13], they can be defined as follows (where T is the
set of “time points” and T∞ denotes T ∪ {∞}):

Definition 1 Let x = (V, T,D) be a state variable describing the set of allowed values
V , the value transition function T and the value duration function D for a domain
feature. A flexible token for the state variable x is a tuple of the form

(xi, v, (b, b′), (e, e′), (d, d′))

where i ∈ N, b, b′, e, e′, d ∈ T, d′ ∈ T∞, v ∈ V, b < e′ and dmin ≤ d < d′ ≤ dmax,
where (dmin, dmax) = D(v). The element xj is the token identifier.

Definition 2 A flexible timeline for x is a finite sequence of flexible tokens for x, whose
identifiers are x0, x1, ..., xk:

FTLx = (x0, v0, (b0, b
′
0), (e0, e

′
0), (d0, d

′
0))

...(xk, vk, (bk, b
′
k), (ek, e

′
k), (dk, d

′
k))

where b0 = b′0 = 0, ek = e′k = H is the temporal horizon of the timeline and for all
i = 0, ..., k − 1, ei = bi+1, e

′
i = b′i+1 and vi+1 ∈ T (vi).

A flexible token represents the set of its instances, i.e. the set of all non-flexible
tokens that satisfy the value duration constraints. Similarly a flexible timeline FTLx
represents the set of its instances. Namely, an instance of a flexible timeline FTLx is
made up of a sequence of instances of the tokens of FTLx and an instance of a set FTL
of timelines is a set of instances of the timelines in FTL.

However the representation of flexible plans must include also information about
the relations that have to hold between tokens in order to satisfy the synchronization
rules of the planning domain. Thus, the representation of flexible plans must include
also a set of temporal relations on tokens, guaranteeing that such rules are satisfied.

Let us consider two flexible tokens, with token identifiers xi and yk, belonging re-
spectively to the state variables x and y. A synchronization rule of the domain may
require that the flexible token xi precedes the flexible token yk. In such a case the
set of temporal relations of included in the flexible plan must contain the relations
xi before yk (i.e. e

′
x < by) in order to satisfy the synchronization rule of the domain.

Like in [15], a small set of primitive temporal relations can be considered, in terms
of which all the usual quantitative constraints can be defined, such as, for instance,
the relations xi contains[lb1,ub1][lb2,ub2] y

k and xi overlaps[lb1,ub1][lb2,ub2] y
k (where

lbj ∈ T and ubj ∈ T∞, for j = 1, 2) .

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

19

Definition 3 A flexible plan Π over the horizon H is a pair (FTL, R), where FTL is a
set of flexible timelines over the same horizon H and R is a set of relations on tokens,
involving token identifiers in some timelines in FTL.

A flexible plan represents the set of its instances. An instance of a plan Π=(FTL,
R) is an instance of FTL that respects the relations in R. When there are different ways
how a synchronization rule can be satisfied by the same set of flexible timelines FTL,
each flexible plan represents a choice among them, and different plans with the same set
FLT and different sets of relationsR represent different ways to satisfy synchronization
rules.

A planner like those described in the following can leave timelines open on the
right, i.e. they can leave an undefined temporal interval at the end of a timeline. This
means that the planner does not decide which is the temporal evolution of the timeline
after its last meaningful token.

3 Characterizing Robustness for Timeline-based Plans

Given a flexible timeline-based planner it is important to define some metrics that allow
to characterize the capacity of the generated plans to absorb temporal deviations, i.e.
their robustness. In this section, some quality metrics concerning temporal features of
plans are introduced.

There are several works in the literature that define quality metrics for evaluating
plans and planning algorithms [8,16,17,18]. In this regards we consider temporal met-
rics such as fluidity and disruptibility (introduced by [9] to characterize the robustness
of schedules on temporal networks), in order to check temporal flexibility and provide
an assessment of the robustness of timeline-based plans. In particular we adapt fluid-
ity and disruptibility metrics to timelines and define the notion of the makespan of a
timeline to indicate the “useful” portion of a timeline. Note that the term “makespan” is
typically used in scheduling problems to express the maximum duration of a schedule.
Here, we are using the same term with a slightly different meaning.

The timeline fluidity metric is an estimate of the capacity of the timeline to absorb
temporal deviations w.r.t. other timelines. It is defined as follows:

Definition 4 If FTLx is a flexible timeline for the state variable x, the fluidity of the
timeline w.r.t. the other timelines FTLy of the plan is

ξ(FTLx) =
∑
xi∈FTLx,yj∈FTLy

ρ(xi,yj)
H×n×(n−1) × 100

where xi is a token in the timeline FTLx, yj is a token in a timeline FTLy 6= FTLx,
H is the temporal horizon of the plan, and n is the number of tokens involved in the
computation.

Fluidity is computed by taking into account the temporal slack between tokens, that
is a measure of the temporal flexibility between the end time of a token and the start
time of another one:

ρ(xi, yj) = |dmax(xiend, yjstart)− dmin(xiend, yjstart)|

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

20

where dmax and dmin are respectively the maximum and minimum allowed temporal
distances between the end time of xi and the start time of yj .

The higher is the value of the fluidity of a timeline FTLx, the higher is the capacity
of other timelines of the plan to absorb its temporal deviations. Namely the higher is
the value, the lower is the risk of cascading changes on other timelines of the plan. This
metric provides a measure of temporal dependencies among the timelines of the plan.

The timeline disruptibility metric measures the amount of changes in a plan caused
by the introduction of a delay in a timeline and is defined as follows:

Definition 5 If FTLx is a flexible timeline for the state variable x, the disruptibility of
the timeline w.r.t. other timelines FTLy of the plan is

ψ(FTLx) =
1
n

∑
xi∈FTLx,yj∈FTLy

ρ(0,xi)
|{yj :yj∈∆(xi,δ)}|

where xi and yj are token of the timelines FTLx and FTLy , respectively. ∆(xi, δ) is
the set of tokens in the plan that change after the introduction of a delay δ on the token
xi ∈ FTLx.

Disruptibility is computed by taking into account the slack ρ(0, xi) of tokens, which
is a measure of the temporal flexibility between the temporal origin of the timeline and
the start time of the token.

ρ(0, xi) = |dmax(0, xistart)− dmin(0, xistart)|

It is a measure of the flexible temporal allocation of the token over the timeline.

The disruptibility metric ψ(FTLx) counts the number of changes (temporal devia-
tions) in the plan due to a temporal delay on tokens xi of the timeline FTLx.

Finally the makespan metric of a timeline is a measure of the temporal flexibility
between the last (meaningful) token of a timeline and the temporal horizon, when the
timeline leaves an undefined temporal interval at its end.

Definition 6 Given a flexible timeline FTLx for the state variable x with k tokens, the
makespan of the timeline is

µ(x) = ρ(xk,H)
H × 100

where ρ(xk, H) is the slack between the last token of the timeline xk ∈ FTLx and the
horizon H

ρ(xi, H) = |dmax(xiend, H)− dmin(xiend, H)|

It is a measure of the portion of timeline left to be used.

The higher is the value of µ(FTLx), the larger is the width of the flexible distance
between the last token of FTLx and the horizon.

In the next section we consider a case study in order to make an experimental evalua-
tions of the different planners we have defined by means of our timeline-based planning

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

21

framework EPSL. In particular we aim at characterizing qualities of plans generated us-
ing different planner configurations. It is also interesting to evaluate relations among
the defined metrics as, in some cases, metrics may be in contrast. This means that it is
not possible to obtain a plan with the maximum level of all desired qualities but that the
planner must be carefully configured in order to obtain the desired balance among all
desired qualities

4 Extensible Planning and Scheduling Library

EPSL [12] is a layered framework built on top of APSI-TRF1 [7]. It aims at defining a
flexible software environment for supporting the design and development of timeline-
based applications. The key point of EPSL flexibility is its interpretation of a planner as
a “modular” solver which combines together several elements to carry out its solving
process.

Modeling	 Layer	 -‐	 APSI-‐TRF	

EPSL	 framework	

Engine	 Heuris>cs	 Search	

Applica>on	

Microkernel	

Fig. 1. EPSL Architectural Overview

Figure 1 describes the main architectural elements of the architecture of EPSL. The
Modeling layer provides EPSL with timeline-based representation capabilities to model
a planning domain in terms of timelines, state variables, synchronizations and manage
flexible plans. The Microkernel layer is the key element which provides the framework
with the needed flexibility to “dynamically” integrate new elements into the framework.
It is responsible to manage the lifecycle of the solving process and the elements com-
posing the application instances (i.e. the planners). The Search layer and the Heuristics
layer are the elements responsible for managing strategies and heuristics that can be
used during the solving process.

1 APSI-TRF is a software framework developed for the European Space Agency by the Planning
and Scheduling Technology Laboratory at CNR (in Rome, Italy).

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

22

The Engine layer is the element responsible for managing the portfolio of algo-
rithms, called resolvers, available to EPSL-based planners. Resolver encapsulate the
logic for refining timeline-based plans. Each resolver, solves some specific conditions
(called flaws) that threat the completeness or correctness of a plan. The set of available
resolvers characterizes the expressiveness of the framework. Namely they determine
what EPSL-based planners can actually do to solve problems.

Finally the Application layer is the top-most element which carries out the solving
process and finds a solution if any. EPSL architecture allows to define modular plan-
ner instances which can be configured in different ways according to the particular
feature of the problem to address. An EPSL-user configure planners by selecting the el-
ements (e.g. heuristics, strategies and resolvers) that compose the application instance.
Similarly the user can also extend EPSL capabilities by integrating domain-specific el-
ements.

EPSL solving approach is a standard plan refinement search procedure which can be
adapted to the particular problem to solve by changing the the planner configuration. As
a matter of fact the particular strategy or heuristic applied can strongly affect planner
behaviour and performances. In particular, the planner has two important choice points
during a the search: (i) node selection choice concerning the selection of the search
space node to expand next and (ii) flaw selection choice concerning the selection of the
flaw to solve next in order to refine the current plan (i.e. node expansion).

We focused our attention on the flaw selection choice which is not a backtracking
point of the search but, in our experience, a crucial aspect to enhance planner perfor-
mances. Indeed, a careful selection of the next flaw to solve can prune the search space
by cutting off branches that would not lead to solutions. Flaws can have dependencies,
indeed, and the resolution of a flaw can simplify the resolution of other flaws in the
plan. In this regard, EPSL allows to define heuristics that support the search in selecting
the most promising flaws to solve. Typically these heuristics encapsulate some evalu-
ation criteria that allow to rate plan flaws by taking into account one or more feature.
In [11], we developed a domain independent heuristic, called Hierarchical Flaw Se-
lection heuristic (HFS), which rate flaws by analyzing the hierarchical structure of a
timeline-based domain.

4.1 Hierarchical Flaw Selection heuristic

A timeline-based domain specifies relations between different timelines by means of
synchronization rules. Thus, given a timeline A and a timeline B, a synchronization
rule SA,B from a token x ∈ A to a token y ∈ B implies a dependency between these
timelines. Namely, tokens on timeline B are subject to tokens on timeline A.

Therefore, it is possible to build a Dependency Graph (DG) among timelines by
looking at synchronization rules. Figure 2(a) shows a set of timelines with synchro-
nization rules and Figure 2(b) shows the resulting dependency graph (note that the
dependency graph defined here is different from the graph used in EUROPA2 [19]).

The DG encodes dependencies among timelines, and a hierarchy can be extracted
by analysing the graph. An edge from a node A to a node B in the DG represents a
dependency between timeline A and timeline B (i.e. tokens of timeline B depend on
tokens of timeline A). Consequently the hierarchy level of timeline A is not lower than

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

23

the hierarchy level of B. If no path in the DG connects B to A, then A is at a higher
level in the hierarchy than B (i.e. timeline A is more independent than timeline B).
Conversely if A is connected to B and vice-versa in the DG (i.e. a cycle is detected) then
timelines A and B have the same hierarchical level, and they are said to be hierarchically
equivalent. For instance the hierarchy extracted from the DG in Figure 2 is A ≺ C ≺
B ≺ D.

Usually planning domain specifications that follow a hierarchical modeling ap-
proach (like the approach described in [11]), generate a non-flat hierarchy of timelines
(and sometimes even an acyclic DG).

A	

B	

C	

D	

SA,B	 SA,C	

SC,B	 SB,D	

SC,D	

SB,D

A

B

C

D

SA,B	

SA,C	

SC,B	

SC,D	

(a) (b)

Fig. 2. From Synchronization rules to Dependecy Graph: (a) domain timelines and synchroniza-
tion rules; (b) the dependency graph resulting from synchronization rules between timelines

The HFS exploits this hierarchy to define a flaw hierarchy feature and characterize
the independency degree of plan flaws. The idea is to solve first “independent” flaws,
i.e. flaws belonging to the top most timeline in the hierarchy (e.g. flaws on timeline A
w.r.t. Figure 2), in order to simplify the resolution of “dependent” flaws. In addition to
the hierarchy feature, HFS uses a flaw type feature to define a structure for the solving
process and the flaw degree feature to characterize the criticality of a flaw (similarly to
the fail first principle in constraint satisfaction problems).

The HFS selects the best flaw to solve next by combining together all the features
described above as a pipeline of filters:

Φ0(π)
fh−→ Φ1(π)

ft−→ Φ2(π)
fd−→ Φ3(π)→ φ∗ ∈ Φ3(π)

where fh filters plan flaws according to the flaw hierarchy feature (i.e. it returns
only the subset of flaws belonging to the most independent timeline of the hierarchy),
ft filters flaws according to the flaw type feature and fd filters flaws according to the
flaw degree feature. Then, given a set of flaws of a plan Φ0(π) every filter extracts
the subset of the relevant flaws according to the related feature. The pipeline resulting
set Φ3(π) ⊆ Φ0(π) is composed by flaws representing equivalent choices from the
heuristic point of view, so HFS randomly select the “best” one to solve next φ∗ ∈ Φ3(π).

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

24

5 Experimental Evaluation

The objective of the experimental analysis is to evaluate flexible timeline-based plans
generated by EPSL-based planners with different configurations. In particular we evalu-
ate plans by considering the fluidity and makespan metrics3 as well as the planners time
performances. In this regards, we use two configurations of EPSL-based planners by
selecting two different heuristic functions: (i) the HFS planner, using the HFS heuris-
tic; (ii) the TFS planner (Type Flaw Selection planner), which uses a heuristic function
based only on the flaw type feature to select flaws (configuration used before the intro-
duction of the HFS heuristc).

5.1 A pilot plant

Here, we consider a pilot plant involved in an on-going research project called Generic
Evolutionary Control Knowledge-based mOdule (GECKO): a manufacturing system for
Printed Circuit Boards (PCB) recycling [20]. The objective of the system is to analyze
defective PCBs, automatically diagnose their faults and, depending on the gravity of
the malfunctions, attempt an automatic repair of the PCBs or send them directly to
shredding.

The pilot plant contains 6 working machines (M1,..., M6) that are connected by
means of a Reconfigurable Transportation System (RTS), composed of mechatronic
components, i.e., transport modules. Figure 3(a) provides a picture of a transport mod-
ule. Each module combines three transportation units. The units might be either uni-
directional or bidirectional; specifically the bidirectional units enable the lateral move-
ment (i.e., cross-transfers) between two transportation modules. Thus, each transport
module can support two main (straight) transfer services and one to many cross-transfer
services. Figure 3(b) depicts two possible configurations.

Configuration 1 supports the forward (F) and backward (B) transfer capabilities
as well as the left (LC1) and right (RC1) cross transfer capabilities. Configuration 2
extends Configuration 1 by integrating a further bidirectional transportation unit with
cross transfer capabilities LC2 and RC2. The maximum number of bidirectional units
within a module is limited just by its straight length (three, in this particular case). The
transport modules can be connected back to back to form a set of different conveyor
layouts. The manufacturing process requires PCBs to be loaded on a fixturing system
(pallet) in order to be transported and processed by the machines. The transportation
system is to move one or more pallets and each pallet can be either empty or loaded
with a PCB to be processed.

Such an RTS generally allows for a number of possible routing solutions for each
single pallet which is associated to a given destination. Transport modules control sys-
tems have to cooperate in order to define the paths the pallets have to follow to reach
their destinations. These paths are to be computed at runtime, according to the actual
status and the overall conditions of the shop floor (i.e., no static routes are used to move
pallets).

3 In this preliminary experimental analysis, disruptibility metric does not provide relevant data

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

25

F

LC
1

RC
1

B

F B

C
O

N
FI

G
U

R
A

TI
O

N
 2

C
O

N
FI

G
U

R
A

TI
O

N
 1

LC
1

RC
1

LC
2

RC
2

!F

LC1

RC1

B

F B

CONFIGURATION 2

CONFIGURATION 1

LC1

RC1

LC2

RC2

!

F

LC
1

RC
1

B

F B

C
O

N
FI

G
U

R
A

TI
O

N
 2

C
O

N
FI

G
U

R
A

TI
O

N
 1

LC
1

RC
1

LC
2

RC
2

!

F

LC
1

RC
1

B

F B

C
O

N
FI

G
U

R
A

TI
O

N
 2

C
O

N
FI

G
U

R
A

TI
O

N
 1

LC
1

RC
1

LC
2

RC
2

!

F

LC
1

RC
1

B

F B

C
O

N
FI

G
U

R
A

TI
O

N
 2

C
O

N
FI

G
U

R
A

TI
O

N
 1

LC
1

RC
1

LC
2

RC
2

!

F

LC
1

RC
1

B

F B

C
O

N
FI

G
U

R
A

TI
O

N
 2

C
O

N
FI

G
U

R
A

TI
O

N
 1

LC
1

RC
1

LC
2

RC
2

!

(a) (b)

Fig. 3. (a) A transport module; (b) Their transfer services

The description of the distributed architecture and some experimental results re-
garding the feasibility of the distributed approach w.r.t. the part routing problem can be
found in [21]. Transportation Modules (TMs) rely on P&S technology to synthesize
activities for supporting the work flow within the shop floor. As a matter of fact TM
agents are endowed with Timeline-based planners (build on top of EPSL framework)
that assess modules’ internal capabilities during the part routing computation process
and build modules’ plans for coordination and transportation task.

Figure 4 shows the timeline-based model of a generic transportation module (TM)
of the GECKO case study extended with energy consumption resource to estimate en-
ergy consumption profile of transportation tasks. The Channel state variable models
the high-level transporting tasks the TM is able to perform. Each value of the Channel
state variable models a particular transportation task indicating the ports of the mod-
ule involved in the execution of the task. For instance Channel F B models the task of
transporting a pallet form port F to port B w.r.t. Figure 3(b).

The Change-Over state variable models the set of internal configuration the trans-
portation module can assume in order to actually exchange pallets with other modules.
Namely configurations identify the internal paths a pallet can follows to traverse the
module. For instance, CO F B in Figure 4 represents the configuration needed to trans-
port a pallet from port F to port B.

The Energy-Consumption resource models the energy consumption policy o the
TM. It estimates the energy consumption of transportation tasks of the module, i.e.
the energy requirements for channel activities of the module. Activities such as moving
conveyors or cross transfers require energy to be performed and we model a system
requirement which entails that the instant energy consumption of TMs cannot exceed
a predefined limit for safety and optimization reasons of the physical device. In this
way, the planner must organize activities in order to not violate the energy consumption
constraint of the module.

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

26

Idle	

Channel_F_B	
Channel

Channel_B_F	

...
Channel_R1_L3	

Energy-Consumption

M
A

X

CO_FB	

Changing	 Change-Over

CO_R1L1	
CO_R3L3	

... Available	 Not	
Available	

Neighbor-F
Neighbor-‐B	 Neighbor-‐L	

Neighbor-‐R	

Fig. 4. Timeline-based model for a full instantiated TM

A set of external state variables complete the domain by modeling possible states
of TM’s neighbor modules. Neighbors are modeled by means of external state variables
because they are not under the control of the module. Namely, the TM cannot decide
the state of its neighbors. However it is important to monitor their status because a
TM must cooperate with them in order to successfully carry out its tasks. For instance
the TM must cooperate with Neighbor F and Neighbor B to successfully perform a
Channel F B task. Therefore Neighbor F and Neighbor B must be Available during
task “execution”.

Finally a set of synchronization rules specify how a TM implements its channel
tasks. Figure 4 groups these rules in the dotted arrows between state variables for read-
ability reasons. These rules specify operative constraints (causal and temporal con-
straints) describing the sequence of internal configurations and “external” conditions
needed to safely perform Channel tasks. For instance, a synchronization rule for the
Channel F B task require that the module must be set in configuration CO F B and
that neighbor F and neighbor B must be Available during the “execution” of the task.

5.2 Evaluating Plan Robustness

In the GECKO case study we have defined four planning domain variants by considering
different physical configurations of a TM of the manufacturing plant, i.e., by varying
the number of cross-transfer units composing the module and under the assumption that
module’s neighbors are always available for cooperation. Namely, the tests were run on
the following planning domains: (i) simple, the configuration with no cross transfer; (ii)
single, the configuration with only one cross transfer unit; (iii) double, the configuration
with two cross transfer units; (iv) full, the configuration with three cross transfer units
(the maximum allowed in the case study we considered). The higher is the number
of available cross transfers, the higher is the number of elements and constraints the
planner has to deal with at solving time.

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

27

0"

10"

20"

30"

40"

50"

60"

70"

1" 2" 3" 4" 5" 6" 7" 9" 9" 10"

so
lv
in
g(
)m

e(
(in

(se
co
nd

s)
(

number(of(goals(

HFS" TFS" TLFS" DFS" RFS"

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

So
lv
in
g	
)m

e	
(in

	 se
co
nd

s)
	

number	 of	 goals	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

So
lv
in
g	
)m

e	
(in

	 se
co
nd

s)
	

number	 of	 goals	

(a) (b)

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

So
lv
in
g	
)m

e	
(in

	 se
co
nd

s)
	

number	 of	 goals	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

So
lv
in
g	
)m

e	
(in

	 se
co
nd

s)
	

number	 of	 goals	

(c) (d)

Fig. 5. HFS and TFS planners performances on: (a) simple configuration; (b) single configuration;
(c) double configuration; (d) full configuration

The charts in Figure 5 show the solving time trends of the EPSL-based planners
(within a timeout of 180 seconds) w.r.t. the growing dimension of the planning problem
(i.e. a growing number of goals) and the growing complexity of the module to control
(i.e. the number of available cross transfers). The results show that the HFS planner
dominates TFS planner on the considered planning domains. The introduction of the
HFS heuristic in the solving process entails a general improvement of the performances
in terms of both solving time and scalability of framework.

Let us consider the subset of problems solved by both HFS and TFS planners in
Figure 5 and make a comparison of generated plans. Figure 6 compares the generated
plans by considering the fluidity metric previously introduced.

The chart in Figure 6(a) shows the trend of the fluidity of the plans w.r.t. the growing
complexity of the addressed problems in terms of number of goals and constraints to
manage. Results show that the higher is the complexity of the problems the lower is the
amount of fluidity of the generated plans. Thus, as expected, the higher is the number
of tokens on timelines the higher is the probability that a temporal deviation on a token
causes temporal deviations on tokens of other timelines.

The charts in Figure 6(b) and (c) compare respectively the total fluidity and the
average makespan of the generated plans. Results show that TFS planner generates
plans more robust than HFS planner w.r.t. fluidity metric. The total fluidity of the plans
generated by TFS planner, indeed, is higher than the total fluidity of the plans generated
by HFS planner. Thus, the introduction of HFS heuristic in the solving process seems to

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

28

0"

10"

20"

30"

40"

50"

60"

70"

1" 2" 3" 4" 5" 6" 7" 9" 9" 10"

so
lv
in
g(
)m

e(
(in

(se
co
nd

s)
(

number(of(goals(

HFS" TFS" TLFS" DFS" RFS"

0	

10	

20	

30	

40	

50	

60	

70	

g1	 g2	 g3	 g4	 g1	 g2	 g3	 g4	 g1	 g2	 g3	 g4	 g1	 g2	 g3	 g4	

simple	 single	 double	 full	

(a)

184	

186	

188	

190	

192	

194	

196	

198	

200	

fluidity	
0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

makespan	

(b) (c)

Fig. 6. Comparison of HFS and TFS planners on: (a) plan fluidity trend; (b) total plan fluidity; (c)
average plan makespan

lead to a loss of the robustness of the generated plans despite a significant improvement
of the solving capabilities as shown in Figure 5.

This can be explained by considering that the TFS planner maintains a “complete”
view of the plan during the solving process. The planner reasons about the overall plan
by taking into account all the timelines of the domain, so that it can organize the tokens
on timelines as best as it can. Conversely, the HFS planner maintains a “local” view of
the plan which is related to single timelines of the domain. Namely, the HFS planner
builds one timeline at a time. Therefore, when the planner must manage “intermediate”
timelines, its choices are partially constrained by the choices made before.

This behavior of HFS heuristic can lead also to a loss of performances in some
specific cases such as the simple domain in Figure 5(a). The chart shows that, despite the
general trend, the TFS planner performs better than HFS planner in the simple domain.
Because of its “local” approach, the HFS planner is not able to effectively organize
tokens on timelines as TFS planner does. In particular TFS planner is able to efficiently
group tokens of channel timeline requiring the same configuration of the module, i.e.
the same type of token on the change-over timeline. Conversely the HFS reasons on
one timeline at a time, so it is not able to group tokens requiring the same configuration
on channel timelines. As a consequence the planner must manage much more tokens
on the change-over timeline increasing the complexity of the problem resolution.

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

29

0	

5	

10	

15	

20	

25	

30	

35	

40	

channel	 change-‐over	 energy	

fluidity	

HFS	 TFS	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

channel	 change-‐over	 energy	

makespan	

HFS	 TFS	

(a) (b)

Fig. 7. Comparison of plans generated for the simple domain on: (a) the total fluidity, (b) the
average makespan

As a matter of fact the chart of Figure 7(a) shows that the fluidity of the change-over
timeline in the TFS generated plans is quite higher than the fluidity of the same timeline
in the HFS generated plans.

Finally the introduction and analysis of temporal metrics allow also to extract useful
information about planning domains. Let us consider the contribution of single time-
lines to the total fluidity of the generated plans shown in Figure 8.

HFS$overall$fluidity$

channel' change)over' energy'

HFS	 overall	 fluidity	 TFS	 overall	 fluidity	

(a) (b)

Fig. 8. Contribution of the single timelines to the overall plan fluidity for (a) HFS generated plans
and (b) TFS generated plans

It is possible to see that, regardless the heuristic applied during the solving process,
the relationships among domain timelines remain constant. The charts in Figure 8, show
that, in general, the energy timeline is the one with the highest value of fluidity while
the channel timeline is the one with the lowest value of fluidity. Thus, the channel
timeline is the most critical one w.r.t. the robustness of the plan. Namely a temporal
deviation on a token of the channel timeline is more likely to produce side effects on
other timelines of the domain than tokens on other timelines. This sort of information is
very interesting since they can be used to classify planning domains and introduce some
learning mechanism to adapt the solving process to the specific features of a planning
domain.

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

30

6 Conclusions and Future works

In this paper we have presented our preliminary work about the introduction of quality
metrics to evaluate the robustness of flexible timeline-based plans. In particular, we have
adapted some temporal metrics defined in scheduling to timelines. Then we have intro-
duced EPSL, a timeline-based planning framework we use to design and develop P&S
applications. Finally we made an experimental evaluation of two EPSL-based planners
on a manufacturing case study.

Experimental results have shown how temporal metrics allow to make an assess-
ment of the heuristics applied during the solving process. In particular, temporal metrics
let us able to evaluate EPSL-based planners both from the solving performance and the
plan quality point of views. An important issue to be addressed in future works is the
introduction of a “dynamic” measure of flexibility in order to make a deeper analysis
and assessment of the robustness of a plan. In particular we believe that an analysis
of this sort is especially needed to provide a valid estimate of the disruptibility metric.
Another objective is to develop some parametrized search heuristics heuristcs allowing
to exploit temporal features of (partial-)plans during the solving process.

Moreover the experimental results have shown that these metrics charaterize infor-
mation about the structure and relationships among domain timelines. Thus, another
interesting future goal is to introduce some learning mechanism for dynamically adapt-
ing heuristics to the specific features of the problem to address.

Acknowledgments. Andrea Orlandini is partially supported by the Italian Ministry
for University and Research (MIUR) and CNR under the GECKO Project (Progetto
Bandiera “La Fabbrica del Futuro”).

References

1. Muscettola, N.: HSTS: Integrating Planning and Scheduling. In Zweben, M. and Fox, M.S.,
ed.: Intelligent Scheduling. Morgan Kauffmann (1994)

2. Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in Interplanetary
Space: Theory and Practice. In: Proceedings of the 5th International Conference on AI
Planning and Scheduling (AIPS). (2000)

3. Cesta, A., Cortellessa, G., Denis, M., Donati, A., Fratini, S., Oddi, A., Policella, N., Rabenau,
E., Schulster, J.: MEXAR2: AI Solves Mission Planner Problems. IEEE Intelligent Systems
22(4) (2007) 12–19

4. Ceballos, A., Bensalem, S., Cesta, A., de Silva, L., Fratini, S., Ingrand, F., Ocón, J., Orlan-
dini, A., Py, F., Rajan, K., Rasconi, R., van Winnendael, M.: A Goal-Oriented Autonomous
Controller for space exploration. In: Proceedings of the 11th Symposium on Advanced Space
Technologies in Robotics and Automation (ASTRA). (2011)

5. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J.,
Remolina, E., Smith, T., Smith, D.: EUROPA: A Platform for AI Planning, Scheduling,
Constraint Programming, and Optimization. In: ICKEPS 2012: the 4th Int. Competition on
Knowledge Engineering for Planning and Scheduling. (2012)

6. Ghallab, M., Laruelle, H.: Representation and control in ixtet, a temporal planner. In: AIPS.
Volume 1994. (1994) 61–67

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

31

7. Cesta, A., Fratini, S.: The Timeline Representation Framework as a Planning and Scheduling
Software Development Environment. In: PlanSIG-08. Proc. of the 27th Workshop of the UK
Planning and Scheduling Special Interest Group, Edinburgh, UK, December 11-12. (2008)

8. Roberts, M., Howe, A., Ray, I.: Evaluating diversity in classical planning. In: Proceedings
of the 24th International Conference on Planning and Scheduling (ICAPS). (2014)

9. Policella, N., Smith, S.F., Cesta, A., Oddi, A.: Generating robust schedules through temporal
flexibility. In: ICAPS. Volume 4. (2004) 209–218

10. Cesta, A., Oddi, A., Smith, S.F.: Profile-based algorithms to solve multiple capacitated metric
scheduling problems. In: AIPS. (1998) 214–223

11. Umbrico, A., Orlandini, A., Cialdea Mayer, M.: Enriching a timeline-based planner with
resources and hierarchical reasoning. In: Proceedings of the 14th Conference of the Italian
Association for Artificial Intelligence (AIxIA). (2015) To appear.

12. Cesta, A., Orlandini, A., Umbrico, A.: Toward a general purpose software environment for
timeline-based planning. In: 20th RCRA International Workshop on” Experimental Evalua-
tion of Algorithms for solving problems with combinatorial explosion. (2013)

13. Cialdea Mayer, M., Orlandini, A., Umbrico, A.: A formal account of planning with flexible
timelines. In: The 21st International Symposium on Temporal Representation and Reasoning
(TIME), IEEE (2014) 37–46

14. Cimatti, A., Micheli, A., Roveri, M.: Timelines with temporal uncertainty. In: AAAI. (2013)
15. Cialdea Mayer, M., Orlandini, A.: An executable semantics of flexible plans in terms of

timed game automata. In: The 22st International Symposium on Temporal Representation
and Reasoning (TIME). (2015) To appear.

16. Benton, J., Coles, A.J., Coles, A.: Temporal planning with preferences and time-dependent
continuous costs. In: Proceedings of the 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS). Volume 77. (2012) 78

17. Smith, D.E.: Choosing objectives in over-subscription planning. In: Proceedings of the
14th International Conference on Automated Planning and Scheduling (ICAPS). Volume 4.
(2004) 393

18. Nau, D., Ghallab, M.: Measuring the performance of automated planning systems. Technical
report, DTIC Document (2004)

19. Bernardini, S., Smith, D.E.: Towards search control via dependency graphs in europa2 (2010)
20. Borgo, S., Cesta, A., Orlandini, A., Rasconi, R., Suriano, M., Umbrico, A.: Towards a coop-

erative -based control architecture for a reconfigurable manufacturing plant. In: 19th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA 2014),
IEEE (2014)

21. Carpanzano, E., Cesta, A., Orlandini, A., Rasconi, R., Valente, A.: Intelligent dynamic part
routing policies in plug&produce reconfigurable transportation systems. CIRP Annals -
Manufacturing Technology 63(1) (2014) 425 – 428

A. Umbrico et al. Quality Metrics to Evaluate Flexible Timeline-Based Plans

32

New Heuristics for Timeline-based Planning

Riccardo De Benedictis and Amedeo Cesta

CNR, Italian National Research Council, ISTC, Rome, Italy
{name.surname}@istc.cnr.it

Abstract. The timeline-based approach to planning represents an ef-
fective alternative to classical planning in complex domains where dif-
ferent types of reasoning are required in parallel. The iLoC domain-
independent planning system takes inspiration from both Constraint
Programming (CP) and Logic Programming (LP). By solving both plan-
ning and scheduling problems in a uniform schema, iLoC is particularly
suitable for complex domains arising from real world dynamic scenarios.
Despite the planner captures elements that are very relevant for appli-
cations, its theory is quite challenging from a computational point of
view and its performance are rather weak compared with those of state-
of-the-art classical planners, particularly on those domains where such
planners, typically, excel. In previous works, a resolution algorithm for
the iLoC system has been proposed and enhanced with some (static
and dynamic) heuristics that help the solving process. In this paper we
propose a first improvement of the data structures underlying the pro-
posed heuristics, producing a more informed heuristic and studying its
effectiveness as a solving strategy. We perform tests on different bench-
mark problems from classical planning domains like the Blocks World
to more challenging temporally expressive problems like the Temporal
Machine Shop and the Cooking Carbonara problems, showing how the
iLoC planner compares with respect to other state-of-the-art planners.

1 Introduction

Most of the current timeline-based planners [23], like Europa [20], ASPEN [8],
IxTeT [18] and Apsi-Trf [17, 6], are defined as complex software environments
suitable for generating planning applications, but quite heavy to foster research
work on specific aspects worth being investigated. Such architectures are, typ-
ically, inherently quite inefficient and, therefore, rely on a careful engineering
phase of the domain, possibly supported by the definition of domain-dependent
heuristics. Exception made for some works (e.g., [3]), their search control part
has always remained significantly under explored.

Mostly based on the notion of partial order planning [28], timeline-based
planners have usually neglected advantages from classical planning triggered
from the use of GraphPlan and/or modern heuristic search [4, 5, 19]. Further-
more, timeline-based architectures mostly rely on a clear distinction between
a module for temporal reasoning and other modules that perform other forms

33

of constraint reasoning, while there is not enough exploration of other forms of
reasoning.

In order to cope with such pitfalls, in a recent work [14] we presented a new
framework, called iLoC, able to solve both planning and scheduling problems
in a uniform schema. In addition, we described its resolution algorithm and en-
dowed it with some (static and dynamic) heuristics. The initial heuristic followed
the general principle of simplifying the initial problem, solving such simplified
problem, and then use the solution for guiding the search of the initial, more
complex, problem. At this initial stage, we left only causal relations and removed
all the other types of constraints from the problem, resulting in a heuristic which,
despite allowed us to greatly improve the performance of the reasoner, ended up
being too uninformed.

This paper reintroduces some of the “removed” constraints (in particular the
disjunctions) in the heuristic, thus enriching the informativeness and enabling
improved performances of the resolution algorithm. In particularly we targeted
those domains in which performances were worse. To explain our technique, we
first introduce the basic principles underlying the iLoC system, then describe the
new heuristic, and show how the system reasons about timelines, then compare
it with other planners on different domains.

2 iLoC: An Integrated Logic and Constraint Reasoner

The aim here is to describe to the reader a minimalistic core that should be
both sufficiently expressive as well as easily extensible so as to adapt as much
as possible to the most variety of user requirements. Specifically, the basic core
of the iLoC architecture provides an object oriented virtual environment for
the definition of objects and constraints among them. Similarly to most object
oriented environments, every object in the iLoC environment is an instance of a
specific type. iLoC distinguishes among primitive types (e.g., bools, ints, reals,
strings, etc.) and user defined complex types (e.g., robots, trucks, locations, etc.)
endowed with their member variables (variables associated to a specific object
of either primitive or complex type), constructors (a special type of subroutine
called to create an instance of the complex type) and methods (subroutines
associated with an object of a complex type). Defining a navigation problem,
for example, might require the definition of a Location complex type having two
numeric member variables x and y representing the coordinates of each Location
instance. In the following, we will address objects and their member variables
using a Java style dot notation (e.g., given a Location instance l, its x-coordinate
will be expressed as l.x).

Once objects are defined, iLoC allows the definition of constraints among
them. For example, in case a robot r should always be more East of a location
l, the iLoC user could assert a constraint such [[l.x < r.x]]. iLoC considers
constraints as logic propositions and, as such, it allows the possibility for negating
them (e.g., ¬[[l.x ≤ 5]]), for expressing conjunctions (e.g., [[l.x ≤ 10]]∧ [[l.x ≥ 5]]),
disjunctions (e.g., [[l.x ≤ 5]] ∨ [[l.x ≥ 10]]) and logic implications (e.g., [[l.x ≥

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

34

10]] → [[l.y ≥ 10]]). In order for a solution to be valid, such constraints must
always be consistent among themselves therefore, whenever an inconsistency is
detected (e.g., [[l.x ≤ 10]] ∧ [[l.x ≥ 15]]), the system will return a failure.

In addition, it is possible to impose constraints on existentially quantified
variables (e.g., ∃l ∈ Locations : l.x ≥ 10) as well as universally quantified
variables (e.g., ∀l ∈ Locations : l.x ≤ 100). By combining logical quantifier and
object oriented features, iLoC allows to manage, in one shot, all the instances
of a given complex type.

A rather straightforward method for managing this kind of problems is to
translate them into a Satisfiability Modulo Theories (SMT) problem (see, for
example, [26]). There are several available SMT solvers having different perfor-
mances, capabilities as well as licenses. Since iLoC has been written in Java the
only available choices are, to the best of our knowledge, the SMTInterpol [9],
the MathSAT 5 [10] and the Z3 [15] solvers1.

Although this basic core allows the definition of quite complex problems
(without providing any demonstration, we can state that NP-Complete problems
are covered), some of the problems we are interested in are in PSPACE and thus
excluded from the possibility of being modelled with this formalism. In order
to overcome these limitations, we need something more powerful. Something
that, roughly speaking, is able to “decide” the number of involved variables,
together with their value. For this purpose, we have chosen to extend the above
formalism by allowing many-sorted first-order Horn clauses2, i.e., clauses with
at most one positive literal, called the head of the clause, and any number of
negative literals, forming the body of the clause. For example, we could use a
predicate such as FirstQuadrant, with a Location l argument, within the clause
FirstQuadrant (Location l) ⇐ [[l.x ≥ 0]] ∧ [[l.y ≥ 0]], for describing locations in
the first quadrant of a Cartesian coordinate system. Furthermore, we do not allow
constraints in the head of a clause but we slightly relax the “positive” literals
in the body by allowing constraints to appear in any logical combination (i.e.,
we could rewrite the above example as FirstQuadrant (Location l) ⇐ ¬[[l.x <
0]] ∧ ¬[[l.y < 0]]).

A consequence of what we have seen is that iLoC planning problems can be
described by a collection of clauses. There are two types of clauses: rules and
requirements. A rule is of the form Head ⇐ Body. While the head of rules is
limited to predicates, a rule’s body consists of a set of calls to predicates, which
are called the rule’s sub-goals, and a set of constraints, the latter, in any logical
combination. We consider rules having the same head as disjunctive. Clauses
with an empty head are called requirements and can be calls to predicates (either
facts or goals), or constraints, the latter, in any logical combination. Example
of requirements are goal : FirstQuadrant (Location l), [[l.x ≥ 5]] and [[l.y ≥ 5]],

1 While SMTInterpol provides a pure Java implementation, MathSAT and Z3 provide
Java wrappers to their native API. We have not found other SMT solvers that
provide, directly or indirectly, a Java API.

2 This means, in general, sacrificing decidability.

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

35

through which we are asking the planner to find a location l, among those which
are in the first quadrant, having both coordinates greater than or equal to 5.

It is worth highlighting how the object oriented architecture binds with the
discussion above. Intuitively, each variable that appears as the argument of a
predicate inside rules is considered as universally quantified. Conversely, each
variable that appears as the argument of a predicate inside a requirement is
considered as existentially quantified. The object oriented architecture, combined
with the many-sorted logic, allows to consider only the instances of a specific
complex type, rather than all the defined objects, as the allowed values for the
object variables.

Fig. 1. A high-level view of the iLoC reasoning engine.

From an operational point of view, iLoC uses an adaptation of the resolu-
tion principle [25] for first-order logic, extended for managing constraints in the
more general scheme usually known as constraint logic programming (CLP) [1].
Starting from the initial set of objects, facts and constraints, as described by the
initial requirements, the reasoner maintains an agenda of the current (sub)goals.
Incrementally, the system chooses (sub)goals from the agenda and, by exploit-
ing rules, adds facts and constraints into the working memory. Figure 1 shows a
general description of the iLoC reasoning engine.

For each goal P (tg1, . . . , t
g
i), in general, a branch in the search space is created.

Resolution, at first, will try to unify goals with existing facts, if any, creating
a single branch for all the possible unifications. Specifically, given the existing

facts P
(
t11, . . . , t

1
i

)
, . . ., P

(
tj1, . . . , t

j
i

)
, having the same predicate of the goal, the

formula [[tg1 = t11∧. . .∧tgi = t1i]]∨. . .∨[[tg1 = tj1∧. . .∧tgi = tji]] is added to the current
solution. Intuitively, the purpose of unification is to avoid considering goals whose
(any) rule has already been applied. In addition, a branch is also created for
each of the rules whose head unifies with the chosen goal and, whenever such a
branch is chosen by the resolution algorithm, the body of the corresponding rule
is added to the current solution possibly generating further goals to be managed.
Summarizing, the basic operations for refining a partial solution π toward a final
solution are the following:

1. find the (sub)goals of π (i.e., the agenda).
2. select one such (sub)goals.

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

36

3. find ways to resolve it.
4. choose a resolver for the (sub)goals.
5. refine π according to that resolver.

The process follows an A* search strategy that aims at minimizing the num-
ber of goals in the agenda, proceeding until there are no more goals into the
agenda and while all the constraints in the working memory are consistent.
Whenever the constraints become inconsistent the system performs a backtrack-
ing step.

3 The MinReach Heuristic

Since all the goals must be solved sooner or later, there is almost no difference
among which goal is solved first. Selecting the “right” goal, however, impacts
heavily with the efficiency of the resolution algorithm. In order to overcome this
obstacle we can take advantage of some heuristics. In our previous work [14] we
have presented a data structure, called static causal graph, and we showed how
information could be extracted from it to guide the search process.

The static causal graph has a node for each of the predicates that appear in
our rules and, for every rule, an edge from the head of the rule to each of the
predicates that appear in the body of the same rule. The cost for solving a goal,
as suggested by our heuristic, is equal to the number of reachable nodes from
the node relative to the predicate associated to the goal. The rough idea behind
this strategy is to evaluate goals by considering a kind of worst case scenario
where none of the formulas unify. Another way of looking at it is to consider,
for each predicate, a new problem having rules without any constraints and a
sole goal of the same predicate. We called such a strategy AllReachable (AR)
goal selection heuristic.

Fig. 2. A set of rules and requirements, along with the associated static causal graph.

Figure 2 shows a set of rules and the static causal graph resulting from them.
As an example, the cost for solving an A (w) goal, according to AR, is 1 (since

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

37

the sole node B is reachable from node A) while the cost for solving an E (t)
goal is 4 (since all the nodes F , G, H and I are reachable from node E). Such an
heuristic is completely agnostic of disjunctions, putting at the same level all the
predicates that appear in the body, whether they were in a disjunction or not,
resulting in a too uninformed heuristic and, consequently, in bad performance
of the search strategy. Indeed, solving a G () goal would be evaluated as having
cost 3, regardless of the two (disjunctive) rules having G () as head.

A slight improvement to our heuristic is constituted by the addition of dis-
junctions into the static causal graph by means of two special nodes representing
conjunctions (AND nodes) and disjunctions (OR nodes). Figure 3 shows the im-
proved static causal graph generated from the example in Figure 2. The cost
for solving a goal is now evaluated as the minimum number of reachable nodes
starting from the node associated to the goal predicate. The general idea here is
the following: whenever the resolution algorithm finds a disjunction, the appli-
cation of the rule that would lead to the minimum number of formulas should
be chosen. We call such a strategy MinReach (MR). As an example, the cost
for solving a G () goal is now reduced from 3 to 1 since all the nodes F , H and
I are reachable from node E, yet introducing a sole formula I () (second rule
associated to predicate G) is probably preferable than introducing both formulas
F () and H () (first rule associated to predicate G), and far more preferable than
introducing all the three formulas F (), H () and I () as expected by heuristic
AR.

Fig. 3. An AND/OR static causal graph.

One might argue that by introducing disjunctions into the static causal graph
we increase the complexity of the evaluation from polynomial to exponential.
However, just as the AR heuristic, this graph and, consequently, the costs for
each of their nodes, solely depend from the rules, therefore, our heuristic is
independent from the requirements and thus can be built once and for ever
at the beginning of the solving process, allowing constant-time cost retrieval.
Nevertheless the problem can easily be encoded into a MIN-ONE SAT problem
(i.e., given a propositional formula, if it is satisfiable, find the variable assignment

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

38

that contains the minimal number of positive literals) and let a SAT-solver (e.g.,
Sat4j [21]) solve it for us. The encoding is trivial:

– a boolean variable is associated to each predicate and to each AND node;
– for each arc 〈s, t〉, going from source node with boolean variable s to target

node with boolean variable t, a clause (¬s, t) is added;
– for each arc 〈s,OR〉, going from source node with boolean variable s to an

OR target node, we consider the variables b1, . . . , bn associated to all the n
nodes directly reachable from the OR node and a clause (¬s, b0, . . . , bn) is
added.

Each predicate can now be evaluated as follows: we assume a unit clause
containing the variable associated to the predicate we want to evaluate, solve
the resulting MIN-ONE SAT problem, count the number of positive literals
associated to predicates and subtract 1, since we don’t count the starting node.
As an example, the resulting MIN-ONE SAT problem associated to predicate G
of Figure 3 is the following (we use lowercase names for the associated boolean
variables):

(g) (¬a, b) (¬c, d) (¬e, f) (¬e, g)

(¬g, and, i) (¬and, f) (¬and, h)

resulting in the sole g and i positive literals and, consequently, in an estimated
cost of 1.

Similar to what we did in [14] for the AR heuristic, we exploit the MR
heuristic both for goal selection and for node selection. Also, we refine the MR
heuristic with the less merges dynamic heuristic (see that paper for further
details).

4 Timeline-based Planning and iLoC

The search space of a timeline-based planner has typically partially specified plans
as nodes and plan refinement operations as arcs. Plan refinement operations are
intended to further complete a partial solution, i.e., to achieve an open goal or
to remove some possible inconsistency. Intuitively, these refinement operations
avoid adding to the partial plan any constraint that is not strictly needed for
addressing the refinement purpose (this is called the least commitment principle).
The solving procedure starts from an initial node corresponding to an empty
solution and the search aims at a final node containing a solution that correctly
achieves the required goals.

A possible approach to the resolution of timeline-based planning problems
is to provide the predicates described in the previous sections with numerical
arguments in order to represent their starting times, their ending times and their
durations. Also, it will be required to define some specific complex types, whose
instances will be called timelines, in order to add further “implicit” constraints

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

39

among the formulas defined “over” their instances. This will also result in a
slight adaptation of the resolution procedure in order to check the consistency
for every object in the current partial solution so as to make explicit the just
mentioned implicit constraints.

What does it mean to define a formula “over” a timeline? We simply add
a parameter having the same type as the timeline to the predicates and call
such a parameter scope. It is worth noting that most timeline-based planners
like Europa, or Apsi-Trf, indeed, consider timelines as a sort of “containers”
for formulas. In our approach, since the core reasoning element are the atomic
formulas, and consistently with a classical logical approach, we choose to incor-
porate the timelines “inside” the formulas. In other words, the type of our scope
variables will be a “distinguisher” for triggering further reasoning. Furthermore
the resulting scope variables are, to all effects, variables and, therefore, could be
subject to constraints.

(a) State variable (b) Consumable resource

(c) Reusable resource

Fig. 4. Different kinds of timelines with formulas and resource profiles.

In the following we describe the minimal set of the complex types commonly
used in timeline-based planning.

State variables. They are used to describe the “state” of a dynamical system
as, for example, the position of a specific object at a given time or a simple

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

40

manufacturing tool that might be operating or not. The semantics of a state
variable (and thus the implicit constraints we need to make explicit) is sim-
ply that, for each time instant t ∈ T, the timeline can assume only one value.
Figure 4(a) represents an example of state variable with three atomic formulas
(parameter types are omitted for sake of space). The example shows a robot
r0, a state variable of type Robot, which might be At a given location or might
be Going to another location. We thus have the two predicates At (sc, l, s, e, d)
and Going (sc, l, s, e, d) each having a parameter sc of type Robot describing the
scope of the formulas and parameters l, s, e and d respectively for the location,
the start, the end and the duration. The planner will take care of adding the
proper constraints for avoiding the temporal overlapping of the incompatible
states (i.e., all the formulas which have the same scope and do not unify) or
for “moving” the states on other instances of type Robot (i.e., choosing another
value, for example r1, for the scope of the formula).

Resources. They are entities characterized by a resource level L : T → R, rep-
resenting the amount of available resource at any given time, and by a resource
capacity C ∈ R, representing the physical limit of the available resource. We
can identify several types of resources depending on how the resource level can
be increased or decreased in time. A consumable resource is a resource whose
level is increased or decreased by some activities in the system. An example
of consumable resource is a reservoir which is produced when a plan activity
“fills” it (i.e., a tank refueling task) as well as consumed if a plan activity “emp-
ties” it (i.e., driving a car uses gas). Consumable resources have two predefined
rules, each having an empty body, and a predicate Produce (sc, id, a, s, e, d)
(Consume (sc, id, a, s, e, d)) as head, so as to represent a resource production
(consumption) on the consumable resource sc of amount a from time s to time e
with duration d (we use an id parameter to prevent unification among these for-
mulas). In addition, the consumable resource complex type has four member vari-
ables representing the initial and the final amount of the resource, the min and
the max value for the resource level. Quite popular in the scheduling literature,
reusable resources are similar to consumable resources where productions and
consumptions go in tandem at the start and at the end of the activities. Reusable
resources can be used for modelling, for example, the number of programmers
employed on a given project for a given time interval. Reusable resources have
one predefined rule having an empty body and a predicate Use (sc, id, a, s, e, d)
as head so as to represent an instantaneous production of resource sc of amount
a at time s and an instantaneous consumption of the same resource sc of the
same amount a at time e. In addition, the reusable resource type has a mem-
ber variable for representing the capacity of the resource. Figures 4(b) and 4(c)
represent, respectively, an example of consumable resource and an example of
reusable resource with some associated formulas.

By introducing these complex types, we require the reasoner to add further
constraints so as to avoid object inconsistencies (e.g., different states overlapping
for some state variable; resource levels L exceeding resource capacity C or going
lower than min, etc.). We chose to refine our resolution process by introducing a

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

41

step for detecting such inconsistencies and for adding required constraints which
would remove them. The resulting basic operations for refining a partial solution
π toward a final solution are thus the following:

1. find the (sub)goals of π.
2. select one such (sub)goals.
3. find ways to resolve it.
4. choose a resolver for the (sub)goals.
5. refine π according to that resolver.
6. check for any object inconsistency and remove it.

Similar to [7], we use a lazy approach for detecting inconsistencies. Namely,
we let the underlying SMT solver to extract a solution given the current con-
straints and, in case some inconsistency is detected we add further constraints
so as to remove the inconsistency. A simple example should clarify the idea. Let
us suppose in a given partial solution there are two formulas describing a state
variable svk having two overlapping states si and sj , we solve the inconsistency
by adding the constraint [[si.start ≥ sj .end]] ∨ [[sj .start ≥ si.end]] ∨ [[si.scope 6=
sj .scope]] preventing further overlapping of these states on the same state vari-
able. The core idea for solving resource inconsistencies follows a very similar
schema.

5 Preliminary Results

To assess the value of our heuristic, we have endowed iLoC with the proposed
MinReach (MR) heuristic and tried to compare the resulting system with differ-
ent planners on different benchmarking problems. Specifically, we have selected
four planners that are interesting for their features and compared them with
iLoC: iLoC(AR) is the previous version of iLoC exploiting the simpler All-
Reachable (AR) heuristic, VHPOP [27] shares with our planner the partial
ordering approach, OPTIC [2] and COLIN (see [11]) are both based on a clas-
sic FF-style forward chaining search [19]. All the test have been executed with
default configurations for every planner.

We start the comparison by solving the Blocks World domain, a workhorse
for the planning community. As known, in this domain a set of cubes (blocks)
are initially placed on a table. The goal is to build one or more vertical stacks
of blocks. The catch is that only one block may be moved at a time: it may
either be placed on the table or placed atop another block. Because of this,
any blocks that are, at a given time, under another block cannot be moved. We
used the 4-operator version of the classic Blocks World domain, as found on the
IPC-2011 website, as a starting point. Specifically, for each block, we defined a
state variable for representing what is on top of the block (i.e., either another
block or the value “Clear”) and a state variable for representing if the block is
on the table or not. An additional state variable has been defined for modeling
the robotic arm modeling values that represent either the arm holding a block or
the value “Empty”. Finally, we defined an “Agent” complex type for modeling

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

42

Fig. 5. Blocks world.

the agents’ actions. Rules have been defined so as to have an atomic formula for
each effect of the PDDL actions as head and an atomic formula for the actions as
body, aside from rules having an atomic formula for each PDDL action as head
and an atomic formula for their preconditions and effects as body. Temporal
constraints have been conveniently added for guaranteeing that preconditions
precede actions and effects follow actions.

As shown in Figure 5, despite the introduction of our heuristic planners
endowed with “classical heuristics” still perform significantly better than our
approach, nevertheless we were able to boost the system performance apprecia-
bly, allowing us to find solutions up to, approximately, one third of the time it
was required before.

We have also checked our system with two other problems, namely the Tem-
poral Machine Shop [13] and the Cooking Carbonara domain [22]. Both these
problems are temporally expressive (see [12]) since they require concurrency for
being solved.

The first problem is the only temporally expressive problem of the Inter-
national Planning Competition (IPC) and, within the same competition, it is
solved by the sole ITSAT planner (see [24]). The problem models a baking ce-
ramic domain in which ceramics can be baked while a kiln is firing. Different
ceramic types require a different baking time. While a kiln can fire for at most
20 minutes at a time (and then it must be made ready again), baking a ceramic
takes, in general, less time, therefore we can save costs by baking them alto-
gether. Additionally, similar to [24], we have slightly complicated the domain
by considering the possibility for ceramics to be assembled, so as to produce
different structures which should be baked again to obtain the final product.
Specifically, for each kiln we defined a state variable for distinguishing either the
kiln is “Ready” or “on Fire”. In addition, each kiln has associated a reusable
resource for representing its capacity. For each ceramic piece we defined a state

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

43

variable for representing either the piece is “Baking” (with an additional pa-
rameter for representing the kiln in which is baking), or the piece is “Baked”,
or the piece is “Treating”, or the piece is “Treated”. Similarly, for each ceramic
structure we defined a state variable for representing either the structure is “As-
sembling”, or the structure is “Assembled”, or the structure is “Baking” (with
an additional parameter for representing the kiln in which it is baking), or the
structure is “Baked”. Rules force these values to appear in time, in each state
variable, in the intuitive manner (i.e., in the order in which these values have
just been introduced). The interesting aspect, however, is that ceramic struc-
tures can bake concurrently with ceramic pieces both while (hence the temporal
expressiveness) the kiln is firing.

Fig. 6. Temporal machine shop.

The Cooking Carbonara domain represents another temporally expressive
problem in which the aim is the preparation of a meal, as well as its consump-
tion by respecting constraints of warmth. Problems cooking-carbonara-n allow
to plan the preparation of n dishes of pasta. The concurrency of actions is re-
quired to obtain the goal because it is necessary that the electrical plates work
in a way that water and oil are hot enough to cook pasta and bacon cubes. It
is also necessary to perform this baking in parallel to serve a dish that is still
hot during its consumption. Specifically, for each plate we defined a reusable
resource for representing its (unary) capacity. For each pot we defined a state
variable for distinguishing either the pot is “Boiling” (with an additional param-
eter for representing the plate on which is boiling) or the pot is “Hot”. For each
pan we defined a state variable for distinguishing either the pan is “Boiling”
(with an additional parameter for representing the plate on which is boiling)
or the pan is “Hot”. Each portion of spaghetti has associated a state variable
for distinguishing either the portion is “Cooking” (with an additional parameter
for representing the pot in which is cooking) or the portion has been “Cooked”.

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

44

For each bacon portion we defined a state variable for distinguishing either the
bacon is “Cooking” (with an additional parameter for representing the pan in
which is cooking) or the bacon has been “Cooked”. Each egg has associated a
state variable for distinguishing either the egg is “Being beaten” or the egg has
been “Beaten”. Finally, for each carbonara portion we defined a state variable
for distinguishing either the portion is “Cooking” (with an additional parameter
for representing the plate on which should be cooked), or the portion has been
“Cooked”, or someone is “Eating” the portion or the portion has been “Eaten”.
Again, rules force values to appear in time, in each state variable, in the intu-
itive manner (i.e., in the order in which these values have just been introduced).
Furthermore, carbonara portions should be cooking after spaghetti, bacon and
eggs have been correctly prepared, hence requiring spaghetti to be “Cooking”
while the water in pots is “Hot” as well as bacon to be “Cooking” while the oil
in pans is “Hot”. Finally, cooking carbonara portions, boiling water in pots and
oil in pans should be performed while plates are available.

Experimental results on these domains (figures 6 and 7) show that the heuris-
tic does neither guarantee a substantial improvement nor the overhead produces
a significant worsening (performance remains almost unchanged). Specifically,
in the first problem iLoC performs almost inline with those of state-of-the-art
planners. Even though COLIN performs better than iLoC, it is not able to solve
problems with more than 50 ceramics since it runs out of memory (we used the
default configuration for the planner). In the Cooking Carbonara domain, how-
ever, by removing the maximum duration for plate firing, the problem is reduced
to a basic scheduling problem hence allowing iLoC to outperform state-of-the-
art solvers. This behavior can be explained by observing that these problems
are biased toward a temporal kind of reasoning rather than a causal kind of,
therefore they find minimum benefit from the improvements introduced in the
new heuristic which is mostly oriented toward causal aspects.

Fig. 7. Cooking carbonara.

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

45

A separate discussion it is worth doing concerns the expressiveness of iLoC.
All the competing planners use the PDDL2.1 language (see [16]) for model-
ing their planning problems and, in general, it is quite cumbersome to impose
temporal constraints among plain PDDL actions. In the Cooking Carbonara do-
main, for example, it is important that the cooking happens before the eating
but eating should not start too late to avoid that food becomes cold. In [22]
a PDDL extension is proposed to overcome this issue and to model properly
the domain, however, none of the available planners supports this extension and
thus they have been evaluated in a simplified domain in which the warmth con-
straint decays and dishes can be served anytime after they have been cooked. It
is worth noting how this constraint is naturally captured in the iLoC modelling
language by creating a rule having as head an action and as body a second ac-
tion in conjunction with a constraint among the temporal parameters of the two
actions.

6 Conclusions

This paper has introduced a new general heuristic for the iLoC planner that
improves the planner performance with respect to those of a previous work. The
initial heuristic was the result of a too strong simplification and therefore was
probably too uninformed. With the present work we started in the direction of
reintroducing parts previously neglected. In particular by introducing disjunc-
tions we produced a heuristic that allowed us to improve the performance of the
resolution algorithm, especially on those domains in which the performance were
weaker.

The iLoC planner already had comparable (or even better) performance of
other planners in those domains in which temporal reasoning constitutes the
main reasoning requirements (i.e., temporally expressive domains). For this rea-
son we focused on those domains in which the temporal aspects were negligible
compared to the causal ones. The current results are still not competitive with
respect to those of other planners, nevertheless we succeeded in improving perfor-
mance on the class of problems not very suited for the timeline-based approach.

We are pursuing a domain-independent planner able to solve efficiently a
wider spectrum of planning problems, therefore, work is still needed at heuristic
level to reduce the differences with respect to classical approaches.

Acknowledgments. Authors work is partially funded by the Ambient Assisted

Living Joint Program under the SpONSOR project (AAL-2013-6-118).

References

1. Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLiPSe. Cam-
bridge University Press, New York, NY, USA (2007)

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

46

2. Benton, J., Coles, A., Coles, A.: Temporal Planning with Preferences and Time-
Dependent Continuous Costs. In: Twenty-Second International Conference on Au-
tomated Planning and Scheduling (2012)

3. Bernardini, S., Smith, D.: Developing Domain-Independent Search Control for Eu-
ropa2. In: Proceedings of the Workshop on Heuristics for Domain-independent
Planning at ICAPS-07 (2007)

4. Blum, A., Furst, M.L.: Fast Planning Through Planning Graph Analysis. In: IJ-
CAI. pp. 1636–1642. Morgan Kaufmann (1995)

5. Bonet, B., Geffner, H.: Planning as Heuristic Search. Artificial Intelligence 129(12),
5–33 (2001)

6. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an End-to-End Plan-
ning Application from a Timeline Representation Framework. In: IAAI-09. Pro-
ceedings of the 21st Innovative Applications of Artificial Intelligence Conference,
Pasadena, CA, USA (2009)

7. Cesta, A., Oddi, A., Smith, S.F.: A Constraint-based Method for Project Schedul-
ing with Time Windows. Journal of Heuristics 8(1), 109–136 (2002)

8. Chien, S., Tran, D., Rabideau, G., Schaffer, S., Mandl, D., Frye, S.: Timeline-Based
Space Operations Scheduling with External Constraints. In: ICAPS-10. Proc. of
the 20th Int. Conf. on Automated Planning and Scheduling (2010)

9. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver. In:
Model Checking Software - 19th International Workshop, SPIN 2012, Oxford, UK,
July 23-24, 2012. Proceedings. pp. 248–254 (2012)

10. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS. LNCS, vol.
7795. Springer (2013)

11. Coles, A.J., Coles, A.I., Fox, M., Long, D.: COLIN: Planning with Continuous
Linear Numeric Change. Journal of Artificial Intelligence Research 44, 1–96 (May
2012)

12. Cushing, W., Kambhampati, S., Mausam, Weld, D.S.: When is Temporal Planning
Really Temporal? In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence. pp. 1852–1859. IJCAI’07, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2007)

13. Cushing, W., Weld, D.S., Kambhampati, S., Mausam, Talamadupula, K.: Evalu-
ating temporal planning domains. In: Boddy, M.S., Fox, M., Thibaux, S. (eds.)
Proceedings of the Seventeenth International Conference on Automated Planning
and Scheduling, ICAPS 2007, Providence, Rhode Island, USA, September 22-26,
2007. pp. 105–112. AAAI (2007)

14. De Benedictis, R., Cesta, A.: Integrating Logic and Constraint Reasoning in a
Timeline-based Planner. In: AI*IA 2015 - XIVth International Conference of the
Italian Association for Artificial Intelligence (2015)

15. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. pp. 337–340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

16. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

17. Fratini, S., Pecora, F., Cesta, A.: Unifying Planning and Scheduling as Timelines
in a Component-Based Perspective. Archives of Control Sciences 18(2), 231–271
(2008)

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

47

18. Ghallab, M., Laruelle, H.: Representation and Control in IxTeT, a Temporal Plan-
ner. In: AIPS-94. Proceedings of the 2nd Int. Conf. on AI Planning and Scheduling.
pp. 61–67 (1994)

19. Hoffmann, J.: FF: The Fast-Forward Planning System. AI Magazine 22(3), 57–62
(2001)

20. Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in Inter-
planetary Space: Theory and Practice. In: AIPS-00. Proceedings of the Fifth Int.
Conf. on AI Planning and Scheduling (2000)

21. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2-3), 59–6 (2010)
22. Maris, F., Régnier, P.: TLP-GP: Un planificateur pour la rsolution de problmes

temporellement expressifs. Revue d’Intelligence Artificielle 24(4), 445–464 (2010)
23. Muscettola, N.: HSTS: Integrating Planning and Scheduling. In: Zweben, M. and

Fox, M.S. (ed.) Intelligent Scheduling. Morgan Kauffmann (1994)
24. Rankooh, M.F., Mahjoob, A., Ghassem-Sani, G.: Using Satisfiability for Non-

optimal Temporal Planning. In: Logics in Artificial Intelligence - 13th European
Conference, JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings.
pp. 176–188 (2012)

25. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the Association for Computing Machinery 12(1), 23–41 (1965)

26. Sebastiani, R.: Lazy Satisability Modulo Theories. JSAT 3, 141–224 (2007)
27. Simmons, R.G., Younes, H.L.S.: VHPOP: Versatile Heuristic Partial Order Plan-

ner. CoRR (2011)
28. Weld, D.S.: An Introduction to Least Commitment Planning. AI Magazine 15(4),

27–61 (1994)

R. De Benedictis et al. New Heuristics for Timeline-Based Planning

48

On the Use of Landmarks in LPG

Francesco Benzi, Alfonso E. Gerevini, Alessandro Saetti, and Ivan Serina
University of Brescia, Italy

{f.benzi,alfonso.gerevini,alessandro.saetti,ivan.serina}@unibs.it

Abstract. Domain-Independent planning is notoriously a very hard search prob-
lem. In the literature, several techniques for search control have been proposed in
the context of various planning formalisms. In particular, Landmark techniques
have been widely used in the planning community in order to guide the search
process or to define heuristic functions. A Landmark can be defined as a logical
expression, consisting of facts or actions, that certainly becomes true in any so-
lution plan for that problem. In this work, we propose the use of Landmarks for
the LPG planner, considering different design choices and analysing empirically
its impact on the performance of the planner. Preliminary results show that these
techniques can effectively improve the performance of LPG, obtaining results
comparable with the state-of-the-art planner LAMA.

Introduction

In the last two decades a number of different techniques have been proposed in the
planning community in order to find a good quality solution plan for a given planning
problem using a reasonable amount of CPU time. In particular, planning through local
search and action graphs [13, 10, 12, 6, 8] has shown extremely good performances in
the context of fully-automated domain-independent planning. This approach is imple-
mented in the well-known LPG planner, which was awarded at two planning competi-
tions [18, 14] and has been widely used by the planning community, both as a reference
planner in many experimental studies comparing planner performance and as a mod-
ule incorporated into other reasoning systems or applications, e.g. [5, 16, 17, 19, 20, 24,
26]. Landmark techniques have been widely used in the planning community in order
to guide the search process or to define heuristic functions [25]. A landmark is a fact
(a condition or property of the world state) or an action that certainly becomes true
in any solution plan for the input planning problem. Different kinds of landmarks and
orders between landmarks have been proposed and studied in literature. Finding all
possible landmarks and relative orders for a planning problem is computationally very
hard [15]. This has made researchers conceive only approximate solutions [15], such as
methods that find only a subset of the landmarks and orders. Once landmarks have been
computed, there are different ways of using them. The two main families of methods
proposed in the literature consist in the use of landmarks to produce a heuristic func-
tion and the use of landmarks to decompose the planning process in sub planning tasks
[25]. In this paper, we investigate the use of landmark techniques in the context of plan-
ning through local search and action graphs, and we evaluate experimentally the impact
of their use on the performance of LPG. After a description of the search process in
LPG we give some basic definitions regarding landmarks and their computation. Then

49

we describe the use of landmarks in LPG, and we present the experimental analysis
we conducted with different options of our implementation of landmark techniques in
LPG. Finally we give conclusions and mention future work.

Local Search in LPG

Our framework is based on a local search in the context of the “planning through plan-
ning graph analysis”, an approach introduced by Blum and Furst [1]. The problem of
generating a plan is a search problem where the elements of the search space are partic-
ular subgraphs of the planning graph representing partial plans. The local search method
of LPG for a planning graph G [1] of a given problem P is a process that, starting from
an initial subgraph G′ of G (a partial plan for P), transforms G′ into a solution of P
through the iterative application of some graph modifications that greedily improve the
quality of the current partial plan. Each modification is either an extension of the sub-
graph to include a new action node of G, or a reduction of the subgraph to remove an
action node (and the relevant edges).

Adding an action node to the subgraph corresponds to adding an action to the partial
plan represented by the subgraph (analogously to remove an action node). At any step
of the search process the set of actions that can be added or removed is determined by
the constraint violations that are present in the current subgraph of G. More precisely,
the search space is formed by the action subgraphs of the planning graph G, where an
action subgraph of G is defined in the following way:

Definition 1. An action subgraph A of a planning graph G is a subgraph of G such
that if a is an action node of G in A, then also the fact nodes of G corresponding to the
preconditions and positive effects of a are inA, together with the edges of G connecting
them to a.

A solution subgraph (a final state of the search space) is defined in the following
way:

Definition 2. A solution subgraph of a planning graph G is an action subgraph As

containing the goal nodes of G and such that

– all the goal nodes and fact nodes corresponding to preconditions of actions in As

are supported;
– there is no mutually exclusive relation between action nodes.

The first version of LPG [10, 11] was based on action graphs where each level may
contain an arbitrary number of action nodes, as in the usual definition of planning
graphs. The following versions of the system [6, 12, 8, 3, 9, 21] used a restricted class
of action graphs, called linear action graphs (or extensions of them in order to sup-
port temporal and numeric information), combined with some additional data structures
supporting a more expressive action and plan representation according to the language
features of PDDL 2.1 and 2.2 [4, 2].

Definition 3. A linear action graph (LA-graph) of G is an action graph of G in which
each level of actions contains at most one action node representing a domain action
and any number of “no-ops”.

F. Benzi et al. On the Use of Landmarks in LPG

50

As shown in [6], having only one action in each level of an LA-graph does not
prevent the generation of parallel (partially ordered) plans.

The initial LA-graph contains only two special actions astart and aend, where aend
is the last action in any valid plan and its preconditions correspond to the goals of the
planning problem under consideration; similarly the initial facts represent the effects of
the special action astart, which is the first action in any valid plan. Each search step
identifies the neighborhood N(G) (successor states) of the current LA-graph G (search
state), which is a set of LA-graphs obtained from G by adding an action node to A or
removing an action node from A in an attempt to repair the earliest flawed level of G.1

The elements in N(G) are evaluated using a heuristic evaluation function E [6, 8]
consisting of three weighed terms, estimating their additional search cost, execution
cost and temporal cost, i.e., the number of search steps required to repair the new flaws
introduced, their contribution to the plan quality and their contribution to the makespan
of the represented plan, respectively. An element of N(G) with the lowest combined
cost is then selected using a “noise parameter” randomizing the search to escape from
local minima [6].

Landmark Techniques

Although single fact (atomic formulae) landmarks are the most studied and used kind
of landmarks, also single action landmarks are receiving considerable attention nowa-
days. More complex kinds of landmarks (i.e. conjunction of facts) are not used because
deriving them for a planning problem does not give any advantage, in terms of CPU
times: the benefits do not outweigh the efforts [23].

Let us concentrate on single fact landmarks. For a given planning problem, initial
and goal facts are, by definition, landmarks for that problem. Our commitment is the
computation of causal landmarks: facts that, for any solution plan, appear as a precon-
dition of an action in the plan [27]. Goal facts are returned too: we can see them as
preconditions of aend.

If we want to use landmarks in a planning problem, we do not only need to know
which facts are landmarks, we also need to order the landmarks. This order is funda-
mental to guide the creation of a solution plan: some facts must become true before
others in any solution plan. This is exactly why landmarks are really useful. The needed
information is thus a graph of landmarks, called Landmarks Graph (LG) or Landmarks
Generation Graph (LGG), where the nodes are the facts and the (directed) arcs are the
orders between facts [15]. Depending on the convention used, arcs can go from goal
facts to initial facts or vice versa. Any cycle that is eventually generated must be re-
moved before planning starts [15]. The presence of cycles is related, for example, to the
recurrence of the “arm free” fact in a “blocks world” planning domain, since “arm free”
switches between TRUE and FALSE many times in any solution plan. The use of the
information given by cycles in planning is still a research topic [15].

1 LPG can use several flaw selection strategies that are described and experimentally evaluated
in [7]. The strategy preferring flaws at the earliest level of the graph tends to perform better
than the others, and so it is used as the default strategy in LPG. More details and a discussion
about this strategy are given in the aforementioned paper.

F. Benzi et al. On the Use of Landmarks in LPG

51

Several different types of landmark orders are defined in literature [15]:
- Natural order: in every solution plan Landmark A appears before Landmark B. So

A is ordered before B.
- Necessary order: in every solution plan, if B is true at a given step, A is true at the

previous step.
- Greedy Necessary order: in every solution plan, if B is true for the first time in the

plan at a given step, then A is true at the previous step. For every successive step where
B is true, we know nothing about A.

The previous 3 orders are mandatory, in the sense that they must be satisfied in every
solution plan. Instead the next 2 orders are only “suggested”: they may help obtain a
better solution plan, but it may be that the only way to compute a solution plan is to
violate them.

- Reasonable order: landmark B is ordered after landmark A if, from a state in which
B is true, to make A true it is necessary to destroy B, but after that B will be needed
again to reach the goals. So this means that it is reasonable to make A true before B,
and not vice versa.

- Obedient Reasonable order: if we decide to satisfy reasonable orders, i.e. treat
them as mandatory, new “reasonable” orders may arise. These are called obedient rea-
sonable orders.

Regarding the computational complexity of the problem of finding landmarks and
relative orders, it has been proved that both the decision problems “Is the fact L a land-
mark for the given planning problem?” and “Is there an order (of any kind) O between
two landmarks A and B of the given planning problem?” are PSPACE-Complete prob-
lems [15]. Since every method commonly used for finding Landmarks and orders has
polynomial time complexity, these methods are often incomplete or approximate.

There are two families of methods to compute the Landmarks Graph of a given
problem. The first includes the method proposed by Hoffmann [15] and its evolutions
(for example LAMA). The second is the method proposed by Zhu & Givan. The method
proposed by Hoffmann starts from the goal facts, which are landmarks by definition,
and for each of them it looks at the first appearance of that fact in the relaxed planning
graph. Then, the intersection of the preconditions of all the actions that support that
fact in the relaxed planning graph is computed. The facts resulting from the intersection
are landmarks, and these new landmarks are ordered before the previous fact landmark.
The method continues until no more Landmarks are generated or the initial facts are
reached.

The method proposed by Zhu & Givan [27], instead, starts from the initial facts and
goes forward on the relaxed planning graph. The key elements of this method are labels
associated to facts and actions and represent the list of facts necessary to reach those
facts or actionss. The labels are propagated forward along the planning graph. The rule
is: for facts, compute the intersection of the content of all the labels that are applied
to the actions reaching that fact, then to the resulting list the fact itself must be added;
for actions, compute the union of the content of all the labels that are applied to the
facts preconditions of that action. Finally, the content of the labels applied to the goal
facts is the list of landmarks for the given planning problem. The advantage of Zhu &
Givan’s method is that it computes all the (causal) landmarks. Furthermore, if not only

F. Benzi et al. On the Use of Landmarks in LPG

52

the facts but also the actions are propagated, we can compute the Action Landmarks for
the given planning problem. The disadvantage is that this method does not specify how
to order the computed landmarks. A naive way to order them is to look at the order of
appearance of the facts in the labels. However, many superfluous orders are produced in
this way. This excess of landmark ordering can in principle increase computation time,
however in practice this increase is very limited.

Landmarks in LPG

We implemented two methods for computing the Landmarks Graph. The first is the
method proposed by Hoffmann et al., for which we simply imported in LPG the code
written by the authors. The second is the method proposed by Zhu & Givan, which we
implemented by ourselves through an extension of the existing LPG code.

In the planning process, we used the Landmarks Graph as described in [22]. They
proposed a method where the planning problem is divided into sub planning prob-
lems, whose concatenated solution gives a global solution to the original problem. This
method works by controlling a base planner. During the planning process, when a land-
mark is satisfied, it is removed (with its edges) from the Landmarks Graph (obviously
the Initial Facts are removed from the Landmark Graph at the first step of the planning
process). The set of nodes with no other nodes ordered before them is the frontier of
the current planning process and corresponds to the set of facts that the system would
currently make supported. At every planning step, the Landmarks in the frontier are
selected and given to the base planner as a new set of (sub)goal. Then the subplan com-
puted is added to the end of the current (incomplete) plan. When all the landmarks
in the graph have been processed, if a solution plan has not been already generated,
the base planner is run with the original goals of the problem and the resulting plan is
appended to the subplan computed for the processed landmarks. Differently from the
work of Hoffmann et al., we do not give the base planner a disjunction of landmarks
at every step; instead, we select a single landmark in the previously computed disjunc-
tion. The selection is guided by an heuristic function provided by LPG, which is based
on the computation of a relaxed plan [6]. Different approaches have been implemented
and tested for the selection of a landmark in the frontier, specifically, (1) selection of
a random landmark, (2) selection of the landmark with a maximum heuristic value,
(3) with a minimum value, and (4) a variant of the third (minimum value) where we
prefer landmarks that do not destroy the portion of the relaxed plan needed to reach
another landmark in the disjunction. This is done in order to try to limit the destruc-
tive interaction between landmarks. Quite interestingly this variant performs extremely
well in the logistics domains. This difference with respect to Hoffmann et al.’s method
was motivated by the fact that LPG does not work with disjunctive goals, and even if
we modified LPG to accept this kind of goals, in the end the planning process of LPG
would select a single fact anyway, or a conjunction of facts taken from the disjunctive
goal, to be reached. Similarly to Hoffmann et al., if during a planning step more than
a single landmark (the selected one) are reached, all of them are removed from the
Landmarks Graph.

F. Benzi et al. On the Use of Landmarks in LPG

53

As previously said, we have implemented and tested three methods to control the
insertion of actions in the action graph. The first one allows the local search of LPG
to insert actions only at the end of the current partial plan; the second one also allows
to insert actions inside the partial plan, instead of only adding actions at the end of the
partial plan. The third one allows the local search to both insert and remove actions at
any point of the partial plan. This last variant is the most robust one because it allows
the search process also to remove previously inserted actions, but is characterised by
a larger search space that negatively influences the planner runtime, as observed in teh
experimental results section.

Figure 1 gives the pseudo code of our implementation of the landmarks control loop
in LPG. In this implementation, we explicitly impose to LPG the next subgoal (chosen
among the landmarks in the LG) to be reached.

Fig. 1. Pseudo code of the landmarks control implementation.

Every run through the loop is a search step handling the creation of the subplan
needed to reach a landmark in the Landmarks Graph. First we update the Landmarks
Graph to remove those landmarks that have already been reached. Then we select a
landmark in the updated Landmarks Graph as the current subgoal. The control loop
terminates when all the goals of the problem have been reached: all landmarks that are
goals of the problem have been reached and removed from the Landmarks Graph. In this
implementation, we simply run the “LocalSearch” routine of LPG to reach the selected
landmark. The initial state for LocalSearch is always the initial state of the planning
problem. We do this because every call to LocalSearch uses the precomputed partial
plan, beginning from the initial state and reaching the previously selected landmark, as
a starting point for the local search.

Experimental Analysis

Tests were performed on an Intel(R) Xeon(R) CPU E5-2620 (with an effective 2.00
GHz rating) with 8 GB of RAM. Our tests have been conducted on a series of prob-
lems mainly from IPC competitions. Problem domains tested are “Logistics” (IPC2),

F. Benzi et al. On the Use of Landmarks in LPG

54

Comparative Results

Planner/Domain % Sol. Time (score) Quality (score)
LLPG ZhuGivan fs3
logistics IPC2 100.0 % 83.45 (52.17) 602.683 (50.96)
openstacks IPC5 80.0 % 261.59 (12.15) 105.208 (22.52)
storage IPC5 96.6 % 118.09 (25.07) 231.034 (24.01)
TPP IPC5 83.3 % 124.51 (21.01) 125.960 (22.75)
elevators IPC6 100.0 % 3.03 (27.81) 744.833 (23.24)
transport IPC6 83.3 % 266.73 (18.36) 3140.720 (19.61)
elevators IPC7 100.0 % 44.15 (17.66) 326.050 (17.02)
transport IPC7 90.0 % 625.58 (13.36) 423.611 (15.19)
barman IPC7 0 % 900.88 (1.00) 75.000 (0.39)
nomystery IPC7 0 % 1800.00 (0.00) -1.0 (0.00)
visitall IPC7 25.0 % 13.24 (3.80) 365.200 (3.33)
Total 75.8 % 430.51 (220.06) 565.296 (202.41)

LLPG ZhuGivan fs2
logistics IPC2 100.0 % 67.41 (57.77) 520.067 (58.99)
openstacks IPC5 90.0 % 49.31 (18.78) 121.407 (25.82)
storage IPC5 93.3 % 126.02 (22.45) 242.893 (22.27)
TPP IPC5 76.6 % 124.01 (16.80) 116.304 (21.20)
elevators IPC6 100.0 % 14.05 (23.79) 658.800 (27.46)
transport IPC6 93.3 % 308.57 (19.01) 3985.786 (22.68)
elevators IPC7 100.0 % 185.91 (13.25) 308.900 (18.23)
transport IPC7 90.0 % 690.72 (13.57) 411.778 (15.34)
barman IPC7 9.5 % 944.86 (1.79) 276.333 (2.11)
nomystery IPC7 10.0 % 3.09 (1.00) 21.000 (0.91)
visitall IPC7 25.0 % 16.08 (3.43) 299.400 (4.00)
Total 78.1 % 487.76 (199.23) 612.357 (227.92)

LLPG ZhuGivan fs1
logistics IPC2 100.0 % 68.68 (56.97) 557.150 (55.03)
openstacks IPC5 100.0 % 114.47 (28.64) 159.167 (28.84)
storage IPC5 93.3 % 146.59 (21.80) 244.321 (22.09)
TPP IPC5 76.6 % 158.62 (16.31) 116.304 (21.20)
elevators IPC6 100.0 % 6.60 (26.60) 706.833 (25.40)
transport IPC6 93.3 % 301.80 (19.18) 3985.786 (22.68)
elevators IPC7 100.0 % 89.84 (15.94) 313.000 (18.06)
transport IPC7 80.0 % 605.88 (11.91) 396.500 (13.43)
barman IPC7 9.5 % 1041.76 (2.50) 178.000 (3.00)
nomystery IPC7 40.0 % 600.45 (6.46) 28.500 (6.61)
visitall IPC7 25.0 % 11.65 (3.80) 299.400 (4.00)
Total 80.3 % 447.27 (218.22) 625.469 (229.21)

LLPG ZhuGivan fs0
logistics IPC2 100.0 % 82.10 (51.66) 625.683 (49.12)
openstacks IPC5 80.0 % 250.82 (12.37) 99.542 (23.00)
storage IPC5 93.3 % 133.75 (23.49) 202.964 (24.45)
TPP IPC5 80.0 % 120.35 (18.63) 119.375 (22.03)
elevators IPC6 100.0 % 3.37 (27.71) 703.333 (24.71)
transport IPC6 100.0 % 175.20 (24.76) 4345.367 (25.26)
elevators IPC7 100.0 % 79.29 (16.77) 378.150 (15.00)
transport IPC7 70.0 % 721.08 (10.78) 422.500 (10.17)
barman IPC7 0 % 1800.00 (0.00) -1.0 (0.00)
nomystery IPC7 15.0 % 663.99 (1.08) 20.667 (1.95)
visitall IPC7 25.0 % 84.14 (2.18) 737.200 (1.62)
Total 76.5 % 424.08 (219.12) 745.541 (204.16)

Table 1. Comparison between landmark selection rules: average values for Coverage, Time and
Quality results. IPC score in brackets.

F. Benzi et al. On the Use of Landmarks in LPG

55

Fig. 2. Speed and Quality results for the Openstacks and TPP (IPC5) domains, respectively. Com-
parison of using Zhu & Givan’s landmarks and Hoffmann’s landmarks.

“Transport” (IPC6 and IPC7), “Elevators” (IPC6 and IPC7), “Storage” (IPC5), “Bar-
man” (IPC7), “NoMystery” (IPC7), “Visitall” (IPC7), “Openstacks” (IPC5) and “TPP”
(IPC5).

The results are shown in the tables and figures below. For each domain we show
runtime (speed) and plan quality results in two separate plots. For each plot, on the x
axis we have the different problems from that domain, on the y axis the results. For the
“speed” results we used a log10 scale.

In the following comparison tests we will show the results of LPG without land-
marks (labelled: LPG) and LPG with landmarks (labelled: LLPG). We will use the
label “fs2” to indicate that the selection of a landmark in the disjunction is done using
our variant of the “select the one with the minimum heuristic value” rule. The label
“test” will indicate that if the landmarks control of LPG fails, the program will retry
again and again, until a solution plan is found or the time available expires. Also, ex-

F. Benzi et al. On the Use of Landmarks in LPG

56

Comparative Results

Planner/Domain % Sol. Time (score) Quality (score) LM
LLPG Z&G fs2
logistics IPC2 100.0 % 67.41 (58.47) 520.1 (59.00) 224.6
openstacks IPC5 90.0 % 49.31 (19.13) 121.4 (25.91) 98.3
storage IPC5 93.3 % 126.02 (26.70) 242.9 (27.00) 0.9
TPP IPC5 76.6 % 124.01 (17.56) 116.3 (21.52) 11.6
elevators IPC6 100.0 % 14.05 (25.92) 658.8 (28.31) 30.7
transport IPC6 93.3 % 308.57 (26.48) 3985.8 (27.00) 0
elevators IPC7 100.0 % 185.91 (16.45) 308.9 (17.88) 68.1
transport IPC7 90.0 % 690.72 (16.70) 411.8 (17.00) 0
barman IPC7 9.5 % 944.86 (3.00) 276.3 (2.58) 14.7
nomystery IPC7 10.0 % 3.09 (1.00) 21.0 (1.00) 14.5
visitall IPC7 25.0 % 16.08 (4.00) 299.4 (3.94) 0
Total 78.1 % 487.76 (223.93) 612.4 (240.02) 463.4

LLPG Hoff. fs2
logistics IPC2 100.0 % 74.85 (55.21) 520.1 (59.00) 224.6
openstacks IPC5 96.6 % 142.40 (27.98) 147.4 (28.00) 91.3
storage IPC5 93.3 % 134.15 (25.81) 244.3 (26.79) 0.9
TPP IPC5 96.6 % 151.07 (25.93) 157.5 (27.78) 14.1
elevators IPC6 100.0 % 6.87 (28.44) 717.6 (26.39) 24.3
transport IPC6 93.3 % 279.21 (26.59) 3997.6 (26.97) 0
elevators IPC7 100.0 % 121.45 (17.61) 303.4 (18.27) 49.8
transport IPC7 85.0 % 673.96 (15.96) 409.2 (16.00) 0
barman IPC7 0 % 1171.31 (0.51) 73.0 (1.00) 13.6
nomystery IPC7 25.0 % 751.96 (3.43) 25.8 (4.00) 14.8
visitall IPC7 25.0 % 19.91 (3.59) 302.0 (3.90) 26
Total 80.7 % 441.33 (239.59) 624.6 (246.98) 459.4

Table 2. Comparison between Hoffmann’s landmarks and Zhu & Givan’s landmarks: average
values for Coverage, Time, Quality and number of landmarks. IPC score in brackets.

cept differently indicated, the control variant used is the default one: only adding new
actions at the end of the partial plan.

In Table 1 we compare LPG with landmarks for all variants of the Landmarks Graph
frontier selection methods: selection of a random landmark (labelled: fs0); the selec-
tion of the landmark with minimum heuristic value (labelled: fs1); our variant of fs1
designed to avoid destructive interaction between landmarks in the frontier (labelled:
fs2); and selection of the landmark with maximum heuristic value (labelled: fs3). The
results show that “fs1” is the best selection rule for quality and coverage results. Con-
cerning speed the best rule is “fs3”, however the advantage with respect to “fs1” is
small. Moreover, “fs2” is particularly effective in Logistics.

In Figure 2 we show speed and quality plots for the comparison between the use
of Zhu & Givan’s landmarks and the use of Hoffmann’s landmarks. As we can see,
landmarks computed by Hoffmann’s method give better coverage, better time results
and better quality results.

Figure 3 plots speed and quality results for the comparison of the landmark selection
rules we implemented. The Speed plot shows better coverage and time results for the
“fs1” rule, while the Quality plot shows that our variant of “fs1”, labelled “fs2”, gives,
as expected, better quality results in Logistics.

In Table 2 we compare LPG with landmarks in the two variants: using landmarks
computed by Hoffmann’s method and using landmarks computed using Zhu & Givan’s
method. The last column contains the average number of Landmarks for every do-

F. Benzi et al. On the Use of Landmarks in LPG

57

Fig. 3. Speed and Quality results for the Openstacks (IPC5) and Logistics (IPC2) domains, re-
spectively. Comparison of different landmark selection rules.

main (initial and goal Landmarks were not counted); here we can observe that the two
approaches produce a similar number of landmarks in the different domains. Unfor-
tunately in Transport and Visitall (Zhu&Givan approach) the system cannot find new
landmarks. In general, the use of landmarks computed by Hoffmann’s method gives
better results; however the difference is usually small.

Table 3 compares LPG with landmarks using three control variants: the one that
only adds new actions at the end of the current partial plan (labelled: control 2), the one
that can add new actions at any point of the current partial plan (labelled: control 1), and
the one that can add as well as remove actions at any point of the partial plan (labelled:
control 0). The results show that the best solution is “control 2”. However, “control 1”
gives best results in IPC5 “TPP” domain, and “control 0” in IPC7 “barman” domain.

F. Benzi et al. On the Use of Landmarks in LPG

58

Comparative Results

Planner/Domain % Sol. Time (score) Quality (score)

LLPG ZhuGivan fs2 control 2
logistics IPC2 100.0 % 67.41 (53.41) 520.067 (56.92)
openstacks IPC5 90.0 % 49.31 (23.91) 121.407 (26.00)
storage IPC5 93.3 % 126.02 (23.00) 242.893 (21.12)
TPP IPC5 76.6 % 124.01 (15.22) 116.304 (19.34)
elevators IPC6 100.0 % 14.05 (27.13) 658.800 (28.11)
transport IPC6 93.3 % 308.57 (22.57) 3985.786 (21.68)
elevators IPC7 100.0 % 185.91 (19.00) 308.900 (19.00)
transport IPC7 90.0 % 690.72 (15.92) 411.778 (17.00)
barman IPC7 9.5 % 944.86 (1.80) 276.333 (2.07)
nomystery IPC7 10.0 % 3.09 (1.00) 21.000 (0.91)
visitall IPC7 25.0 % 16.08 (2.06) 299.400 (4.00)
Total 78.1 % 487.76 (212.33) 612.357 (225.15)

LLPG ZhuGivan fs2 control 1
logistics IPC2 100.0 % 70.68 (53.40) 508.650 (58.17)
openstacks IPC5 90.0 % 47.75 (23.90) 121.407 (26.00)
storage IPC5 93.3 % 135.79 (22.78) 216.000 (22.98)
TPP IPC5 80.0 % 242.46 (18.30) 113.167 (22.49)
elevators IPC6 86.6 % 295.70 (14.54) 681.231 (20.61)
transport IPC6 80.0 % 385.47 (17.62) 3383.167 (18.39)
elevators IPC7 50.0 % 746.24 (4.01) 480.600 (4.14)
transport IPC7 40.0 % 950.66 (5.07) 686.500 (3.73)
barman IPC7 0 % 1800.00 (0.00) -1.0 (0.00)
nomystery IPC7 15.0 % 453.40 (1.72) 22.333 (2.00)
visitall IPC7 25.0 % 31.98 (1.77) 428.800 (2.78)
Total 69.1 % 563.73 (192.11) 528.238 (187.22)

LLPG ZhuGivan fs2 control 0
logistics IPC2 100.0 % 67.01 (57.90) 516.533 (57.30)
openstacks IPC5 16.6 % .04 (4.00) 25.000 (4.00)
storage IPC5 26.6 % 490.92 (7.00) 17.250 (5.85)
TPP IPC5 56.6 % 359.72 (14.11) 103.647 (11.90)
elevators IPC6 73.3 % 489.85 (14.18) 918.455 (14.49)
transport IPC6 80.0 % 374.24 (17.04) 2811.708 (18.31)
elevators IPC7 20.0 % 666.83 (1.93) 387.250 (1.75)
transport IPC7 45.0 % 841.74 (5.66) 697.556 (3.51)
barman IPC7 14.2 % 779.49 (4.00) 193.250 (4.00)
nomystery IPC7 5.0 % 231.68 (0.00) 20.000 (0.00)
visitall IPC7 20.0 % 361.48 (4.00) 347.500 (3.80)
Total 50.4 % 941.28 (136.59) 417.421 (131.48)

Table 3. Comparison of different control methods: average values for Coverage, Time and Quality
results. IPC score in brackets.

The results for domain Elevators (IPC7) in Figure 4 are shown to compare different
control methods. As shown in the plots, “control 2” is the best solution, giving best
coverage, speed and quality.

In Table 4 we compare LPG with landmarks (LLPG ZhuGivan fs2), LPG without
landmarks (LPG) and the state-of-the-art planner LAMA2011 [23]. The experimental
tests show that our planner gives the best speed and coverage, while LAMA gives the
best quality. However, in assessing the results we must take into consideration that
LAMA2011 in some domains (Elevators IPC6 and Transport IPC6) does not solve any
problem.

The results for domain Logistics (IPC2) in Figure 5 compare LPG with and without
landmarks and LAMA2011. As we can see, only LPG (with and without Landmarks)

F. Benzi et al. On the Use of Landmarks in LPG

59

Fig. 4. Speed and Quality results for domain Elevators (IPC7): comparison of different control
methods.

solved all the problems. If we consider speed, quality and coverage altogether, the best
planner is LPG with landmarks.

Table 5 compares the performances of LLPG versus LPG in terms of delta values
of the coverage, the IPC Speed and the IPC Quality scores. The LM column reports the
average number of landmarks for every domain (initial and goal landmarks were not
counted), while the “# goals” column reports the average number of goals in the dif-
ferent domains. We can see that a high number of landmarks is usually associated with
higher performances of LLPG w.r.t. LPG, see for example the logistics IPC2 do-
main (where on average we can find 224 landmarks + initial facts + the goal facts) and
the elevators IPC7 domain (where on average we can find 50 landmarks + initial
facts + the goal facts). Furthermore, we can also observe performance improvements
in the transport domains in which the LM value is equal to 0; this is related to the

F. Benzi et al. On the Use of Landmarks in LPG

60

Comparative Results

Planner/Domain % Sol. Time (score) Quality (score)
LPG
logistics IPC2 100.0 % 179.33 (46.27) 666.267 (43.03)
openstacks IPC5 90.0 % 105.73 (17.38) 120.630 (24.98)
storage IPC5 96.6 % 110.74 (26.54) 189.276 (17.91)
TPP IPC5 70.0 % 177.97 (17.44) 123.952 (13.50)
elevators IPC6 90.0 % 442.08 (14.18) 509.296 (23.64)
transport IPC6 53.3 % 448.90 (12.13) 2055.062 (13.19)
elevators IPC7 50.0 % 1005.54 (2.90) 216.300 (7.69)
transport IPC7 5.0 % 1018.84 (0.48) 246.000 (0.48)
barman IPC7 0 % 900.88 (1.00) 74.000 (0.43)
nomystery IPC7 20.0 % 621.51 (1.13) 20.250 (3.00)
visitall IPC7 10.0 % .52 (1.00) 293.000 (0.64)
Total 63.3 % 780.25 (147.17) 321.550 (155.10)
LLPG
logistics IPC2 100.0 % 74.85 (56.84) 520.067 (54.81)
openstacks IPC5 96.6 % 142.40 (23.38) 147.379 (26.91)
storage IPC5 93.3 % 134.15 (21.25) 244.321 (13.96)
TPP IPC5 96.6 % 151.07 (18.72) 157.483 (20.46)
elevators IPC6 100.0 % 6.87 (27.54) 717.633 (25.34)
transport IPC6 93.3 % 279.21 (22.36) 3997.607 (21.74)
elevators IPC7 100.0 % 121.45 (16.33) 303.400 (14.36)
transport IPC7 85.0 % 673.96 (11.65) 409.235 (11.12)
barman IPC7 0 % 1171.31 (0.29) 73.000 (0.44)
nomystery IPC7 25.0 % 751.96 (2.42) 25.800 (3.10)
visitall IPC7 25.0 % 19.91 (2.35) 302.000 (4.00)
Total 80.7 % 441.33 (209.72) 624.611 (204.83)
LAMA2011
logistics IPC2 83.3 % 311.93 (29.53) 441.360 (50.00)
openstacks IPC5 100.0 % 7.85 (22.76) 154.600 (28.99)
storage IPC5 63.3 % 125.06 (8.46) 21.526 (17.92)
TPP IPC5 100.0 % 14.97 (21.69) 116.900 (29.00)
elevators IPC6 0 % 1800.00 (0.00) -1.0 (0.00)
transport IPC6 0 % 1800.00 (0.00) -1.0 (0.00)
elevators IPC7 100.0 % 61.10 (17.91) 231.200 (18.29)
transport IPC7 70.0 % 359.93 (12.57) 212.000 (13.00)
barman IPC7 95.2 % 90.85 (20.00) 188.571 (20.00)
nomystery IPC7 60.0 % 144.41 (10.42) 31.417 (9.54)
visitall IPC7 100.0 % 94.02 (18.61) 1483.050 (18.37)
Total 69.1 % 324.14 (205.28) 286.888 (200.61)

Table 4. Percentage of problem solved, CPU time in seconds and Plan Quality (IPC scores in
brackets) of LPG, LLPG and Lama 2011.

fact that the LM value does not count the goals as landmarks, although indeed they are
landmarks and they are effectively used by LPG with landmarks (LLPG).

Conclusions

In this paper, we have presented some new techniques for planning with landmarks that
have been implemented in LPG; the experimental results show significant improve-
ments in terms of both number of problems solved and CPU time. In particular, the
use of landmarks for dividing the planning problem into sub planning problems, whose
concatenated solution gives a global solution to the original problem, gives extremely
interesting results.

F. Benzi et al. On the Use of Landmarks in LPG

61

Fig. 5. Speed and Quality results for domain Logistics (IPC2): comparison of different planners.

As future work, we plan to extend LLPG in order to compute landmarks for tempo-
ral and metric domains. Moreover, we plan to compute also Action Landmarks and use
them to effectively initialize the search process. Exploiting action landmarks seems to
be very natural and promising in the context of LPG. Finally, we are developing a new
idea about quasi-landmarks: facts that appear in almost every solution plan. We expect
quasi-landmarks to be useful in domains where the only landmarks that are computed by
the existing methods are the initial and goal facts. These domains include, for example,
the two domains Transport IPC6 and Transport IPC7 that we used in our experiments.

References

1. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence
90, 281–300 (1997)

F. Benzi et al. On the Use of Landmarks in LPG

62

LLPG vs LPG

Planner/Domain LM # goals 4 % Sol. 4 Time score 4 Quality score
logistics IPC2 224.6 69.5 + 0.0 % + 10.6 + 11.8
openstacks IPC5 91.3 31 + 6.6 % +6 + 1.9
storage IPC5 0.9 7.7 -3.3 % - 5.3 -4
TPP IPC5 14.1 8.7 + 26.6 % +1.3 +7
elevators IPC6 24.3 17 + 10.0 % +13.4 +1.7
transport IPC6 0 10.4 + 40.0 % +10.2 +8.6
elevators IPC7 49.8 37.6 + 50.0 % +13.4 +6.7
transport IPC7 0 18.8 + 80.0 % +11.2 +10.6
barman IPC7 13.6 9.3 0 % -0.7 0
nomystery IPC7 14.8 8.4 +5 % +1.3 +0.1
visitall IPC7 26 263 + 15.0 % +1.3 +3.4
Total 459.4 481.4 + 17.4 % +62.6 +49.7

Table 5. LLPG vs LPG in terms on delta values for the coverage, IPC Speed and Quality scores.

2. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classic part of the 4th inter-
national planning competition. Technical Report 195, Institut für Informatik, Freiburg, Ger-
many (2004)

3. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan repair. In:
Proceedings of the 16th International Conference on Automated Planning and Scheduling.
AAAI Press, Cumbria, UK (2006)

4. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research (JAIR) 20, pp. 61–124 (2003)

5. Gerevini, A., Kuter, U., Nau, D., S., A., S., Waisbrot, N.: Combining domain-independent
planning and HTN planning: The Duet planner. In: Proceedings of the Eighteenth European
Conference on Artificial Intelligence (ECAI-08) (2008)

6. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal
action graphs. Journal of Artificial Intelligence Research (JAIR) 20, 239–290 (2003)

7. Gerevini, A., Saetti, A., Serina, I.: An empirical analysis of some heuristic features for local
search in LPG. In: Proceedings of the Fourteenth International Conference on Automated
Planning and Scheduling (ICAPS-04). pp. 171–180. AAAI Press, Menlo Park, CA, USA
(2004)

8. Gerevini, A., Saetti, A., Serina, I.: An approach to temporal planning and scheduling in do-
mains with predictable exogenous events. Journal of Artificial Intelligence Research (JAIR)
25, 187–231 (2006)

9. Gerevini, A., Saetti, A., Serina, I.: An approach to efficient planning with numerical fluents
and multi-criteria plan quality. Artificial Intelligence 172(8-9), 899–944 (2008)

10. Gerevini, A., Serina, I.: LPG: A planner based on local search for planning graphs with action
costs. In: Proceedings of the 6th International Conference on Artificial Intelligence Planning
and Scheduling (AIPS-02). pp. 281–290. AAAI Press/MIT Press (2002)

11. Gerevini, A., Serina, I.: Planning as propositional CSP: from Walksat to local search for
action graphs. CONSTRAINTS 8(4) (October 2003)

12. Gerevini, A., Serina, I., Saetti, A., Spinoni, S.: Local search techniques for temporal planning
in LPG. In: Proceedings of the 13th International Conference on Automated Planning &
Scheduling (ICAPS03). pp. 62–71. AAAI Press (2003)

13. Gerevini, A., Serina, I.: Fast plan adaptation through planning graphs: Local and systematic
search techniques. In: Proceedings of the 5th International Conference on Artificial Intelli-
gence Planning Systems. AAAI Press, Breckenridge, CO (2000)

14. Hoffmann, J., Edelkamp, S.: The deterministic part of IPC-4: An overview. Journal of Arti-
ficial Intelligence Research (JAIR) 24, 519–579 (2005)

F. Benzi et al. On the Use of Landmarks in LPG

63

15. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks in planning. J. Artif. Int. Res.
22(1), 215–278 (Nov 2004), http://dl.acm.org/citation.cfm?id=1622487.1622495

16. Jimẽnez, S., Fernãndez, F., Borrajo, D.: The PELA architecture: integrating planning and
learning to improve execution. In: Proceedings of the Twenty-Third National Conference on
Artificial Intelligence (AAAI-08) (2008)

17. Kolobov, A., Mausam, Weld, D., S.: Determinize, solve, and generalize: Classical planning
for MDP heuristics. In: ICAPS-09 Workshop on Heuristics for Domain-independent Plan-
ning (2009)

18. Long, D., Fox, M.: The 3rd International Planning Competition: Results and analysis. Journal
of Artificial Intelligence Research (JAIR) 20, 1–59 (2003)

19. Morales, L., Castillo, L., Fernandez-Olivares, J., Gonzalez-Ferrer, A.: Automatic generation
of user adapted learning designs: An AI-planning proposal. In: Proceedings of the Fifth
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH-
08) (2008)

20. Nguyen, T., A., Do, M., B., Kambhampati, D., Srivasta, B.: Planning with partial preference
models. In: Twenty-first International Joint Conference on Artificial Intelligence (IJCAI-09)
(2009)

21. Nguyen, T.A., Do, M.B., Gerevini, A., Serina, I., Srivastava, B., Kambhampati, S.: Gen-
erating diverse plans to handle unknown and partially known user preferences. Artificial
Intelligence 190, 1–31 (2012)

22. Porteous, J., Sebastia, L., Hoffmann, J.: On the extraction, ordering and usage of landmarks
in planning. In: European Conference of Planning (ECP’01). pp. 37–48 (2001)

23. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime planning with
landmarks. CoRR abs/1401.3839 (2014), http://arxiv.org/abs/1401.3839

24. Srivastava, B., Nguyen, T.A., Gerevini, A., Kambhampati, S., Do, M.B., Serina, I.: Domain
independent approaches for finding diverse plans. In: Proceedings of the 20th International
Joint Conference on Artificial Intelligence (2007)

25. Vernhes, S., Infantes, G., Vidal, V.: Problem splitting using heuristic search in landmark
orderings. In: IJCAI’13. pp. –1–1 (2013)

26. Vrakas, D., Hatzi, O., Bassiliades, N.and Anagnostopoulos, D., Vlahavas, I.: A visual pro-
gramming tool for designing planning problems for semantic web service composition. In:
Visual Languages for Interactive Computing: Definitions and Formalizations (2008)

27. Zhu, L., Givan, R.: Landmark Extraction via Planning Graph Propagation. In Printed Notes
of ICAPS’03 Doctoral Consortium (June 2003), trento, Italy

F. Benzi et al. On the Use of Landmarks in LPG

64

Automated Planning for Urban Traffic Control:
Strategic Vehicle Routing to Respect Air Quality

Limitations

Lukáš Chrpa1, Daniele Magazzeni2, Keith McCabe3, Thomas L. McCluskey1, and
Mauro Vallati1

1 PARK research group, University of Huddersfield, United Kingdom
{n.surname}@hud.ac.uk

2 Department of Informatics, King’s College London, United Kingdom
daniele.magazzeni@kcl.ac.uk

3 KAM futures, United Kingdom

Abstract. The global growth in urbanisation increases the demand for services
including road transport infrastructure, presenting challenges in terms of mobil-
ity. These trends are occurring in the context of concerns around environmental
issues of poor air quality and transport related carbon dioxide emissions. One out
of several ways to help meet these challenges is in the intelligent routing of road
traffic through congested urban areas. Our goal is to show the feasibility of using
automated planning to perform this routing, taking into account a knowledge of
vehicle types, vehicle emissions, route maps, air quality zones, etc. Specifically
focusing on air quality concerns, in this paper we investigate the problem where
the goals are to minimise overall vehicle delay while utilising network capacity
fully, and respecting air quality limits. We introduce an automated planning ap-
proach for the routing of traffic to address these areas. The approach has been
evaluated on micro-simulation models that use real-world data supplied by our
industrial partner. Results show the feasibility of using AI planning technology
to deliver efficient routes for vehicles that avoid the breaking of air quality limits,
and that balance traffic flow through the network.

Keywords: Automated Planning, Urban Traffic Control, Pollution Limits, Micro
Simulation

1 Introduction

In the 21st Century the worlds population is expected to increase from 5.9bn in 2013
to 9.6bn by 2100. At the same time the worlds population is expected to become more
urbanised, in 2005 there was a 50/50 split between urban and rural population, by 2050
this is predicted to change to a 70/30 split. This huge growth in urbanisation increases
the demand for housing, associated utilities and services including transport infrastruc-
ture, public transport, vehicle parking and better interchanges between the urban and
national transport networks. In turn, this leads to increased pressure on land use and
development within or around urban areas contributing to land shortages and urban
sprawl. These trends present significant challenges in terms of mobility.

65

There are expected to be key developments in terms of growth of big data in trans-
port, with increased deployment of roadside and vehicle sensors, and increased automa-
tion with the introduction of semi-autonomous and fully autonomous vehicles into the
urban environment in the next decade. These trends are occurring in the context of
concerns around environmental issues of poor air quality and transport related carbon
dioxide emissions.

Current urban transport management systems help to minimise delay within day
to day traffic flows using controls such as self-tuning traffic light clusters, but are not
designed to take into account varying vehicle types, or regional demands such as avoid-
ing poor air quality, utilising the network fully, or working adequately in the face of
unplanned exceptional events. Our goal is to show the feasibility of using automated
planning to intelligently route all vehicles collectively through Urban Areas, taking into
account a knowledge of vehicle types, vehicle emissions, route maps, air quality zones
etc. This contrasts with the current situation where personal navigation devices produce
routes for a vehicle in isolation of other travellers, and traffic controls can only react to
local flows of traffic. Our approach anticipates future developments in route generation
for road users, which is likely to be based on a balance between minimising the average
delay of all traffic in an urban region, and observing regional constraints such as area
and weather dependent air quality limits.

Whereas there has been a long record of the use of AI techniques in road transporta-
tion [14, 11], with some notable exceptions, for example [16, 9, 1], there has been little
application of AI Planning and Scheduling techniques to urban traffic control. The nov-
elty of this paper lies in the application of automated planning techniques for strategic
urban traffic control, in order to calculate routes for vehicles entering an urban area to
satisfy regional-level constraints.

Micro-simulation models of road traffic are models that consider the traffic system
at the level of the individual vehicle [13]. We create a micro-simulation model for an
urban area, and show how planning can, by varying the vehicle flows through roads, or
re-routing the highest polluting vehicles around poor air quality zones, ensure that pol-
lution limits are respected while maximising the utilisation of network capacity, without
a marked effect on the goal of delay minimisation. We test our method using various
scenarios within a real urban area, and a generic urban area, incorporating poor air
quality zones.

2 Application Background

2.1 Traffic Control in Urban Areas

Urban Traffic Control (UTC) is normally the responsibility of local authorities whose
aims include reducing congestion, improving journey times, increasing the reliability
of the road network, safety regulation compliance and traffic pollution limitation. In
a recent investigation by some of the authors involving UTC of two major European
conurbations [10], it was found that the predominant goal of UTC centres is to minimise
delay to the traveller. UTC is distinct from Freeway traffic management, where the
number of junctions is much lower, and average speeds much higher. It is also distinct

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

66

from traffic controls in rural areas, where the concentration of traffic and sensors is
much lower.

UTC forms a key component of intelligent mobility (the safe and expeditious move-
ment of people and goods) in urban areas. It is made up of four different levels, namely:

– operational level, this is the domain of the commands to individual traffic control
devices;

– tactical level, this involves the control of individual intersections or small groups
of intersection;

– strategic level, this involves the management of routes in and around urban areas;
– external level, this is the interface to control centres controlling adjacent urban,

rural or interurban areas.

On a day to day basis, most UTC happens at an operational or tactical level, with
the main controls available to operators being traffic light plans, advisory / warning
messages displayed on variable message signs, variable speed limits and information
distributed on social media and applications based on open data platforms. Notable traf-
fic lights scheduling systems using linked or self-optimising delay reduction techniques
include SCOOT4, MOVA5 and SCATS6 [12, 15, 3]. These control traffic light clusters,
changing their own phase lengths depending on current traffic conditions, have embed-
ded triggers which can instantly adjust the behaviour of a set of lights. Such adjustment
to “fixed plans” can be made at peak times of the day, usually to cope with the vagaries
of rush hour. However, given several weeks notice, if operators want to increase flow in
a certain direction, due to for example a large football match, they can act at a strategic
level by composing a fixed plan to increase the green light phase through a particular
corridor of traffic lights. These plans are typically constructed manually, and can be
quite complex to create and validate.

Even the most advanced urban traffic management centres face major challenges,
and have shortfalls in what they can deliver. One example of such a challenge is unbal-
anced distribution of traffic in the road network. In particular, one might observe that
in rush hours some roads might be overcrowded by traffic while some other roads are
nearly empty. This is mainly caused by the fact that traffic is navigated via the same
route between given way-points. Therefore, alternative routes that might not be shorter
but faster because of little traffic are not or only rarely exploited, and hence the full
capacity of the Network is not used. Another shortfall, as reported in [9], is that there
are no automated methods to deal with significant unexpected events such as the sudden
loss of a road. Self tuning traffic lights can deal with changes in traffic flow, but fail in
the face of serious congestion caused by an incident.

Apart from the manual creation of fixed, connected traffic light plans (e.g. enabling
a “corridor” effect as mentioned above) UTC can do little to influence traffic at a strate-
gic or external level, such as flow balancing through different parts of a region. In par-
ticular, there are currently little or no controls that an operator can enact on a day by
day basis to change traffic behaviour to reduce the traffic through specific areas of a

4 www.scoot-utc.com
5 http://www.jstsm.com/mova.html
6 www.scats.com.au

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

67

network, or to select different types of vehicle to travel using different routes. A recent
review [2] identified areas where the operation of UTC could be enhanced, highlighting
the issues above. In particular, it emphasised the lack of air quality considerations in
UTC technologies, as discussed in the next section.

2.2 UTC in the Future

Looking towards the future, UTC is often considered within the ”Smart City” initiatives,
as its function is to make better use of the physical infrastructure of a city, and poten-
tially reduce usage of “environmental capital”. With the use of personalised information
services widespread, vehicle route choice is becoming increasingly dependent on auto-
mated route finding software, especially for commercial vehicles. Currently these routes
are enacted by the driver, but in future transport vehicles will follow calculated routes
autonomously. Commercial fleets have a clear motivation 7; they are planning to install
software for their vehicles that will take into account the characteristics of their vehicle
and local authority constraints on routes, which in combination with minimising delay
criteria will be used to decide routes. In other words, important regional criteria such as
air quality will be taken into account in future route navigation systems.

2.3 Air Quality in Urban Areas

In many areas of the world there are in force strict controls on air quality, and local
authorities can be fined if an area exceeds the fixed threshold8. Naturally, it is within
the centre of urban areas where the air quality is poorest, with vehicles by far being
the biggest polluter. For example, in 2012 there were 2720.9 km of UK roads that ex-
ceeded the EU air quality standards. While this is expected to decrease to 501.2 km by
the deadline of 2020, 501.2 km of road exceeding health standards for air quality still
represents a significant health issue for the UK.

The parameters that govern air quality in an urban area due to traffic, are:

– area specific: certain areas have poor air quality intrinsically, mainly because they
are shielded from the prevailing wind, hence the pollution cannot be dispersed eas-
ily;

– vehicle specific: the level of emissions depends on the amount and type of traffic.
For example diesel buses, large delivery vans and trucks are about 15 times more
polluting than cars;

– weather dominated: if there is little wind in the direction that will disperse the
pollutants, or in particular if the day is still, then the problems arise. Wind usually
disperses pollutants, but it is also possible that it could acculmulate it into certain
areas.

7 http://analysis.telematicsupdate.com/fleet-and-asset-management/present-and-future-
connected-fleets

8 For example, the European standards are available on
http://ec.europa.eu/environment/air/quality/standards.htm

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

68

Hence, an area would only likely have air quality problems on certain days when the
weather was of a certain type and the volume of traffic was high, and of the wrong sort.
Potential management controls at a strategic level include routing higher level polluting
vehicles away from the pollution. This is very locality-dependent, e.g., assuming we
have a north - south corridor, and a line of high buildings going north - south. Then on
days of dangerous air quality, a potential strategy would be to route higher polluting
vehicles on the west side of the buildings, since the prevailing wind may disperse them.
The east side will be shielded by the buildings, hence will be more likely to be a problem
area.

3 Problem Requirements

We performed the study for this paper with an ITS (intelligent transport system) con-
sultant, who is also a co-author of the paper, and were helped by members of, and
financially supported by, a European Network in future transport systems9. We visited
and investigated the current capability, and future needs, of two major conurbations,
both with over 1 million citizens. We gathered that in the near future there will be a
requirement for software that can work at a UTC strategic level, by producing routes
for vehicles through urban areas in partnership with the traveller, the urban traffic man-
agement authority, and, in the case of fleet vehicles, the fleet-owning company. The
routes produced would need to make full use of the road network, and be aimed at min-
imising delay. In certain cities where pollution is a problem, it would be necessary, on
weather-determined days, for the software to route vehicles in order to avoid breaking
the pollution limits.

Whereas fixed plans have been used at a strategic level in UTC, they are created
only for expected, well specified disturbances such as large city events, and require
much preparation. Hence, it is recognised that the problem outlined is too complex for
manual solution. Further, the requirements demand that the solution is flexible enough
for potential day-to-day changes in goals and initial state characteristics, e.g., changes to
road topology, or goal optimisation constraints, and unexpected events such as sudden
road closures. Also, the solution method needs to reason at a strategic level, using the
whole of the network within the area, and using knowledge-based features such as types
of vehicle and their emission characteristics. To show the feasibility and advantages
of using automated planning to generate individual routes, we have produced domain
models which embodied a micro-simulation model of traffic, as specified in the next
section.

An example scenario in which our approach will fit, is as follows. Vehicles travelling
in a region obtain a route for their whole journey, departing from some origin O to
some destination D, using a conventional navigation algorithm, but where the calculated
routes will be visible by the UTC centres in the region. UTC will filter the routes on
whether or not they intersect one of their controlled regions. Assuming the vehicle
enters a controlled region at point A, and exiting B, then the UTC centre’s software will
have the authority to change the route. The part of the route from A to B is recalculated

9 Towards Autonomic Road Transport Systems, EU COST Action TUD 1102

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

69

by UTC’s planning software, to take into account the authority’s regional goals and
constraints (in our case air quality, network capacity, vehicle type), and replaces the
old section of the route from A to B. Thus, re-routing causes minimal disruption as it
focuses only on re-routing vehicles that traverse the urban area. To deal with the delay
between a route being requested and the actual travelling of that route, a ”plan - validate
- replan” approach can be taken [5]. After a route is given, when vehicles arrive at the
edge of the UTC centre region, if the time is different from the expected one a checker
such as VAL [8] can be used to check all constraints are still satisfied, otherwise the
route can be replanned for that vehicle.

4 Problem Formulation

4.1 The Static and Dynamic Model of a Region of the Road Network

We present a formulation of a micro-simulation model of road traffic [13], that is one
that considers traffic flow at the level of the individual vehicle (this is necessary as routes
need to be calculated for each vehicle). It is worth pointing out that such models in the
area of ITS, and Transport Studies in general, are designed to be executed and their
behaviour observed. Here we are using such a model as the input to a reasoning system
(i.e. a planner). In the former, the behaviour of individual traffic is already determined
by the model and its semantics, whereas in the latter we are expecting the planner to
supply a key part of the picture - the vehicles’ routes.

A region of the road network can be represented by a directed graph, where edges
stand for road sections and vertices stand for either junctions, entry or exit points. In-
tuitively, vehicles enter the network in entry points, and exit the network in exit points.
Each road section has a given length and capacity (i.e. a maximum number of vehicles
it can serve). In junctions, we must consider that vehicles cannot go through it in some
directions simultaneously, otherwise they moght collide. In our case, we will consider
a simplistic case that at most one vehicle can pass through the junction at once. Notice
that such a case reflects 4-stop junctions that are very common in US urban areas.

Definition 1. Let (V,E) be a directed graph such that ∀v ∈ V : (indeg(v) = 0 ⇒
outdeg(v) = 1)∧ (outdeg(v) = 0⇒ indeg(v) = 1)10. Edges in E represent one-way
(or one direction of two-way) road sections. A vertex v ∈ V represents:

– an entry point if indeg(v) = 0

– an exit point if outdeg(v) = 0

– a junction otherwise

Let C : E → N be a function representing road section capacity and l : E → R+ be a
function representing road section length.
Then N = 〈V,E,C, l〉 is a Road Network.

10 indeg(v) represents the number of incoming edges to v and outdeg(v) represents the number
of outgoing edges from v

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

70

This structure for the road network represents the static part of the environment.
To capture a current traffic situation which forms part of the dynamic part of the

environment, we have to consider time. Let T be a set of time-stamps. Then, we can
define functions referring to positions of vehicles in the road network as well as usage
of the roads. Let use : E × T → N0 be a function referring to a number of vehicles
on the road section in a given time-stamp. Clearly, it must hold that ∀t ∈ T, ∀r ∈ E :
use(r, t) ≤ C(r). For capturing the position of vehicles on road sections in a given
time-stamp, we define relations head and tail such that head ⊆ X × E × T and
tail ⊆ X × E × T (X is a set of vehicles). Lastly, we have to capture situations when
in a give time-stamp vehicles are ready to enter the network in a given entry point or
have just exited the network in a given exit point. For this purpose we define relations
ready and exited such that ready ⊆ X × V × T and exited ⊆ X × V × T .

We define four planning operators that are used to navigate vehicles through the
network. We assume the operator to be applied in a time-stamp t and its application
to last ∆t. Notice that ∆t might vary even for different instances of the same operator
(e.g driving through different road sections may take different amount of time). For the
release-vehicle and exit-vehicle operators we assume instantaneous effects (∆t=0).

– An operator release-vehicle(x, v, r) releases a vehicle x at the entry point v to the
head of the road section r. As a precondition it must hold that r is an outgoing edge
from v, ready(x, v, t) is true and C(r) > use(r, t). The effect of this operator is
that use(r, t) = use(r, t) + 1 and head(x, r, t) becomes true.

– An operator drive-through-junction(x, v, r1, r2) navigates a vehicle x from the tail
of the road section r1 through the junction v to the head of the road section r2.
As a precondition it must hold that r1 is an incoming edge and r2 an outgoing
edge from v, tail(x, r1, t) is true, ∀t′ ∈ (t; t +∆t) : C(r2) > use(r2, t

′), and no
instance of operator drive-through-junction(x′, v, r′1, r

′
2) such that x 6= x′ is being

executed in 〈t, t+∆t〉. The effect of this operator is that tail(x, r1, t) becomes false,
head(x, r2, t+∆t) becomes true, and use(r1, t) = use(r1, t)− 1 and use(r2, t+
∆t) = use(r2, t) + 1.

– An operator drive(x, r) moves a vehicle x from a head of r to its tail. As a pre-
condition it must hold that head(x, r, t) is true. The effect of this operator is that
head(x, r, t) becomes false, tail(x, r, t+∆t) becomes true.

– An operator exit-vehicle(x, v, r) allows a vehicle x to leave the network in the
exit point v. As a precondition it must hold that r is an incoming edge to v and
tail(x, r, t) is true. The effect of this operator is that tail(x, r, t) becomes false,
exited(x, r, t) becomes true, and use(r, t) = use(r, t)− 1.

We consider frame axioms that, informally speaking, keeps the same value of a
function (or a truth value of a relation) between consecutive time-stamps unless some
operator changes it. For instance, use(r, t) = use(r, t′) (t′ > t) if no corresponding
instance of an operator modifying the use function is executed in between t and t′.

A planning problem is specified by a road network, which captures the static part
of the problem, initial and goal positions of vehicles (the use function is appropriately
initialised), which captures the dynamic part of the problem. Timed Initial Literals [6]
are used to represent situations when a vehicle is ready to enter the network later. For

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

71

example, a vehicle x is ready to enter the network at the entry point e in a time-stamp 5.
Then, we represent it (in PDDL2.1) as (at 5 (ready x e)). Solution plans are
in our case optimised for “make-span”, i.e., we minimise a cumulative time needed to
navigate vehicles from their initial to their goal positions.

4.2 Extending the Problem Formulation for Pollution Constraints

The problem formulation introduced in the previous subsection can be extended in order
to comply with pollution constraints. We divide an urban region into zones, depending
on the geography of the region, and taking into account daily weather (wind speed and
direction) we assume a limit on the amount of emissions from vehicles can be calculated
each day, for each zone - we call this the pollution limit. Further, we assume that each
road section belongs to exactly one zone. Formally speaking, given a road network
N = 〈V,E,C, l〉 we define a set of zones Z = {z1, z2, . . . , zk} such that

⋃k
i=1 zi = E

and ∀i, j, i 6= j : zi ∩ zj = ∅. For each zone we define a pollution limit as a function
polLimit : Z → N. For each vehicle we define its emission as a function emis : X →
N (X is a set of vehicles). Then, we define a function polLevel that represents a current
pollution level in a given zone in a given time-stamp, i.e., polLevel : Z × T → N0.
Clearly, it must hold that ∀t ∈ T, ∀z ∈ Z : polLevel(z, t) ≤ polLimit(z).

Given the additional constraints, some of the planning operators have to be amended
by incorporating additional preconditions and/or effects in order to fulfill the con-
straints. Again, we assume the operators to be applied in a time-stamp t and its ap-
plication to last ∆t time.

– release-vehicle(x, v, r, z) is modified such that in precondition it must hold that
r ∈ z and polLimit(z) ≥ polLevel(z, t) + emis(x). The effects are extended by
adding polLevel(z, t) = polLevel(z, t) + emis(x).

– exit-vehicle(x, v, r, z) is modified such that in precondition it must hold that r ∈ z.
The effects are extended by adding polLevel(z, t) = polLevel(z, t)− emis(x).

– drive-through-junction(x, v, r1, r2, z1, z2) is modified such that in precondition it
must hold that r1 ∈ z1, r2 ∈ z2 and if z1 6= z2, then ∀t′ ∈ 〈t; t + ∆t) :
polLimit(z2) ≥ polLevel(z2, t

′) + emis(x). If z1 6= z2 the effects are extended
by adding are extended by adding polLevel(z1, t) = polLevel(z1, t) − emis(x)
and polLevel(z2, t+∆t) = polLevel(z2, t) + emis(x)

The change in the pollution level in a given zone is approximated in these operators
by increasing it when a vehicle enters a road in that zone, and decreasing it when the
vehicle leaves the zone, to approximate the pollution dispersion.

5 Strategic Re-Routing through Planning

5.1 A Two Step Approach

As we introduced in Section 3, we consider a scenario where vehicles already have a
planned route for their journey, using conventional routing software. For all vehicles

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

72

Fig. 1. Example of re-routing: eight vehicles have to reach their exit points, either passing through
the city center of using the external ring road.

whose routes are detected to intersect the controlled urban region, their routes are re-
planned for that region, in order to utilise the available road network (which would
respect any problems resulting from sudden changes in capacity due to e.g. a road in-
cident leading to blockages). It is the responsibility of the UTC to monitor the level of
pollution emissions of vehicles traversing the urban area, and, if necessaary, to re-route
some of these vehicles in order to maintain the pollution level in the area within the
safety limit. In this case a new planning problem is dynamically created by considering
the expected entry points of all vehicles into the urban area. Timed Initial Literals are
used for this purpose, by modelling both the exact entry point and the expect time of
arrival of each vehicle. A new plan is then generated for these vehicles, but this time
pollution levels in the urban area must be kept below the safety thresholds, therefore
some vehicles may be re-routed.

Finally, the two plans need to be merged, by replacing actions in the initial plan
referring to the vehicles that have been re-routed with the corresponding actions in
the re-routing plan. It is easy to observe that the final plan is guaranteed to satisfy the
pollution limit constraint, as all the vehicles traversing the urban area have been routed
while taking the pollution constraints into account. In order to guarantee that at most
one vehicle passes through each junction at the same time, and that road capacities are
respected, we adopt a delay strategy for the vehicles that have been re-routed. A plan
and validate approach is used [5] to dynamically check that the solutions are valid. In
summary, dynamic problem formulation and planning are used to accomplish the UTC
task of strategic re-routing.

A simple example scenario is provided in the following section to illustrate the
method.

5.2 Illustrative Example

Figure 1 shows an example scenario, where eight vehicles v1. . .v8 have to reach their
exit points, and can choose to traverse the urban area (highlighted in green) or use the
external ring road. Figure 1 (a) shows the initial plan containing the best path for each
vehicle. Given the entry and exit points of each vehicle, and without taking pollution

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

73

emissions into account, for vehicles v1 and v5 it is better to use the ring road, while
for the other vehicles the shortest path traverses the urban area. The fragment of the
corresponding plan (POLLUTING PLAN) focuses on vehicles v1, v2, v3 and v6 and
shows the time points at which they traverse the junctions at the borders of the urban
area11.

In the next phase, shown in Figure 1 (b), from POLLUTING PLAN a new problem
is generated, with the objective to re-route the vehicles traversing the urban area in
case their pollution emissions exceed the safety limit. To this end, only the vehicles
entering the urban area are considered in the new problem, while vehicles v1 and v5
are ignored. As shown in the fragment of the new problem (GREEN PROBLEM), for
vehicles v2, v3 and v6, TILs are used to set their new entry points, while the exit
points remain the same. The pollution limit constraint is added to the new problem
and a new plan is generated, as shown in Figure 1 (c). Here, dotted lines represent the
new generated paths. Note that not all vehicles need to be re-routed, as for example
vehicles v2 keeps traversing the urban area. On the other hand, vehicles v3 and v6
are re-routed to the ring road in order to keep the pollution emissions in the urban area
below the safety limit. The new plan can then be merged with the initial plan, as shown
in the fragment of GREEN PLAN. Note that the new plan is guaranteed to satisfy the
pollution constraint after the merging with the POLLUTING PLAN, as from the latter
only the vehicles not entering the urban area are considered.

6 Experimental Evaluation

The aim of the experimental evaluation is to test whether the current state of the art
of domain-independent planning approaches can perform the required vehicle routing
in both real and generic urban scenarios. The data used in these scenarios (the relative
percentages of different types of vehicles in the urban area, the relative pollution emis-
sions of vehicles, the road topology of a urban area) has been extracted from openly
available and published data. Our experimental evaluation tests whether the current
state of the art of domain independent planning approaches can handle the proposed
two-step approach, and the possibility to effectively plan the routes of vehicles in a
micro-simulation urban context. In particular, the objectives of the particular tests are:
i) testing the feasibility of the two-step approach, in terms of CPU time needed; ii)
assess the distribution of the traffic on the network, according to road capacities and
pollution limits; iii) demonstrate that pollution limits in critical areas can be kept under
control, without major delays for the urban traffic.

In our experiment we used the well-known temporal planner POPF [4]. The planner
has been run on a cluster with computing nodes equipped with 2.5 Ghz Intel Core 2
Quad Processors, 4 GB of RAM and Linux operating system. A cutoff of 3600 seconds
(one hour) was imposed for solving each problem.

11 For brevity, the action parameters are replaced by the traversed junction and the next direction.

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

74

Fig. 2. The map of the scenario 2, which encodes an actual European town. In red the modelled
network. Green squares indicate entry/exit points.

6.1 Scenarios

In our experimental evaluation we considered the structure of the typical European city.
There is a ring road around the city centre, that allows vehicles to quickly move between
different areas of the city, as well as all the intercity traffic. The ring road is elliptic, thus
navigation on the north-south direction takes more time than the corresponding west-
east navigation. There are four entry points to the city, which is navigable through the
ring road and through the roads that cross city centre. The area within the ring road,
which represents the densely populated area, as strict pollution limits, in order to limit
the access for heavy vehicles, and avoid a very dense traffic.

In a second set of experiments, we encoded in our framework the structure of a real
European town. Connections, as well as road length and capacity have been modelled
by considering the real data. The map is shown in Figure 2. There are six entry/exit
points to the network, which consists of a ring road, and six road sections that can be
used for crossing or reaching the town centre.

6.2 Results

In the considered scenarios, we generated problems with the number of vehicles ranging
between 20 and 50. Vehicles include cars, vans (6-10%) and heavy vehicles (7-20%),
in proportion to the published averages within urban areas of these vehicle groups.
They are randomly distributed among entry points, and are released at different times.
In testing instances, we considered a rush hour situation, in which many vehicles are
released at entry points in a very short time interval, and a more “relaxed” condition,
in which vehicles appear less frequently at entry points. Considered problems in both
scenarios have been designed for stressing the pollution limits in the urban area, by
setting vehicles entry points on one side of the centre, and exit points on the opposite
side of the network.

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

75

We followed the two-phase approach in both scenarios. We first generated a plan
for navigating vehicles throughout the network while ignoring pollution limits. We then
generated a new problem file, taking into account the vehicles traversing the urban area
and generated a new plan for them, while considering the pollution constraint. All plans
were then validated using VAL.

In scenario 1, both finding the first plan, and re-routing vehicles is done efficiently;
both steps are usually solved in less than 60 CPU time seconds. We also observed that
makespan is not significantly increased when re-routing occurs: average makespan rise
is 19.9%, and the number of re-routed cars ranges between 8 (40%) and 14 (28%). On
the other hand, we have a large reduction of pollution emissions in the urban area, up
to 54%.

In scenario 2, we observed very interesting behaviour of our planning framework.
Only problems which include between 20 and 30 vehicles are solved; on the rest, POPF
runs out of memory. On solved instances, the first step is computationally expensive,
as it requires an average of 451 CPU time seconds to be solved. On the other hand,
re-routing vehicles took at most 12 CPU time seconds. Number of vehicles that were
re-routed ranged between 5 and 9. Furthermore, re-routing never increased the total
makespan, while pollution emissions were reduced in the urban area by between 29%
and 36%.

We noticed that in plans produced by both steps, vehicles are effectively distributed
across the whole network. This reduces the delay of vehicles, since junctions and roads
are less congested. Also, the good distribution of vehicles on the network, permits to
spread pollution in different areas of the map, without seriously affecting a specific
small area of the network.

7 Discussion

7.1 Directions for Future Work

The experiments demonstrate the extent to which our approach is able to efficiently
route vehicles, and re-route them when necessary to respect pollution limits. In sce-
nario 2 at least, we get an idea of the complexity level that current planning technology
can reach. Also, the model developed in this paper requires some features (e.g., tem-
poral reasoning, numeric fluents, timed initial literals) that are not supported by many
planning engines. Therefore, there is a need for developing advanced planning engines
that are able to handle such features. Furthermore, in the current discrete model we
make some assumptions on how the pollution level of different zones changes over
time. Namely, the pollution level in a given zone is increased (decreased) when the
vehicle enters (leaves) that zone. In reality, the pollution level is subject to continuous
change, that depends on several factors, such as the amount of time each vehicle is in a
given zone, or the current wind velocity and direction. A more realistic modelling of this
scenario requires the use of PDDL+ features [7] to model such a continuous change. In
particular, PDDL+ continuous processes can be used to model the pollution dispersion
due to the wind, or the flows of vehicles through a given road. How to enrich the current
model is an interesting direction for future work. Indeed, we believe that lessons learnt

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

76

Table 1. Number of cars, makespan extension after re-routing, number of redirected cars, pollu-
tion level reduction after re-routing, and total CPU time of problems from scenario 1 and 2, in
rush hours or “normal” time.

Scenario 1 – rush hour
cars ∆ M Redir ∆ Poll. CPU time
20 +42.9% 7 -53% 5.5
30 +0.0% 10 -17% 12.7
40 +27.5% 14 -34% 26.1
50 +0.0% 14 -54% 46.6

Scenario 1 – normal
cars ∆ M Redir ∆ Poll. CPU time
20 +33.3% 7 -53% 5.8
30 +0.0% 10 -22% 13.6
40 +0.0% 11 -46% 28.3
50 +54.7% 14 -34% 106.2

Scenario 2 – rush hour
cars ∆ M Redir ∆ Poll. CPU time
20 +0.0% 5 -29% 247.3

Scenario 2 – normal
cars ∆ M Redir ∆ Poll. CPU time
20 +0.0% 5 -29% 230.7
30 +0.0% 9 -36% 890.8

in this work will help us to improve the current domain model. For instance, we might
encode some sort of guidance for vehicles into the domain model (e.g which road the
vehicle should take).

Alternatively, there is a possibility to develop and use domain-dependent planning
techniques that can be tailored to our application. This might be an efficient approach,
but on the other hand, such an approach may be less flexible to changes in requirements.

Decentralised (multi-agent) planning might be another option. Agents (vehicles)
might be capable to plan their own routes taking into account the air-quality constraints.
This involves some control units responsible for controlling pollution restricted zones
that collect data from vehicles passing through the zones and communicate these data
with vehicles willing to enter these zones. A possible issue for such an approach might
be collision avoidance in junctions. While, the centralised approach can deal with this
issue easily, the decentralised approach will have to consider communication between
vehicles willing to pass through the same junctions. It might cause some hardly ex-
pectable delays and thus it might be hard to determine when a vehicle leaves the zone.

7.2 Related Work

Jimoh et al. [9] recently introduced the idea of using automated planning in urban traf-
fic control as a planning aid to be used in exceptional circumstances, e.g. in situations
where roads within a network of roads become blocked due to some unanticipated in-
cident. This demonstrated that it was feasible to use current planning technology to
produce re-routing of vehicles using a simple micro-simulation model. The aim of the

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

77

work, however, was to provide a supplement to existing tactical UTC, rather than pro-
viding a strategic solution at a regional level.

The work of Xie et al. [16] is also aimed at urban traffic control, though again
works at a tactical level. Their research has led to the deployment within an urban area
of a real-time, adaptive traffic control system called SURTRAC which utilises schedul-
ing techniques to synchronise a group of traffic light clusters, by viewing intersection
control optimisation as a scheduling problem. Botea et al. [1] modelled multi-modal
journey planning (i.e. generating plans using more than one mode of transport) as a
non-deterministic planning problem, and created a heuristic planner for generating con-
tingent plans to advise a user on using combinations of transport (e.g. walking, getting
a bus). While this work is relevant to urban areas, it is aimed more at personalised
planning rather than strategic vehicle routing.

8 Conclusion

In this paper we have examined the current situation in UTC, where management of
traffic is largely done at an operational or tactical level, with personal vehicle route
planning performed in isolation of other travellers and of the regional UTC centre.

We investigated the feasibility of applying automated planning to UTC at the strate-
gic level, where individual vehicles are taken into account at a regional level, a de-
velopment foreseen in the near future for organised (potentially autonomous) vehicle
routing. This is seen as having a range of advantages for traffic management, such as
the enforcing of regional constraints, and the even distribution through, and utilisation
of, network capacity. We formulated the problem in temporal planning, and created
a two stage solution which calculated routes for vehicles in an initial pass, re-planning
when air quality limits dictates. The results demonstrated the feasibility of the approach
on problems of the complexity demonstrated by the real urban area, though considering
larger areas / amounts of traffic will clearly challenge current planners.

For the future, we propose to further validate our proposed solution in collaboration
with our industrial partners. We also plan and explore promising approaches which will
extend the method’s scope, like the exploitation of decentralised strategies for planning
vehicles routes. Furthermore, we are already working on extending the current approach
by considering flows of cars modelled with PDDL+ processes.

References

1. Botea, A., Nikolova, E., Berlingerio, M.: Multi-modal journey planning in the presence of
uncertainty. In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.) Proceedings of the
International Conference on Automated Planning and Scheduling, ICAPS. AAAI (2013),
http://dblp.uni-trier.de/db/conf/aips/icaps2013.htmlBoteaNB13

2. Cenamor, I., Chrpa, L., Jimoh, F., McCluskey, T.L., Vallati, M.: Planning & scheduling ap-
plications in urban traffic management. In: Proceedings of PlanSIG 2014, Annual Workshop
of UK Planning & Scheduling Special Interest Group (2014)

3. Chong-White, C., Millar, G., Shaw, S.: SCATS and the environment study: definitive results.
In: Proceedings of the 19th World Congress on ITS, Vienna, Austria (2012)

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

78

4. Coles, A.J., Coles, A.I., Clark, A., Gilmore, S.T.: Cost-sensitive concurrent planning under
duration uncertainty for service level agreements. In: Proceedings of the Twenty First Inter-
national Conference on Automated Planning and Scheduling (ICAPS-11) (2011)

5. Della Penna, G., Magazzeni, D., Mercorio, F., Intrigila, B.: UPMurphi: A tool
for universal planning on PDDL+ problems. In: Proceedings of the 19th In-
ternational Conference on Automated Planning and Scheduling, ICAPS (2009),
http://aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/view/707

6. Fox, M., Long, D.: Pddl2. 1: An extension to pddl for expressing temporal planning domains.
J. Artif. Intell. Res.(JAIR) 20, 61–124 (2003)

7. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif.
Intell. Res. (JAIR) 27, 235–297 (2006), http://dx.doi.org/10.1613/jair.2044

8. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous ef-
fects and mixed initiative planning using PDDL. In: 16th IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI 2004). pp. 294–301 (2004),
http://doi.ieeecomputersociety.org/10.1109/ICTAI.2004.120

9. Jimoh, F., Chrpa, L., McCluskey, T., Shah, M.M.S.: Towards application of automated plan-
ning in urban traffic control. In: 2013 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), pp. 985–990. Institute of Electrical and Electronics
Engineers (IEEE) (2013)

10. McCluskey, T.L., Vallati, M.: Extracting information from urban traffic data to improve road
traffic management. In: Final Report for Transport Catapult Innovation Voucher (2014)

11. Miles, J. C., W.A.J.: The potential application of artificial intelligence in transport. Journal
of Intelligent Transport Systems, Volume 153, Institution of Engineering and Technology (3)
(2006)

12. Taale, H., Fransen, W., Dibbits, J.: The second assessment of the SCOOT system in Ni-
jmegen. In: IEE Road Transport Information and Control. No. 21-23 (1998)

13. Treiber, M., Kesting, A.: Traffic flow dynamics. Springer (2013)
14. Various: Artificial intelligence in transportation. Transportation Research Circular E-C113,

Transport Research Board (2007)
15. Vincent, R., Pierce, J.: Self-optimising signal control for isolated intersections. In:

Crowthorne: Transport and Road Research Laboratory Research Report. No. 170 (1988)
16. Xie, X.F., Smith, S., Barlow, G.: Schedule-driven coordination for real-time trafc network

control. In: Proceedings 22nd International Conference on Automated Planning and Schedul-
ing (ICAPS) (2012)

L. Chrpa et al. Automated Planning for Urban Traffic Control: Strategic Vehicle Routing
to Respect Air Quality Limitations

79

A discrete differential evolution algorithm for
multi-objective permutation flowshop scheduling

M. Baioletti, A. Milani, V. Santucci

Dipartimento di Matematica e Informatica
Università degli Studi di Perugia

Via Vanvitelli, 1
Perugia, Italy

Abstract. Real-world versions of the permutation flowshop schedul-
ing problem (PFSP) have a variety of objective criteria to be optimized
simultaneously. Multi-objective PFSP is also a relevant combinatorial
multi-objective optimization problem. In this paper we propose a multi-
objective evolutionary algorithm for PFSPs by extending the previously
proposed discrete differential evolution scheme for single-objective PF-
SPs. The novelties of this proposal reside on the management of the
evolved Pareto front and on the selection operator. A preliminary ex-
perimental evaluation has been conducted on three bi-objective PFSPs
resulting from all the possible bi-objective combinations of the criteria
makespan, total flowtime and total tardiness.

Introduction

The Permutation Flowshop Scheduling Problem (PFSP) is an important type of schedul-
ing problem which has many applications in manufacturing and large scale product
fabrication. In this problem there are n jobs J1, . . . , Jn and m machines M1, . . . ,Mm.
Each job Ji is composed bym operationsOi1, . . . , Oim. The generic operationOij can
be executed only by the machine Mj and its given processing time is pij . Moreover,
the execution of any operation cannot be interrupted (no pre-emption) and job passing
is not allowed, i.e., the jobs must be executed using the same order in every machine.
The goal of PFSP is to find the optimal job permutation π = 〈π(1), . . . , π(n)〉 with
respect to a given objective function. Three important criteria are to minimize the total
flowtime (TFT), the makespan (MS) and the total tardiness (TT) defined as follows:

TFT (π) =

n∑

i=1

C(π(i),m) (1)

MS(π) = max
i=1,...,n

C(π(i),m) = C(π(n),m) (2)

TT (π) =

n∑

i=1

max{C(π(i),m)− dπ(i), 0} (3)

80

where C(h, j) is the completion time of the operation Ohj and is computed by the
following recursive equation

C(π(i), j) = pπ(i),j +max{C(π(i− 1), j), C(π(i), j − 1)}
for i, j ≥ 1, while the terminal cases are C(π(0), j) = C(i, 0) = 0. In equation (3), for
each job h, also a given delivery date dh is considered.

The minimization of each one of these criteria is computationally hard. Indeed, both
the TFT and TT problems are NP-hard form ≥ 2, while the MS minimization becomes
NP-hard when m > 2.

Many single-optimization algorithms exists, either exact or approximate, for in-
stance: heuristic techniques, local searches or evolutionary algorithms [2]. Anyway, in
this paper we investigate the PFSP problem as a multi-objective optimization problem,
in which the goal is to find a set of job permutations which are good enough with respect
to two or more contrasting criteria, i.e. a set of Pareto optimal solutions.

Given k objective functions f1, . . . , fk, a solution x dominates a solution x′ (de-
noted by x ≺ x′) if fi(x) ≤ fi(x

′) for i = 1, . . . , k, and there exists at least an index
j ∈ {1, . . . , k} such that fj(x) < fj(x

′). A solution x is Pareto optimal if there exist
no other solution x′ such that x′ ≺ x. The Pareto optimal set is the set of all the Pareto
optimal solution. If two solutions x and x′ are such that neither x ≺ x′ nor x′ ≺ x, then
x and x′ are incomparable.

Since the Pareto set is in general very large, the goal is to find an approximation of
this set, i.e., a set composed by incomparable solutions which is as close as possible to
the Pareto optimal set. One of the most promising approaches to solve multi-objective
optimization problems is to use evolutionary algorithms [1].

In the context of multi-objective PFSP, many approaches have been proposed. The
surveys [3, 7] describe and compare many algorithms for PFSP with all the three possi-
ble combinations of two objectives among TFT, MS and TT.

In this paper we describe an algorithm for multi-objective optimization which is
based on Differential Evolution for Permutation (DEP) [6]. DEP is a discrete differential
evolution algorithm which directly operates on the permutations space and hence is
well suited for permutation optimization problems like PFSP. Indeed, in [6] and in [5],
it was shown that DEP reaches state-of-the-art results with respect to total flowtime
and makespan single objective optimization. Here, DEP has been extended in order
to handle multi-objective problems. The preliminary experimental results show that its
performances are comparable with state-of-the-art algorithms.

The rest of the paper is organized as follows. The second section describes the
classical Differential Evolution algorithm. Its extension to the permutations space and
multi-objective PFSP is introduced in the third section. An experimental investigation
of the proposed approach is provided in the fourth section, while conclusions are drawn
at the end of the paper.

The Differential Evolution algorithm

In this section we provide a short introduction to Differential Evolution (DE) algorithm.
For more detail see [4]. Differential Evolution (DE) is a powerful population-based evo-
lutionary algorithm for optimizing non-linear and even non-differentiable real functions

M. Baioletti et al. A Discrete Differential Evolution Algorithm for Multi-Objective
Permutation Flowshop Scheduling

81

inRn. The main peculiarity of DE is to exploit the distribution of the solutions’ differ-
ences in order to probe the search space.

DE initially generates a random population ofNP candidate solutions x1, . . . , xNP
uniformly distributed in the solutions space. At each generation, DE performs mutation
and crossover in order to produce a trial vector ui for each individual xi, called target
vector, in the current population. Each target vector is then replaced in the next genera-
tion by the associated trial vector if and only if the produced trial is fitter than the target.
This process is iteratively repeated until a stop criterion is met (e.g., a given amount of
fitness evaluations has been performed).

The differential mutation is the core operator of DE and generates a mutant vector
vi for each target individual xi. The most used mutation scheme is “rand/1” and it is
defined as follows:

vi = xr0 + F · (xr1 − xr2) (4)

where r0, r1, r2 are three random integers in [1, NP] mutually different among them.
xr0 is called base vector, xr1−xr2 is the difference vector, and F > 0 is the scale factor
parameter.In [4] it is argued that the differential mutation confers to DE the ability to
automatically adapt the mutation step size and orientation to the fitness landscape at
hand.

After the mutation, a crossover operator generates a population of NP trial vectors,
i.e. ui, by recombining each pair composed by the generated mutant vi and its corre-
sponding target xi. The most used crossover operator is the binomial one that builds the
trial vector ui taking some components from xi and some other ones from vi according
to the crossover probability CR ∈ [0, 1].

Finally, in the selection phase, the next generation population is selected by a one-
to-one tournament among xi and ui for 1 ≤ i ≤ NP .

Discrete Differential Evolution for Multi-Objective Optimization

In this section we describe the proposed Multi-Objective Differential Evolution for Per-
mutation (MODEP) which directly evolves a population ofNP permutations π1, . . . , πNP .
With respect to the classical DE, important variations have been made to the genetic
operators of mutation, crossover and selection. Moreover, an additional archive of so-
lutions is introduced to maintain the evolved Pareto front.

To simplify our description, let us restrict to the case of two objective functions f1
and f2. A population of NP permutations π1, . . . , πNP is randomly generated at the
beginning. At each iteration, a secondary population of trial elements υ1, . . . , υNP is
generated by means of the mutation and crossover operators. Then, a selection operator
selects, for i = 1, . . . , NP , which element among υi and πi should be part of the
population for the next iteration.

The pseudo-code of MODEP is depicted in Alg. 1.

Differential Mutation

The mutation operator used is the same of DEP [6]. It produces a mutant νi for each
population element πi using some algebraic concepts related to the symmetric group of
permutations. Here we briefly recall its structure:

M. Baioletti et al. A Discrete Differential Evolution Algorithm for Multi-Objective
Permutation Flowshop Scheduling

82

Algorithm 1 MODEP
1: Initialize Population
2: Update ND
3: while num fit eval ≤ max fit eval do
4: for i← 1 to NP do
5: νi ← DifferentialMutation(i)
6: υ

(1)
i , υ

(2)
i ← Crossover(πi, νi)

7: Update ND
8: υi ← SelectChild(υ(1)

i , υ
(2)
i)

9: end for
10: for i← 1 to NP do
11: πi ← Selection (πi, υi)
12: end for
13: end while

1 Find r0, r1, r2 different to i and to each other
2 δ ← π−1r2 ◦ πr1
3 S ← RandBS(δ) (S is a sequence of adjacent swaps)
4 L← Length(S)
5 k ← dF · Le
6 νi ← πr0
7 for j = 1, . . . , k apply Sj to νi

where ◦ is the ordinary permutation composition operator, ·−1 denotes the inverse of
a permutation, and RandBS is the randomized bubble sort procedure which allows to
decompose a permutation in a sequence of adjacent swaps (that are themselves simple
permutations). For more details, see [6].

It is worth to notice that this operator works directly with permutations, simulating
from an algebraic point of view, the expression of equation (4).

Crossover

The crossover operator for permutation representations is the same of DEP and pro-
duces two children υ(1)i and υ(2)i from πi and νi. The details are described in [6].

The two permutations υ(1)i and υ(2)i are compared with respect to both f1 and f2. If
υ
(1)
i dominates υ(2)i , then the trial υi is υ(1)i . Analogously, if υ(2)i dominates υ(1)i , then

the trial υi is υ(2)i . When υ(1)i and υ(2)i are incomparable, then one of them is randomly
selected to become the trial υi.

Selection

The selection operator chooses the new population element π′i between the old element
πi and the trial νi. If πi ≺ νi, then π′i becomes πi, i.e., πi remains in the population.
Otherwise, if νi ≺ πi or it is equal to πi, then π′i becomes νi, that is νi replaces πi in

M. Baioletti et al. A Discrete Differential Evolution Algorithm for Multi-Objective
Permutation Flowshop Scheduling

83

the next generation population. However, if πi and νi are incomparable, then we use a
probabilistic method somehow similar to the α-selection described in [6].

Suppose first that f1(νi) < f1(πi) but f2(νi) ≥ f2(πi). Then, π′i becomes νi with
probability max{0, α2 −∆(2)

i }, otherwise it retains the old element πi, where

∆
(2)
i =

f2(νi)− f2(πi)
f2(πi)

is the relative worsening of νi with respect to πi according to f2.
Analogously, if f1(νi) ≥ f1(πi) and f2(νi) < f2(πi). Then, π′i becomes νi with

probability max(0, α1 −∆(1)
i), where

∆
(1)
i =

f1(νi)− f1(πi)
f1(πi)

.

The rationale behind this selection operator is that νi enters the population if it
dominates or is equal to πi or, with a small probability, if it is not too worse than πi
in one of the objective functions, while it is better than πi in the other objective func-
tion. Moreover, note that the probability of accepting a slightly worsening population
element linearly shades from αh, when ∆(h)

i = 0, to 0, when ∆(h)
i = αh, for h = 1, 2.

Therefore, the parameters αh regulates how worse νi can be in order to be accepted
in the new population: if α1 = α2 = 0 only better elements (in the Pareto sense) can
replace old elements in the population.

Pareto Front

The algorithm keeps updated the approximated Pareto front ND, which contains all
the non-dominated elements ever generated and evaluated. Initially ND contains all
the non-dominated population elements created during the random initialization. Then,
at each generation, all the couples of children υ(1)i and υ(2)i are used to update ND. A
new element υ enters ND if it is not dominated by any element of ND. Moreover, all
the elements of ND which are dominated by υ are removed.

Experimental Results

In this section we report some preliminary experimental results obtained with an imple-
mentation of MODEP.

The experiments have been performed by solving the well known Taillard’s in-
stances with the additional due times given in [3]. These instances are divided in 11
groups of 10 instances with the same values of n and m. The values of n are in the set
{20, 50, 100, 200}, while m lies in {5, 10, 20}. The combination (n = 200,m = 5)
is not considered. The processing time pij of each instance are randomly generated in
{1, . . . , 99}, while the due date of each job Ji are generated by multiplying the value∑m
j=1 pij for a random factor in [1, 4]. MODEP has been run 10 times for each in-

stance and the adopted stopping criterion is the maximum number of evaluations, which

M. Baioletti et al. A Discrete Differential Evolution Algorithm for Multi-Objective
Permutation Flowshop Scheduling

84

has been set to 2000 · n ·m. Three combinations of objectives have been considered:
(MS,TFT), (MS,TT), and (TFT, TT). For each execution the obtained Pareto front
(corresponding to ND) has been analyzed by computing two performance indices: the
hypervolume IH and the unary multiplicative epsilon I1ε . IH is computed as the area
delimited by the solutions of ND and a reference point. I1ε compares ND with the best
known Pareto front B and is computed as

I1ε = max
x∈B

min
y∈ND

max
j=1,2

fj(y)

fj(x)
.

The indices have been computed by averaging over the multiple executions and
instances for every combination of n×m.

The value for the parameter NP has been set to 100 after some preliminary experi-
ments. The parameter F used in the mutation operator is, as in [6], self-adapted during
the evolution. Instead, the values for the selection parameters α1 and α2 have been set
after a calibration phase according to Table 1.

Table 1. Calibration values for α1 and α2

Opt. α1 α2

(MS,TFT) 0.025 0.015
(MS,TT) 0.01 0.01
(TFT, TT) 0.01 0.01

The results of the optimization of (MS,TFT) are shown in Table 2. MODEP works
well on this problem and the values of the second index I1ε (whose optimal value is 1)
are quite good, while the values for IH (whose optimal value is 1.44) are however good,
compared to those reported in [3].It is worth to notice that, fixing n, IH seems to have
a decreasing behavior as m increases (except when n = 20).

Table 2. Results for (MS,TFT)

n m IH I1ε
20 5 1.089 1.015
20 10 1.185 1.014
20 20 1.188 1.013
50 5 1.248 1.045
50 10 1.149 1.050
50 20 1.119 1.042

100 5 1.238 1.065
100 10 1.140 1.072
100 20 1.067 1.057
200 10 1.143 1.083
200 20 1.058 1.073

M. Baioletti et al. A Discrete Differential Evolution Algorithm for Multi-Objective
Permutation Flowshop Scheduling

85

The results of the optimization of (MS,TT) are shown in Table 3 and are similar
to those for (MS,TFT), even if the decreasing behavior of IH with respect tom is not
so apparent.

Table 3. Results for (MS,TT)

n m IH I1ε
20 5 1.241 1.048
20 10 1.136 1.162
20 20 1.071 1.038
50 5 1.219 1.078
50 10 1.140 1.175
50 20 1.195 1.237

100 5 1.221 1.086
100 10 1.137 1.119
100 20 1.138 1.167
200 10 1.138 1.105
200 20 0.976 1.117

Finally, the results of the optimization of (TFT, TT) are shown in Table 4. Here,
while the performances as measured by I1ε are still satisfactory, the results of IH are
slightly worse than in the previous cases.

Table 4. Results for (TFT, TT)

n m IH I1ε
20 5 1.081 1.026
20 10 1.088 1.193
20 20 1.032 1.038
50 5 0.6525 1.024
50 10 0.899 1.083
50 20 1.021 1.206

100 5 0.540 1.027
100 10 0.660 1.055
100 20 0.799 1.103
200 10 0.588 1.051
200 20 0.641 1.077

Conclusion and Future Work

In this paper we have described an algorithm for optimization of multi-objective per-
mutation flowshop scheduling problems. Some preliminary experimental results show
that this approach is promising and reaches results which are comparable to the state-
of-the-art algorithms. As a future line of research, we would like to add to our algorithm

M. Baioletti et al. A Discrete Differential Evolution Algorithm for Multi-Objective
Permutation Flowshop Scheduling

86

some method to enhance the diversity of the population, as done in other evolutionary
multi-objective algorithms, like crowding distance or niching techniques.

References

1. Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler. Evolutionary multi-
objective optimization. European Journal of Operational Research, 181(3):1617–1619, 2007.

2. J. Gupta and J.E. Stafford. Flowshop scheduling research after five decades. European Journal
of Operational Research, (169):699–711, 2006.

3. Gerardo Minella, Rubén Ruiz, and Michele Ciavotta. A review and evaluation of multiob-
jective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing,
20(3):451–471, 2008.

4. K.V. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practical Approach to
Global Optimization. Springer, Berlin, 2005.

5. Valentino Santucci, Marco Baioletti, and Alfredo Milani. Solving permutation flowshop
scheduling problems with a discrete differential evolution algorithm. submitted to AI Commu-
nication.

6. Valentino Santucci, Marco Baioletti, and Alfredo Milani. A differential evolution algorithm
for the permutation flowshop scheduling problem with total flow time criterion. In Parallel
Problem Solving from Nature - PPSN XIII - 13th International Conference, Ljubljana, Slove-
nia, September 13-17, 2014. Proceedings, pages 161–170, 2014.

7. M.M. Yenisey and B. Yagmahan. Multi-objective permutation flow shop scheduling problem:
Literature review, classification and current trends. Omega, (45):119–135, 2014.

M. Baioletti et al. A Discrete Differential Evolution Algorithm for Multi-Objective
Permutation Flowshop Scheduling

87

Web Services and Automated Planning for Intelligent

Calendars

George Markou, Anastasios Alexiadis, Ioannis Refanidis

Department of Applied Informatics, University of Macedonia

Thessaloniki, Greece

gmarkou@uom.gr, talex@java.uom.gr, yrefanid@uom.gr

Abstract. This paper promotes the automated creation of hybrid personal plans,

comprising web services and real human activities, to be supported by the next

generation of intelligent calendar applications. A prototype work is present-ed,

utilizing both atomic web services and composite ones, the latter having been

previously generated from a contingent web service composition module, aim-

ing at in-creasing the likelihood of achieving their intended goal. A metric

planner generates a plan, giving priority to web service calls over human activi-

ties. Then, a scheduler schedules the human activities into the user’s calendar,

taking into account the ordering constraints that result from the plan. The result-

ing schedules substitute human activities with web services, thus increasing the

user’s capacity, his free time, as well as the scheduling options. As a proof of

concept we present a case study implementation utilizing existing state-of-the-

art components.

Keywords: web services � intelligent calendar � personal activities

1 Introduction

Although in the recent past the popularity of paper calendars has steadily declined in

favor of web-based calendar applications like Google Calendar, such applications still

do not provide any means for automated activity scheduling. In that way, users are

forced to decide for themselves whether a particular activity has enough time to be

scheduled alongside another, or whether the distance between the places where the

two activities occur is a prohibiting factor.

This problem was efficiently tackled in our previous work, by SELFPLANNER [1], a

web-based calendar application that combines a rich problem model with a fast do-

main-specific scheduler and automatically produces optimized schedules.

SELFPLANNER also uses Google Maps to compute the necessary travelling times be-

tween the activities’ locations, as well as Google Calendar to present the outputted

schedules.

The obvious next step in intelligent calendar applications is to employ planning,

instead of pure scheduling, to achieve the user’s goals. Existing systems, like

SELFPLANNER, rely on the user to select the activities to be included in his plan, with

88

the system providing only scheduling functionalities. We envision a situation where

intelligent calendar applications (a) support action ontologies, with action descriptions

containing pre-conditions and effects, (b) allow the user to set his goals, (c) know the

user’s state, and (d) employ auto-mated planning to create plans that achieve the us-

er’s goals.

An even further step would be to extend intelligent calendar applications so as to

take web services into account. Web services can be considered as normal actions that

can be used to achieve users’ goals or other actions’ preconditions. Incorporating web

services into the action ontology enables the substitution of human activities by web

service calls, thus allowing for more flexible plans, more goals to achieve or just more

free time. As an example of such a setting that is very common in our daily routine

consider this: a person may wish to attend a concert, and for that reason he may insert

a personal activity in his schedule so as to reserve time and remember to buy tickets

for it. To achieve this goal the user is required to physically go to a brick-and-mortar

shop or buy his tickets online: both options re-quire some of his time (obviously, buy-

ing the tickets online requires less time). A more efficient electronic calendar, on the

other hand, would have searched for an alternative - automated - way of achieving

such goals, so as to relieve the user from the burden of manually executing the neces-

sary actions.

In this work we propose such an approach; it is based on the integration of web

services with an existing metric planner and an intelligent calendar application, name-

ly SELFPLANNER. Web services may be simple or composite; in the latter case, a con-

tingent web service composition module has been used, trying to reduce the non-

determinism underlying their execution. From the planning perspective, though, web

services are considered deterministic. As a result of the above process, the user’s

schedule contains only the human activities that cannot be completed through the use

of web services, thus relieving him of the extra burden of achieving the rest.

The rest of the paper is structured as follows: First we present related work; next,

we give a motivating example; then we present our approach and, finally, we con-

clude the paper and pose future directions of research.

2 Related Work

SELFPLANNER was the first system to tackle the problem of automated scheduling

personal activities into electronic calendars, using a combination of greedy optimiza-

tion algorithm, namely a modified version of the Squeaky Wheel Optimization

(SWO) [2], and stochastic local search. SELFPLANNER employs a rich model support-

ing temporal domains and preferences, locations, interruptible and periodic activities,

binary constraints and preferences, etc.

Bank et al. [3] build directly upon this work, using SWO in addition to a set of cal-

endar entity types that they propose; in specific, they discriminate between simple

events, multiple choice events, floating events and tasks. Moreover, they incorporate

elements of psychology into the generation of the schedules, by defining preferences

G. Markou et al. Web Services and Automated Planning for Intelligent Calendars

89

such as that there should be no wasted travel time between events, or that creative

tasks should be split into multiple segments.

La Placa, Pigot and Kabanza [4] follow a different approach, by utilizing Hierar-

chical Task Network (HTN) Planning [5] and focusing on a specific user target group.

Their approach is directed towards people with cognitive impairments, e.g., Alz-

heimer’s disease, and as such, HTN planning, which decomposes tasks into subtasks,

is well suited as it resembles the way medical professional actually plan for their pa-

tients. Moreover, this degree of granularity is dependent on the specific patient, with

information such as his impairment or personality being taken into account.

Finally, Berry et al. [6] present Emma, a personalized calendar management tool,

which simultaneously manages calendars from multiple sources, with the main aims

of facilitating the coordination of groups of people, the negotiation of their meeting

times and the (re)scheduling of various events.

In regard to non-deterministic web service composition, Kuzu and Cicekli [7] pre-

sent a conversion schema from OWL-S to PDDL and utilize an existing PDDL plan-

ner, namely Simplanner [8], to tackle non-determinism, through interleaving planning

and execution. Zou et al. [9] follow a similar approach, albeit to generate a distributed

plan; first, a web service choreography problem that contains explicit user defined

contingencies is translated into a deterministic planning one and then, either FF [10]

or SatPlan06 [11] are employed to solve it.

Dacosta et al. [12] on the other hand, opt for a stratified method so as to produce

robust plans, which allow for semantic web services that achieve the same tasks. The

approach generates a graph that contains all the possible contingency plans, with each

path in it being a possible execution path, and each child node comprising an alterna-

tive execution possibility. Redundant operations have been removed from the graph,

and the set of paths is ordered from the best – the one containing the smaller number

of web services – to the worst.

In our previous work [13] we implemented MAPPPA, a cost sensitive probabilistic

contingent planning approach specifically targeted for automated semantic web ser-

vice composition. MAPPPA produces a contingent plan by integrating alternative de-

terministic plans previously computed in an anytime fashion from a determinized

version of the original problem. It does so, however, without disregarding the infor-

mation that each web service contains in relation to its execution cost and probability

of alternative outcomes, thus, generating considerably more informed plans than other

determinization approaches.

3 Motivating Example

Let us imagine a usual week of a Bob, who uses a web-based calendar application to

organize his time. Due to being self-employed, Bob needs to spend all working hours

at his office, to which he commutes every day from his home. Once every week, he

watches a movie, and although he prefers to go to the cinema, sometimes he watches

the movie at home, depending on his work schedule. However, if the movie’s dura-

tion is such that it will end later than 11 pm, he does not desire to watch a movie at

G. Markou et al. Web Services and Automated Planning for Intelligent Calendars

90

all, as he has to sleep early. Moreover, this week, he will travel on a business trip

abroad; a day before the trip, the day he usually watches a movie, he has to book his

airplane tickets and hotel, as well as to buy a travel guide for the city he will visit.

In order to schedule these activities and insert them into a calendar, the user has to

define their temporal domain and, if they are interruptible, the minimum and maxi-

mum allowed duration for their parts. Moreover, for each activity, the user has to

declare whether it is periodic or not, as well as if it is bound to specific locations. For

example, the user should define his daily work as a periodic task, with a temporal

domain from 8 a.m. to 5 p.m., and a minimum and maximum duration of its parts – as

he cannot work continuously, e.g., 30 minutes and 2 hours respectively. Watching a

movie is also periodic but non-interruptible, and has a temporal domain set late in the

evening, with a minimum and maximum duration of 90 minutes and 180 minutes

respectively.

Since the user’s work requires his physical presence, only a human activity can be

placed in his calendar. However, for the rest of the aforementioned tasks, a combina-

tion of human and web services’ activities can be inserted. The user may have to drive

to the cinema, choose among the available movies there and buy the tickets himself.

Alternatively, he may ask for a list of the available movies to be emailed to him, book

the tickets online and then, having saved considerable time, travel to the cinema later.

Another option altogether would be to rent a movie online and watch it at home. As to

the user’s business trip, again, there are various alternative activities; the user may

visit a single tourist agent to book his tickets and hotel; or prefer an online reseller.

He may also require another trip to a bookstore to purchase his travelling guide or

purchase it online and have it sent at home.

Since these options create a complex problem, containing a multitude of con-

straints and preferences, a schedule manually created by a human is usually highly

inefficient. Applications such as SELFPLANNER tackle this problem; however, they

only deal with human activities and, as such, they cannot take advantage of the oppor-

tunities that are offered by the use of web services. In the aforementioned scenario,

since a human activity requires the user to first purchase a movie ticket himself, in

certain situations he may not have had the time to do so, and he would have had to

watch it at home instead. Even worse, if he had to visit a travel agent and a bookstore,

he may not have even had the time to watch a movie at home.

With the introduction of web services, the user saves the time needed to perform

the actual action of purchasing these services and to travel between locations.

4 Proposed Approach

This work assumes that web services are semantically annotated and that their de-

scriptions are present in an online registry; in previous work, we presented such a

registry [14], which, furthermore, provides a translation of each web service to a

PDDL action. Moreover, this registry also contains composite web services fortified

against non-determinism, having been generated by MAPPPA prior to the start of the

scheduling process. Thus, the composite web services used comprise multiple execu-

G. Markou et al. Web Services and Automated Planning for Intelligent Calendars

91

tion paths achieving the same result, and for this reason can only fail when all the

execution paths fail.

Fig. 1 presents the proposed system’s architecture. Initially, we employ an existing

metric planner, namely LPG-td [15]; this step is necessary in order to automate the

planning process as the activities in SELFPLANNER are normally entered by the users.

Instead, in this case, in order to obtain the set of activities that achieve the desired

goal a planner has to be utilized. LPG-td receives as input a planning problem con-

taining both web services and human activities.

This problem comprises of the translation of the web services from the registry, as

well as a simplified version of the human activities; that is, the locations, durations

and temporal domains of the activities, along with any preferences and constraints in

regard to them are removed. The metric planner does not differentiate between the

two types of activities; as a result, it also treats all web services as deterministic ones,

i.e., as if their intended output (the most probable one) is always outputted. Moreover,

the planner has to take into account that web services are preferred to their human

activities’ counterpart. This is achieved by setting the cost of human activities higher

than that of web services.

LPG-td is capable of generating a sequence of alternative plans, each being an im-

provement – in terms of the specified metric – compared to the previous one; the

plans generated by LPG-td allow for parallel actions and, thus, are very similar to

partial order ones.

Fig. 1. Proposed system’s architecture overview.

G. Markou et al. Web Services and Automated Planning for Intelligent Calendars

92

We feed the best generated plan by LPG-td to SELFPLANNER so as to create a de-

tailed schedule. In case a feasible plan does not exist, the rest of the previously gener-

ated alternative partial order plans are attempted to be scheduled in a similar process.

In order to schedule the activities of the partial order plan, SELFPLANNER employs the

information concerning temporal constraints and preferences (loaded from a separate

activity definition file for a given problem instance), as well as the actual distances

between the activities’ locations as returned by the Google Maps Distance Matrix

API.1 Web services are considered to have an open temporal domain and are not re-

lated to a specific location, as they can be executed at any time and place. Moreover,

they can be scheduled in parallel to human activities. SELFPLANNER can generate

multiple alternative plans; the human activities of the best schedule are uploaded into

the user’s Google calendar.

5 Conclusions and Future Work

This paper presents the first steps towards the next generation of intelligent calendar

applications. We propose an approach comprising a contingent web-service composi-

tion system, a partial order metric planner and a scheduler to insert human activities

into a user’s web calendar. The contingent planner is used to create composite web

services, able to achieve complex goals with high probability of success; the metric

planner is used to select an optimized set of activities to achieve a user’s goal, favor-

ing web service calls than real activities; and, finally, the scheduler automatically

produces an optimized plan based on the user’s constraints and preferences.

The paper also presents a motivating example along with a – still under work – im-

plementation. We aim to further improve this implementation, first by providing a

graphical interface, as well as by integrating it with a web service execution platform.

Also, we propose to perform an exploratory evaluation, by providing the - users with

two schedules, one consisting solely of human activities and an equivalent one com-

prising both human and web service activities, and having them rate each one online.

Finally, various research and implementation issues are still open; for example, we

assume that the user’s schedule should only contain the human activities that cannot

be substituted by web services; this is achieved through setting the cost of human

activities higher than that of web services. However, in some cases this may not be

true; employing a web service may incur a (financial) cost that the user does not pre-

fer over the benefit of not employing the respective human activity. Moreover, a web

service activity may not always provide exactly the same functionality or satisfaction

as its human counterpart; such a case is present in our motivating example, in which a

user prefers to go to the cinema to watch a movie, than watching it at home through

streaming. In this case, however, if the problem is modeled so as to favor the human

activity, it could be impossible to include it in the plan, thus providing the use of a

web service as an alternative plan. Such problems require further investigation.

1 https://developers.google.com/maps/documentation/distancematrix/

G. Markou et al. Web Services and Automated Planning for Intelligent Calendars

93

Acknowledgment. This research has been co-financed by the European Union (Euro-

pean Social Fund – ESF) and Greek national funds through the Operational Program

“Education and Lifelong Learning” of the National Strategic Reference Framework

(NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society

through the European Social Fund.

References

1. Refanidis, I., Alexiadis, A.: Deployment and evaluation of SELFPLANNER, an automated

individual task management system. Comput. Intell. 27(1), 41-59 (2011)

2. Joslin, D., Clements, D.: Squeaky wheel optimization. J. Artif. Intell. Res. 10, 353-373

(1999)

3. Bank, J., Cain, Z., Shoham, Y., Suen, C., Ariely, D.: Turning personal calendars into

scheduling assistants. In: Extended Abstracts of the 30th CHI Conference on Human Fac-

tors in Computing Systems (2012)

4. La Placa, M., Pigot, H., Kabanza, F.: Assistive planning for people with cognitive impair-

ments. In: Proceedings of the Workshop on Intelligent Systems for Assisted Cognition

hosted by the 21st International Joint Conference on Artificial Intelligence (2009)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan

Kaufmann (2004)

6. Berry, P. M., Donneau-Golencer, T., Duong, K., Gervasio, M., Peintner, B., Yorke-Smith,

N.: Evaluating user-adaptive systems: Lessons from experiences with a personalized meet-

ing scheduling assistant. In: Proceedings of the 21st Innovative Applications of Artificial

Intelligence Conference, pp. 40–46 (2009)

7. Kuzu, M., Cicekli, N.: Dynamic planning approach to automated web service composition.

Appl. Artif. Intell. 36(1), 1-28 (2012)

8. Onaindia, E., Sapena, O., Sebastia, L., Marzal, E.: SimPlanner: An execution-monitoring

system for replanning in dynamic worlds. In: Proceedings of the 10th Portuguese Confer-

ence on Artificial Intelligence, pp. 393-400 (2001)

9. Zou, G., Chen, Y., Xu, Y., Huang, R., Xiang, Y.: Towards automated choreographing of

web services using planning. In: Proceedings of the 26th AAAI Conference on Artificial

Intelligence (2012)

10. Hoffmann, J.: FF: The Fast-Forward Planning System. AI Mag. 22(3). 57-62 (2001)

11. Kautz, H., Selman, B., Hoffmann, J.: SatPlan: Planning as Satisfiability. In: Proceedings of

the 5th International Planning Competition (2006)

12. Dacosta, L.A.G., Pires, P.F., Mattoso, M.: Automatic Composition of Web Services with

Contingency Plans. In: Proceedings of the 2nd International Conference on Web Services

Workshop (2004)

13. Markou, G., Refanidis, I.: Anytime planning for web service composition via alternative

plan merging. In: Proceedings of the 26th IEEE International Conference on Tools with

Artificial Intelligence, pp. 91-98 (2014)

14. Markou, G., Refanidis, I.: Composing semantic web services online and an evaluation

framework. Int. J. on Adv. in Internet Tech. 6(3-4), 114-131 (2013)

15. Gerevini, A., Saetti, A., Serina, I., Toninelli, P.: Fast Planning in Domains with Derived

Predicates: An Approach Based on Rule-Action Graphs and Local Search. In: Proceedings

of the 20th AAAI National Conference on Artificial Intelligence (2005)

G. Markou et al. Web Services and Automated Planning for Intelligent Calendars

94

Social Continual Planning in Open Multiagent Systems

Matteo Baldoni, Cristina Baroglio, Roberto Micalizio

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)
firstname.lastname@unito.it

Abstract. We describe a Multiagent Planning approach, named Social Continual
Planning, that tackles open scenarios, where agents can join and leave the system
dynamically. The planning task is not defined from a global point of view, setting
a global objective, but we allow each agent to pursue its own subset of goals. We
take a social perspective where, although each agent has its own planning task
and planning algorithm, it needs to get engaged with others for accomplishing
its own goals. Cooperation is not forced but, thanks to the abstraction of social
commitment stems from the needs of the agents.

1 Introduction

The ability to plan one’s own activities, even in dynamic and challenging scenarios
such as Multiagent Systems (MAS), represents a key feature in many real-world ap-
plicative domains (see e.g., logistics, air traffic control, rescue missions, and so on).
Not surprisingly, planning in MAS is drawing the attention of an ever growing number
of researchers, as witnessed by the new series of Distributed and Multi-Agent Planning
Workshops hosted by ICAPS.

The term Multiagent Planning (MAP) refers to a planning task in which a set of
planning agents, each equipped with its own tools and capabilities, has to synthesize a
joint solution (i.e., a joint multiagent plan). The planning task usually involves a number
of interdependent subgoals, so that some form of coordination among the agents is
necessary to solve the problem. Different methodologies have been proposed in the
literature. Besides centralized approaches (e.g., [2]), which fall outside the above notion
of MAP, the other distributed solutions can be categorized into three main families,
depending on when the coordination among the agents is actually performed. First of
all, coordination can be performed after that each agent has completed its own planning
process [8, 9]: each agent works on a portion of the problem, and then coordinates
with others to resolve conflicts; this requires that agents exchange with each other their
partial solutions, and that they are willing to revise their plans to overcome problems.
Second, coordination can be interleaved with the planning process [10, 11, 15]: agents
continuously exchange information to achieve a joint solution. Finally, coordination
can occur before the planning process. In such a case domain dependent coordination
structures are given to the agents as a further input. For instance, in [6] a hierarchical
decomposition of tasks and their dependencies is given to the agents in order to guide
their local planning processes.

95

In all the above approaches, the planning task defines a global objective to be
achieved by means of a “joint solution” involving the capabilities of the agents. More-
over, the set of agents to be involved is known in advance and cannot change during
the planning process; the system is therefore closed. In this paper we deal with a differ-
ent planning problem, and propose a methodology named Social Continual Planning
(SCP), to tackle it. We consider the planning problem of an agent situated in an open
multiagent system. The agent may resort on other agents for solving a task of its own
interest. The agent plans both its own actions, and its interactions with others whenever
it is not capable, or it deems as not convenient, to execute certain steps in autonomy.
The focus is not on negotiation, but on the framework through which an agent seeks the
help by the others, and on the engagements that bind agents to supporting each other.
Interaction is not limited to communication but it is a process through which the in-
volved agents progress each in the solution of its own task. Engagements are binary
social relationships, that are established dynamically and that create expectations on
the involved agents behavior. An agent autonomously decides (plans) when to bind to
another one to do something.

More precisely, we take a social perspective in the sense that, even though each
agent has its own planning task and uses its own planning algorithm, the agent has
still to get engaged with others in order to accomplish its own goals. The interactions
that an agent has with others will, in general, allow both parties to get closer to their
own goals. Cooperation is not forced to the agents just because they are part of the
system, but rather cooperation stems from the needs of the agents within the system,
and endures as far as the parties take advantage of it. In other terms, we propose a form
of (agent) planning which is situated in a multiagent system, where an agent not only
has to plan its own actions, but has also to plan its social relationships with other agents.
Since the coordination has to be planned, it must be supported by a proper abstraction
that enables one agent to create expectations about the behaviors of others. To this end,
in this paper we adopt social commitments [16]. Interestingly, a recent work by Telang
et al. [20] shows how goals and commitments are strongly interrelated by means of a
set of practical rules. This supports our intuition that commitments may play a central
role, together with beliefs and goals, in the synthesis of a plan in a multiagent setting.

The paper is organized as follows. Section 2 overviews the most relevant literature.
Section 3 introduces the necessary background. Section 4 explains our proposal. Section
5 describes the implementation, and exemplify the approach in the logistic scenario.
Conclusions and a discussion end the paper.

2 Related Work

To the best of our knowledge, the SCP problem has not been tackled in the literature,
so far. It is, however, worthwhile to report the main approaches that are currently dis-
cussed in multiagent and distributed planning. Since the seminal work by Boutilier et
al. [2], the multiagent planning problem has taken on the perspective of finding a coor-
dinated, joint solution to a given planning task. Agents are therefore seen as resources
to be managed so as to achieve the global goal. For instance, in [2] a centralized ex-
tension to the Partial-Ordered Planning (POP) approach for dealing with multiple plan

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

96

executors was proposed. The solution took into consideration possible concurrency and
non-concurrency constraints on the execution of actions that had to be satisfied by any
feasible plan.

More recently, distributed approaches have emerged within the planning commu-
nity. However, even though the planning search can be distributed among the agents,
the definition of the planning task is still centralized in most of them. See for instance
the MA-STRIPS formalization [4], in which, despite each agent has its own set of (pri-
vate) actions, the initial state and the goal state of the planning task are globally defined.
Similarly, in [21] a multiagent plan is seen as a solution of a coordination problem where
constraints on resources and tasks are defined globally.

Distributed approaches can be distinguished on how the planning and coordination
phases are actually carried on. First attempts to coordinating plan after the planning
phases [8, 9] suffered from a sever drawback: whenever conflicts were detected be-
tween any two plans, the agents had to revise their plans accordingly. Thus, the domain
knowledge about conflicts and constraints was not used actively during the planning
phase, but only a posteriori to verify the correctness of the joint solution.

This drawback is overcome by approaches (see e.g., [10, 11, 15]) in which the coor-
dination and planning phases are interleaved. These approaches rely on the exchange of
various kinds of information, such as partial plans, or states inferred during the search,
so that conflicts are discovered as soon as possible, and corrections can be made while
the planning phase is still in progress. The planning phase is carried on by means of
a distributed algorithm, and this implies a form of coupling of the agents. The hetero-
geneity of the agents is limited to the set of actions they can perform, but the planning
strategy must be the same for all the agents in the team. Another implicit assumption in
distributed approaches is that agents be cooperative and possibly disclose sensible data,
e.g. their internal states and resources, and their local goals. Notably, SECURE-MAFS
[3], a recent version of the very efficient MAFS algorithm [15], guarantees, to some ex-
tent, the privacy of the cooperating agents; yet, it still requires that each agent knows at
least the “public interface” of the other agents’ actions. A last family of approaches set
the coordination phase before the planning one (see e.g., [6]). Such solutions, however,
assume that all the possible conflicts are known in advance and globally defined.

For what concerns commitments, only recently there have been some attempts to in-
tegrate them in planning problems, see [13, 19, 14] which as well as our work rely on the
rules proposed in [20]. The idea of translating pragmatic rules into a planning language
is first proposed in [19], where the Hierarchical Task Network (HTN) formalization is
used. HTNs, however, are used at design time to model and verify commitment proto-
cols [13]; thus, the point of view of these works is still centralized. In this work we will
consider a STRIPS-like representation of the pragmatic rules, and use them for genera-
tive planning in a context where a centralized point of view is missing. In other terms, in
this paper the interactions via commitments are not outlined within predesigned HTNs,
but have to be discovered at execution time by the planning search.

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

97

3 Background

3.1 Commitments

The proposal presented in this paper strongly relies on social commitments (simply
commitments below), as first introduced in [17]. Commitments arise, exist, are satis-
fied, revoked, or otherwise manipulated, all in a social context. They not only rely on
the social structure of the groups in which they exist, but also help create that structure.
They are revokable. They overcome the subjectivist bias of traditional AI, so generally
the conditions associated to a commitment are evaluated in the world, not in the mind
of any agent. More specifically, a commitment C(x, y, s, u) formalizes a relationship
between an agent x, playing the role of debtor, and another agent y, playing the role
of creditor: the debtor is committed towards the creditor to bring about a consequent
condition u, whenever an antecedent condition occurs s. Antecedent and consequent
conditions are conjunctions or disjunctions of events and commitments and they con-
cern only the observable behavior of the agents.

Commitments have a life cycle, and we adopt the one proposed in [20], and reported
in Figure 1. Briefly, a commitment is Null right before being created; Active when it is
created. Active has two substates: Conditional (as long as the antecedent condition did
not occur), and Detached (when the antecedent condition occurred). In the latter case,
the debtor is now engaged in the consequent condition of the commitment. An Active
commitment can become: Pending if suspended; Satisfied, if the engagement is accom-
plished; Expired, if it will not be necessary to accomplish the consequent condition;
Terminated if the commitment is canceled when Conditional or released when Active;
and finally, Violated when its antecedent has been satisfied, but its consequent will be
forever false, or it is canceled when Detached (the debtor will be considered liable for
the violation).

Commitments are manipulated by commitment operations such as: create (an agent
creates a commitment toward someone), cancel (a debtor withdraws an own commit-
ment), release (an agent withdraws a commitment of which it is the creditor), assign
(a new creditor is specified by the previous one), delegate (a new debtor is specified
by the previous one), discharge (the commitment is resolved). In particular, when the

Fig. 1. Commitments life cycle.

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

98

consequent condition u holds, the commitment is discharged. Notably, only an agent
playing the role of debtor can create a commitment.

The reason for relying on commitments stems by the fact that commitments have
a normative power: Since debtors are expected to behave so as to satisfy their engage-
ments, commitments create social expectations on the agents’ behaviors [7]. From a
practical reasoning point of view, this means that an agent is expected to behave so as
to achieve the consequent conditions of an Active commitment of which it is the debtor.
Instead, when the agent is creditor of a commitment, it will set as goal the antecedent
condition of the same commitment when it deems it needs the debtor to pursue the
consequent condition. Therefore, commitments can be used by agents in their practi-
cal reasoning together with beliefs, intentions, and goals for taking into account other
agents and the conditions the latter committed to have achieved.

There is a vast literature on social commitments. A comprehensive starting point for
the interested reader is [18].

3.2 Goal Formalization

The notion of goal plays an important role not only from the point of view of planning,
but also in general whenever one has to design and develop intelligent agents. In this pa-
per, we take advantage of the formalization initially proposed in [22], and subsequently
revised in [20]; specifically, a goal G is a tuple G(x, p, r, q, s, f), where x is the agent
pursuing G, p is a precondition that must be satisfied before G can be considered active,
r is an invariant condition that holds until the achievement of G, q is a post-condition
(effect) that becomes true when G is successfully achieved, and finally, s and f are
the success and failure conditions, respectively. In other terms, one can think of p as the
context in which an attempt to achieve G can be pursued, r as the set required resources,
and q as the effects of reaching G. Note that q and s need not to coincide (see [22]).
This formalization includes both the specification of an internal procedure (i.e., p, r,
and q) that agent x can adopt to satisfy G, and an abstract, declarative success condition
s, which is an agent-independent description of G. This complementarity turns out to
be fundamental for an agent to decide (1) when cooperation is required (e.g., when no
local procedure is applicable), and (2) how to carry through cooperation (e.g., by asking
others what success condition bringing about). In the rest of the paper, we will mainly
exploit the declarative formalization since we are interested in those cases in which an
agent has to cooperate with others.

As well as commitments, goals have a life cycle in which state transitions are trig-
gered by the execution of proper goal actions. Figure 2 shows the goal life cycle [20].

3.3 Pragmatic Rules

In [20] the relation between goals and commitments has been studied, and it has been
formalized in terms of practical rules, which capture patterns of pragmatic reasoning.
We review in this section a few pragmatic rules through their operational semantics. We
first recall the notion of agent configuration: the configuration of an agent x is the tuple
Sx = 〈B,G, C〉 where B is its set of beliefs about the current snapshot of the world, G
is the set of agent’s goals, and C its set of commitments; i.e., commitments in which x

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

99

Fig. 2. Goal life cycle

is involved either as debtor or as creditor. We use subscripts from Figure 1 to denote the
state of commitments and goals.

The operational semantics of pragmatic rules is given via guarded rules in which Si

are configurations:
guard

S1 −→ S2

Where guard is a condition over the current agent’s beliefs and commitments; whereas
S1 −→ S2 is a state transition involving a change in the state of commitments or
goals; usually it corresponds to an operation on goals or commitments. Pragmatic rules
are distinguished into: (1) rules from goals to commitments, they involve commitments
that are used as a means to achieve some goal; and (2) rules from commitments to goals,
they involve goals that are used as a means to achieve either the antecedent (if the agent
at issue is debtor) or the consequent (if creditor) condition of a commitment.
Rules From Goals to Commitments. These rules address situations in which an agent
manipulates (e.g., create, or cancel) a commitment to achieve a goal it cannot obtain
alone, or to drop a goal is no longer required. Let G ∈ G be an agent goal G(x, p, r, q,
s, f), and C ∈ C be a commitment C(x, y, s, u) (note that the success condition s of G
appears as antecedent in C):

– ENTICE: (Only) by creating the commitment can the agent satisfy its goal. If G is
active and C is null, x creates an offer to another agent

〈GA, CN 〉
create(C)

ENTICE

– WITHDRAW OFFER: The commitment is of no utility once the end goal for which
it is created no longer exists. If G fails or is terminated, then x cancels C.

〈GT∨F , CA〉
cancel(C)

WITHDRAW OFFER

Rules from Commitments to Goals. The general idea of these rules is that an agent
manipulates a goal to satisfy the antecedent or the consequence of a commitment in

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

100

which the agent is involved. Let C be a commitment C(x, y, s, u); and let us consider
two goals G1 = G(x, p, r, q, u, f) and G2 = G(y, p′, r′, q′, s, f ′)

– DELIVER: The agent activates a goal that would lead to discharging its commitment.
If C becomes detached (i.e., goal G2 has been satisfied), then debtor x activates a
goal G1 to bring about the consequent:

〈GN
1 , CD〉

consider(G1) ∧ activate(G1)
DELIVER

– DETACH: The creditor brings about the antecedent hoping to influence the debtor
to discharge the commitment. If G2 is null and C is conditional, agent y considers
and activates G2:

〈GN
2 , CC〉

consider(G2) ∧ activate(G2)
DETACH

4 The Social Continual Planning Problem

A Social Continual Planning (SCP) system is an open environment inhabited by hetero-
geneous and independent agents. Each agent has its own planning task, and can perform
a specific set of actions. A Social Continual Planning Problem is a planning problem of
an agent, situated within an SCP system, which, for being solved, requires the agent to
plan also a set of engagements, realized as social commitments, with other agents in the
system. Agents can join and leave the system dynamically; however, we assume that no
agent leaves the system as long as there are active commitments involving it either as
debtor or as creditor.

More formally, an SCP system is a tuple 〈U ,A,S) where:

– U is a finite set of propositional atoms, whose truth value can be observed by all the
agents in the SCP; U represents a sort of common language through which agents
can interact. Atoms in this set are used to describe the state of the environment
shared by the agents. In addition, these are the atoms that can appear as antecedents
and consequents of the commitments.

– A is a set of agents; each agent i ∈ A is associated with a configuration which
extends the agent configuration we have already introduced. Specifically, the agent
configuration for agent i is a tuple 〈Bi,Gi, Ci, Actsi, Socsi〉: Bi, Gi, and Ci are as
before; whereas:
• Actsi is a set of actions agent i can perform; it is partitioned into:

∗ Φi is a set of “physical” actions; as usual, these actions are defined in terms
of preconditions and effects, which can be both conditions on environment
atoms (i.e., in U) or on internal (agent-dependent) atoms that are not glob-
ally traced (i.e., the internal state of an agent is private).

∗ Σi is a set of social actions; preconditions and effects are defined in terms
of goals in Gi and commitments in Ci. More precisely, each social ac-
tion corresponds to a pragmatic rule from goals to commitments. Indeed,

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

101

we consider these pragmatic rules as actions because, as we discuss be-
low, they can be used by an automated planner to plan interactions with
other agents. Note that while goals in Gi are private (only agent i can see
and manipulate them), commitments in Ci have a social value: whenever
i changes the state of a commitment in Ci, this change becomes visible to
all the other agents in the system (see S).

• Socsi is a set of pragmatic rules from commitments to goals adopted by an
agents; from our point of view these rules define the social strategy of agent i.
Thus, these rules are not used during the planning search, but rather to decide
which goals should be pursued.

– S is the social state shared by all the agents in the SCP system at hand. The social
state can be partitioned into two subsets:
• SC is the set of all the active commitments defined between any two agents in
A; in particular, for each agent i ∈ A, Ci ⊆ S , Ci is the projection of S over
all the commitments in which i appears either as debtor or as creditor.

• SE is the set of all the propositional atoms describing the environment that hold
at a given time; in particular, SE ⊆ U .

Given an SCP system 〈U ,A,S〉, let i ∈ A be an agent, that is described by the tuple
〈Bi,Gi, Ci, Actsi, Socsi〉. An SCP problem for i amounts to finding a plan, composed
by Actsi and Socsi, to achieve Gi starting from Bi. In particular:

– Bi is the initial state of the planning task i is responsible for; such a state is a
set of atoms possibly occurring in U , but also occurring in a private set of atoms
describing the internal state of i, and hence these atoms are not traced within the
SCP system. We only assume that i joins the SCP system iff S ∪ Bi 6|= ⊥.

– Gi is a list of goals the agent has to achieve; each goal can be an atom or a con-
junction of atoms in U and possibly in the private set of agent’s atoms. Note that,
differently from classical planning, it is not required that all the goals in Gi hold in
a unique system state.

– Ci is initially empty.
– Φi is a set of domain-dependent actions agent i can directly perform whenever their

preconditions hold. For instance, in a logistic domain, a truck-agent can perform
action drive, whereas a plane-agent can fly.

– Σi can be initialized in different ways; in fact, differently from Φi, this set needs
not to be static; on the contrary, it could change over time according to contex-
tual conditions. In our preliminary implementation, we have adopted a very simple
solution. Let us consider the ENTICE rule above1. The objective of this rule is to
create a commitment of the form C(i, j, s, u), in order to “entice” another agent j
to bring about s, which is of interest for i. At this initial stage, however, i cannot
know which condition u is of interest for j. Surely enough, i knows which atoms it
can directly achieve by performing its physical actions. Thus, for each atom s ∈ U
such that s never appears as an effect of any action in Φi, agent i creates a tem-
plate entice-s whose effect is the creation of a commitment C(i, , s, u), where

denotes any agent willing to satisfy s, and u is any atom in U that appears in
1 Other rules are treated consequently.

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

102

Algorithm 1 Social Continual Planning Strategy
SCP-Strategy(Bi,Gi, Ci, Actsi, Socsi)
1. while Gi 6= ∅ ∨ Ci 6= ∅ do
2. on S change update Gi using Socsi

3. g ← pick up a goal from Gi
4. π ← plan to g
5. status← execute π
6. if status equals success then
7. Gi ← Gi \ {g}
8. end if
9. end while

the effects of at least one physical action in Φi. Of course, since the entice-s
template can be instanced in different ways, depending on the actual u condition,
agent i will offer first the conditions, that from its point of view, are the cheapest to
achieve.

– Socsi is a static set of rules, decided at design time, that defines the social behav-
ior of i; namely, how an agent is reliable for bringing about the consequent and
antecedent conditions of the commitments in Ci.

4.1 Social Continual Planning: the Strategy

Basically, the SCP strategy we propose, sketched in Algorithm 1, is a form of continual
planning (see e.g., [5]) in which generative planning is interleaved with plan execution.
The main difference with other approaches is that to achieve a goal, an agent plans
not only its own actions, but also its engagements with others, and depending on how
these interactions carry through, the agent may decide to perform some replanning or
to pursue a different goal.

An agent i follows the SCP strategy as far as there are goals in Gi to be achieved
or Ci is not empty. This second condition assures that an agent does not leave the sys-
tem when it is still involved in some active commitments.2 At each iteration, the agent
checks for updates in the social state S (line 2); any change occurring in S , in fact, can
have an impact on the set Gi of goals. For instance, a new commitment C(j, , s, u)
appearing in SC could draw the attention of agent i when u is a condition that i needs
but it cannot achieve on its own, and at the same time i knows how to obtain s. In such a
case, i could accept to be the creditor: s is added to Gi (i will eventually bring about s).
On the other hand, the occurrence of a new atom in SE could make the achievement of
a goal g in Gi no longer necessary, so g is dropped. Of course, these agent’s decisions
are driven by the Socsi behavioral rules.

2 In principle, an agent may remaining situated within the system indefinitely, waiting for agents
to cooperate with. For example, in a logistic domain, a shipper has the high-level objective
of earn money by offering its transportation facilities. This objective does not immediately
translate into an initial goal G, but rather it is better modeled in terms of pragmatic rules (i.e.,
both social actions in Σ, and behavioral rules in Socs), so as the shipper is willing to accept
requests from other agents, but also offers itself shipment services to others.

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

103

Once Gi has been updated, agent i selects one goal g from Gi (line 3); and synthe-
sizes a plan π reaching g (line 4). It is worth noting that any off-the-shelf planner can be
used to synthesize π since from the point of view of the planner there is no distinction
between social and physical actions (both kinds of actions are translated into PDDL,
see below). We only assume that in case the used planner produces a partial-order plan
(POP), π is one of the possible linearizations of such a POP.

After the planning step, the agent can start the execution of π (line 5), which con-
tains both physical actions in Φi, and social actions in Σi. The execution of π proceeds
one action a at a time and in the order. If a is a physical action, it is immediately exe-
cuted, and its effects on atoms in U are made available to all the other agents via SE . If
a is a social action, e.g., an entice-s action, the action execution affects SC with the
addition of a new commitment C(i, , s, u), which has to be picked up by some other
agent. The execution of π is therefore suspended; indeed, the entice-s action is part
of π only in case the atom s is a precondition for some subsequent action, and hence
the plan execution cannot proceeds without s. In case an agent j is interested in u, it
accepts the offers by finalizing the commitment in C(i, j, s, u), and eventually it will
bring about s. As soon as s is satisfied, i proceeds with the execution of its plan (u will
be added to Gi the next time i checks for changes in S). When all the actions in π are
performed, the execution phase terminates in success state (i.e., g has been achieved),
and hence g is removed from G〉 (line 7).

However, it is also possible that no agent is interested in the service u offered by i.
To avoid an indefinite wait, i sets up a timer. As soon as the time runs out, the commit-
ment is canceled from SC , and the plan execution terminates with a failure state. Since
g has not been achieved, it is not removed from Gi. At the next iteration of the strategy,
i first checks whether g is still required (line 2), and then tries to find an alternative plan
reaching it (line 4) that may require a different instantiation for the entice-s action
(i.e., with a different condition offered as consequent of the commitment).

Intuitively, the correctness of the approach relies on the coherence and convergence
properties discussed in [20]. In particular, the goal convergence property states that in
the situation in which agent i has a goal G1=G(i, p1, r1, q1, s, f1), another agent j has a
goal G2=G(j, p2, r2, q2, s, f2), and there exists a commitment C1 = C(i, j, s, u) ∈ SC ,
then, there is a finite sequence of pragmatic rules that leads to G2’s state equaling
G1’s state. This means that whenever agent j brings about s, satisfying its internal goal
G2, then, also agent i has its own goal G1 indirectly satisfied. This demonstrates the
correctness of the SCP strategy in the sense that whenever a plan π, synthesized by i,
contains an entice action entice-s, which actually creates the commitment C1, then
the plan is:

1. feasible: no action a in π has open preconditions (i.e., atoms that are neither pro-
vided by the initial state nor by any previous action); this implies that the precondi-
tions that agent i cannot directly produce, are obtained via cooperation with others;

2. correct: if each action is performed successfully, g holds in SE at the end of π;
as noted above, the execution of social action implies the cooperation with other
agents.

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

104

5 Implementation and Proof of Concept

To verify the feasibility of the SCP strategy, we implemented a proof-of-concept in C
and SICStus Prolog 4.3.2. More precisely, an agent is implemented as an independent
C program that embeds a simple Prolog planner. Each agent takes in input three files:

1. the description of the planning domain (in PDDL 2.2) from the point of view of
a single agent, e.g., the templates of the physical actions the agent is capable to
perform;

2. the definition of the planning problem (in PDDL 2.2) that this specific agent has to
accomplish;

3. the list of environment objects, namely, those objects that constitute the ontological
backbone shared by all the agents in the SCP system. All the possible atoms about
these objects must be known by the all the agents.

Note that the parsing of the three files creates a number of initial structures within the
Prolog planner, as for instance the list of action templates. This list is subsequently com-
pleted with a list of social actions (i.e., actions in Σ), following the procedure sketched
above. This step consists in instantiating the predefined PDDL templates encoding the
pragmatic rules from goals to commitments. For instance, a number of entice actions
are created by instantiating the following template:

(:action entice
:parameters (?deb ?cre - agent

?ant ?cons - goal)
:precondition (and

(active-G ?deb ?ant)
(not (achieved ?ant))
(cando ?deb ?cons)
(null-C ?deb ?cre ?ant ?cons)

)
:effect (and

(not (null-C ?deb ?cre ?ant ?cons))
(active-C ?deb ?cre ?ant ?cons)
(increase (plancost) 10)

)))

where a dummy symbol is used to refer to the creditor agent ?cre, not known at this
time. active-G and null-C are terms used to define goals and commitments, re-
spectively, with their current state. ?ant and ?cons goals are unique identifiers asso-
ciated to atoms such as at(pkg1, E). These identifiers are therefore shared by the
agents. This workaround was necessary to overcome the current limits of the PDDL ex-
pressiveness for which nested terms are not admissible. This instantiation is realized as
a C procedure. The generated instances are injected within the Prolog planner by using
the C/SICStus bi-directional interface. Finally, note that the entice action is associated
with a cost, this is used to avoid the planner resorts to them even when they are not
strictly required (e.g., a “lazy” agent could ask others to obtain goals it can achieve by
itself).

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

105

The social state is implemented by relying on the Inter-Process Communication
facilities offered by the Unix operating system. In particular, two segments of shared
memory are used, one for SC and one for SE . Initially both segments are empty, but
active processes take turns filling up the SE segment by publishing the public facts they
know about the environment objects (Unix semaphores are used to guarantee the con-
sistent access to the shared memory segments). If a contradiction arises at this step, the
agent terminates without joining the SCP system (i.e., without attempting to solve its
task). So far, behavioral rules that specify the social strategy Socs are implemented di-
rectly in C. Indeed, only a subset of the rules discussed in [20] have been implemented.
For simplicity, we have implemented only progressive rules that any “honest” agent
should follow; so our agents never cancel a commitment, and always pursue the goals
appearing in the antecedent and consequent conditions of commitments in which they
are involved.

After this preliminary steps, each agent can start solving its task by invoking the em-
bedded planner. Note how the facts maintained by the planner correspond to the private
belief state B, whereas facts that are maintained in the shared memories correspond
to the social state. (For efficiency reasons, though, each planner replicates in its own
working memory the facts in the social state.)

5.1 Example: a Logistic Domain

Let us exemplify the SCP strategy via a simple problem from the well-known logistic
planning domain. Figure 3 shows the current state of the SCP system at hand: A through
F are cities; C and D have airports, and plane pln1 can fly between them; trucks trk1
and trk2 can drive along the solid edges connecting the cities.

Fig. 3. Initial state of the logistic example.

In such a scenario, the only shared object in the environment is represented by the
package pkg1, currently located at B. Thus, U contains all the atoms about such an ob-
ject, which in the logistic domain concern its position, specifically: U={at(pkg1, A),
at(pkg1, B), . . ., at(pkg1, E), at(pkg1, trk1), at(pkg1, trk2),at(pkg1, pln1)}.The
set of agents is therefore A={trk1, trk2, pln1}; whereas, for the sake of simplicity,
we suppose the social state S is currently empty.

Note that, since U refers only to the package position, the position of each agent is a
private piece of information. Moreover, also the domain knowledge is partitioned: trk1

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

106

Table 1. The first four steps of the SCP strategy

steps goal plan social state

1 tkr1: at(pkg1, E)
trk1: drive(A,B); load(pkg1, B);
entice-at(trk1, , at(pkg1, E), $100)

SE :{at(pkg1,trk1)},
SC :{C(trk1, , at(pkg1,E), $100)}

2 trk2: at(pkg1, E)

trk2: drive(F, D);
entice-at(trk2, , at(pkg1, D), at(pkg1, E));
load(pkg1, D); drive(D, E);
unload(pkg1, E)

SE :{at(pkg1,trk1)},
SC :{C(trk1, trk2, at(pkg1,E), $100),
C(trk2, , at(pkg1, D), at(pkg1, E))}

3 pln1: at(pkg1, D)

pln1:
entice-at(pln1, , at(pkg1, C), at(pkg1, D));
load(pkg1, D);
fly(C, D); unload(pkg1, C)

SE :{at(pkg1,trk1)},
SC :{C(trk1, trk2, at(pkg1,E), $100),
C(trk2, pln1, at(pkg1, D), at(pkg1, E)),
C(pln1, , at(pkg1, C), at(pkg1, D))}

4 trk1: at(pkg1, C) drive(B,C); unload(pkg1)

SE :{at(pkg1,C)},
SE :{C(trk1, trk2, at(pkg1,E), $100),
C(trk2, pln1, at(pkg1, D), at(pkg1, E)),
C(pln1, trk1, at(pkg1, C), at(pkg1, D))}

....

just needs to know how to move among A, B, and C, whereas it needs not to know how
the other cities are connected.

Let us consider the problem from the point of view of truck trk1. Its local planning
task consists in delivering package pkg1 to E. This is formalized as follows:

– Btrk1={at(pkg1, B), at(trk1, A)},
– Gtrk1={at(pkg1, E)},
– Ctrk1=∅,
– Φtrk1={drive(A,B), drive(A,C), . . ., load(pkg1, A), unload(pkg1, A), . . .}
– Σtrk1={entice− at(trk1, , at(pkg1, E), $100),

entice−at(trk1, , at(pkg1, D), $100), entice−at(trk1, , at(pkg1, F), $100), entice−
at(trk1, , at(pkg1, E), $1000), . . .}

Note that Φtrk1 contains those actions that are typically defined in the logistic domain
for a truck whereas Σtrk1 contains all the social actions agent trk1 is willing to use
during its planning search. In particular, there are more entice actions sharing the same
antecedent but differing in the consequent. This is the result of the instantiation proce-
dure of the entice template. For instance, trk1 can either pay $100 or $1000 to have
pkg1 at E. Of course, a proper usage of action costs would drive the planner in creating
“cheaper” commitments first.

Agent trk1 starts the solution of its local planning task by finding a plan reaching
the goal at(pkg1, E). The execution of such a plan starts a course of engagements that
will involve all the agents. Table 3 summarizes the first four runs of the SCP strategy
followed by the agents. Each row in the table shows which goal a specific agent is
pursuing, the plan that has been synthesized by the agent, and how the execution of the
plan (until the first social action) changes the social state.

The first row of the table shows the plan inferred by trk1: after having picked up
package pkg1, the agent, that cannot physically deliver it to E, offers $ 100 to any agent

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

107

willing to take pkg1 to E. Agent trk2 accepts the offer, see row 2, and plans how to
achieve the goal. Also the trk2’s plan contains an offer towards any other agent which
is willing to take pkg1 to D, which is accepted (see row 3) by agent pln1. To keep
the discussion simple we assume that the agents are cooperative, and omit the fact that
pln1 could ask trk2 to do something specific in exchange (e.g., pay for the shipment
service). In row 4 we have that agent trk1 brings pkg1 to C where pln1 is waiting for
loading and flying it to D, from which trk2 will take it to E. Note that the execution of
the agents’ plans will progressively satisfy goals and commitments that will be removed
from the social state.

5.2 First Experiments

We have used the logistic domain as a test-bed for a preliminary experimental analysis.
At this stage of development our main objective was to study the feasibility of the
approach, and to highlight possible bottlenecks and shortcomings of the SCP strategy,
in particular as concerns the instantiation of the entice action.

In a domain involving 2 trucks and 2 planes, we prepared 10 problems. In each
problem, every agent was assigned with one package to be delivered. In all the cases,
the agent could not deliver the package without the help of at least one other agent.
Although the implementation is yet to be engineered, the first data we collected are very
encouraging. On average, the instantiation of the entice action produces 68 instances
for each agent. Such a large number of action could represent a burden for the planner,
but in practice the planner we used (implementing a simple A* search) worked very
efficiently; in fact, the planning times are on average 1500 ms, with a pick to 8000 ms
only in one case. The length of the synthesized plans is 15 actions, on average, with a
pick to 24.

These results show that, even though the instantiation of the entice action can pro-
duce a relatively large number of actions, the planner is not significantly burdened by
them as in general only a few of them are applicable at the same time. In other words,
the number of entice instances is not directly related to the search branching factor.

6 Discussion and Conclusions

In this paper we addressed the SCP problem, and proposed the SCP strategy as a pos-
sible solution. Differently from MAP approaches, where a predefined team of agents
has to find a joint plan solving a given planning task, here we deal with situations in
which each agent is given a planning task which is independent of the others’ ones. The
challenge, thus, is not to find a joint plan, but to find a plan for each agent that solves the
agent’s planning task taking advantage of the cooperation with other agents. Moreover,
agents are free to join and leave the system dynamically.

The novelties of our proposal are not limited to the openness of the agent team.
While in approaches to MAP agents can be thought of as resources used for solving
the given planning task, in SCP agents are seen as autonomous entities. This change
implies that an agent cannot order another agent to do a job, but the agent can just make
an offer, and as we have seen, social commitments come at handy to model this kind

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

108

of relations. More importantly, however, we have to observe that an agent receiving
an offer, being an autonomous entity, can accept or reject the offer depending on its
contextual conditions and its local goals. A rational agent, in fact, should accept an
offer only if the offer brings along some advantages, otherwise the offer should be put
aside.

It is worth noting how the SCP strategy supports the decoupling of agents, that just
share environment objects, whereas they are independent for all the other respects. In
particular, each agent can implement its social strategy (i.e., pragmatic rules in Socs
and Σ) according to local criteria. Moreover, the planning algorithm each agent uses
can be tailored to meet optimization functions that are relevant for the agent itself. Note
also how the cooperation among the agents do not require that an agent knows the
action templates of others (as for instance happens in [15]), and, hence, also the agents’
privacy is preserved.

Many lines of research and improvement are possible. In the near future we aim
at engineering the implementation of the SCP strategy by exploiting one of the many
agents platforms available. In particular, the JaCaMo+ platform [1] seems to be a good
candidate since it naturally supports the notions of commitments and social states. In
addition, the social behavioral rules in Socs could find an easy implementation as Jason
plans (used to program JaCaMo+ agents). Also the integration with a planner does not
seem to raise to much troubles; as demonstrated in [12] where Jason plans have been
integrated with generative planning.

Acknowledgments

We would like to thank Lorenzo Pierini for his contribution to the implementation.

References

1. Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio. Program-
ming with Commitments and Goals in JaCaMo+. In Proc. of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’15), pages 1705–1706. International
Foundation for Autonomous Agents and Multiagent Systems, 2015.

2. C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with fac-
tored representations. Artificial Intelligence, 121(1-2):49–107, 2000.

3. Ronen I. Brafman. A privacy preserving algorithm for multi-agent planning and search. In
Proceedings of Distributed and Multi-Agent Planning Workshop ICAPS 2015, pages 1–8,
2015.

4. Ronen I. Brafman and Carmel Domshlak. From one to many: Planning for loosely coupled
multi-agent systems. In Proceedings of the Eighteenth International Conference on Auto-
mated Planning and Scheduling, ICAPS 2008, Sydney, Australia, September 14-18, 2008,
pages 28–35, 2008.

5. Michael Brenner and Bernhard Nebel. Continual planning and acting in dynamic multiagent
environments. Autonomous Agents and Multi-Agent Systems, 19(3):297–331, 2009.

6. Pieter Buzing, Adriaan Ter Mors, Jeroen Valk, and Cees Witteveen. Coordinating self-
interested planning agents. Autonomous Agents and Multi-Agent Systems, 12(2):199–218,
2006.

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

109

7. Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. Autonomous norm acceptance.
In Intelligent Agents V, Agent Theories, Architectures, and Languages, 5th International
Workshop, ATAL ’98, Paris, France, July 4-7, 1998, Proceedings, pages 99–112, 1998.

8. Jeffrey S Cox and Edmund H Durfee. Discovering and exploiting synergy between hier-
archical planning agents. In Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, pages 281–288. ACM, 2003.

9. Jeffrey S Cox, Edmund H Durfee, and Thomas Bartold. A distributed framework for solving
the multiagent plan coordination problem. In Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, pages 821–827. ACM, 2005.

10. Edmund H Durfee and Victor R Lesser. Partial global planning: A coordination framework
for distributed hypothesis formation. Systems, Man and Cybernetics, IEEE Transactions on,
21(5):1167–1183, 1991.

11. Victor Lesser, Keith Decker, Thomas Wagner, Norman Carver, Alan Garvey, Bryan Horling,
Daniel Neiman, Rodion Podorozhny, M Nagendra Prasad, Anita Raja, et al. Evolution of the
gpgp/taems domain-independent coordination framework. Autonomous agents and multi-
agent systems, 9(1-2):87–143, 2004.

12. Felipe R. Meneguzzi and Michael Luck. Leveraging new plans in agentspeak(pl). In Declar-
ative Agent Languages and Technologies VI, 6th Int. Workshop, DALT 2008, Revised Selected
and Invited Papers, volume 5397 of Lecture Notes in Computer Science, pages 111–127.
Springer, 2008.

13. Felipe R. Meneguzzi, Pankaj R. Telang, and Munindar P. Singh. A first-order formalization
of commitments and goals for planning. In Proc. of the 27th AAAI Conference on Artificial
Intelligence. AAAI Press, 2013.

14. Felipe R. Meneguzzi, Pankaj R. Telang, and Neil Yorke-Smith. Towards planning uncertain
commitment protocols. In Proc. of the 2015 Int. Conf. on Autonomous Agents and Multiagent
Systems, AAMAS, pages 1681–1682. ACM, 2015.

15. Raz Nissim and Ronen I. Brafman. Distributed heuristic forward search for multi-agent
planning. Journal of Artificial Intelligence Research (JAIR), 51:293–332, 2014.

16. Munindar P. Singh. An ontology for commitments in multiagent systems. Journal of Artifi-
cial Intelligence in Law, 7(1):97–113, 1999.

17. Munindar P. Singh. An ontology for commitments in multiagent systems. Artif. Intell. Law,
7(1):97–113, 1999.

18. Munindar P. Singh. Commitments in multiagent systems some controversies, some
prospects. In The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi, chap-
ter 31, pages 601–626. College Publications, London, 2011.

19. Pankaj R. Telang, Felipe R. Meneguzzi, and Munindar P. Singh. Hierarchical planning about
goals and commitments. In Int. conf. on Autonomous Agents and Multi-Agent Systems, AA-
MAS ’13, pages 877–884. IFAAMAS, 2013.

20. Pankaj R. Telang, Munindar P. Singh, and Neil Yorke-Smith. Relating Goal and Commitment
Semantics. In Post-proc. of ProMAS, volume 7217 of LNCS. Springer, 2011.

21. Adriaan ter Mors, Chetan Yadati, Cees Witteveen, and Yingqian Zhang. Coordination by
design and the price of autonomy. Autonomous agents and multi-agent systems, 20(3):308–
341, 2010.

22. Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. Declarative & pro-
cedural goals in intelligent agent systems. In Dieter Fensel, Fausto Giunchiglia, Deborah
L. Mc Guinness, and Mary-Anne Williams, editors, Proc. of the 8th Int. Conf. on Principles
and Knowledge Representation and Reasoning (KR-02), pages 470–481. Morgan Kaufmann,
2002.

M. Baldoni et al. Social Continual Planning in Open Multiagent Systems

110

111

