
Domain-Specific Modeling and Code Generation
for Cross-Platform Multi-Device Mobile Apps?

Eric Umuhoza??

Politecnico di Milano. Dipartimento di Elettronica, Informazione e Bioingegneria
Piazza L. Da Vinci 32. I-20133 Milan, Italy

eric.umuhoza@polimi.it

Abstract. Nowadays, mobile devices constitute the most common com-
puting device. This new computing model has brought intense competi-
tion among hardware and software providers who are continuously intro-
ducing increasingly powerful mobile devices and innovative OSs into the
market. In consequence, cross-platform and multi-device development
has become a priority for software companies that want to reach the
widest possible audience. However, developing an application for several
platforms implies high costs and technical complexity. Currently, there
are several frameworks that allow cross-platform application develop-
ment. However, these approaches still require manual programming. My
research proposes to face the challenge of the mobile revolution by ex-
ploiting abstraction, modeling and code generation, in the spirit of the
modern paradigm of Model Driven Engineering.

1 Introduction

Context Nowadays, mobile devices constitute the most common computing de-
vice. A vast array of features has been incorporated into those devices to address
the different demands of users spanning from games to serious business. Today
mobile devices are as powerful as desktop computers in terms of their computing
capabilities. This new computing model have brought intense competition and
innovation among devices, OSs, and application providers.

Problem Even though the mobile OS market is beginning to mature and con-
solidate, most researches concur that it is unlikely that a single vendor will
dominate the future mobile-centric world [10]. The dilemma between browser-
based (HTML 5) and native (iOS, Android, Blackberry, Symbian, and Windows
Phone) interfaces remains relevant and will challenge the capacity of organiza-
tions to meet the increasing demand for mobile apps.

Moreover, the vastness and diversity of mobile devices and operating systems
available on the market oblige companies to produce and deploy the same app

? This research, developed under the supervision of Professor Marco Brambilla, is on
initial phase.

?? Copyright held by the author.



several times, once for each of the different mobile platforms. Unfortunately,
cross-platform and multi-device development is a barrier for today’s IT solution
providers, especially SMEs, due to the high cost and technical complexity of
targeting development to a wide spectrum of devices, which differ in format,
interaction paradigm, and software architecture.

Currently, there are several frameworks implementing different methodolo-
gies for cross platform application development (Web, Hybrid, Interpreted and
Cross Compiled): examples include PhoneGap(Cordova) 1, Appcelerator Tita-
nium2, and Xamarin3. Unfortunately, these approaches still require manual pro-
gramming which yields to high risks of errors, inconsistencies and inefficiencies.

Relevance The number of apps that are available in the online markets has
reached unseen numbers. In fact, by July 2014, the Google Play store counted
1.3 million of available apps while Apple’s App Store counted 1.2 million. In
parallel with these numbers, the market also expects an increase in the number
of global smart-phones users, which is expected to surpass 2 billion by 2016 [1]
in comparison with 1.4 billion users estimated in 2013 [3]. From those number
we can expect a healthy market of software apps that would be powered by a
steady increase in the number of mobile device users, which as of today have,
on average, 41 apps installed on their devices [2]. Furthermore, the motivation
of the software development companies to continue producing more and better
apps is supported by recent industry figures, according to which global mobile
app revenues are projected to surpass 76.52 billion U.S. dollars in 2017. ABI
research forecasts in 2018, app revenues will be worth 92 billion U.S dollars [15].

My Vision My research proposes to face the challenge of the mobile revo-
lution by exploiting abstraction, modeling and code generation. Different
MDD approaches for cross-platform mobile apps development will be studied
with the aim of providing a framework allowing apps developers to choose a
MDD approach that meets their requirements. The problem of multi-device will
be approached by providing a set model-to-model transformations that are ap-
plied over the same model of the mobile app. Each of these transformations will
produce a new model that describes the shape the app will have in a particular
device family (tablet, smart-phone, smart-watch, etc).

The paper is organized as follows: Section 2 describes the problem that my
research intends to solve; Section 3 reviews the related work; 4 presents the
proposed solution; Section 4 presents the methodology and tools that will help
to use the proposed solution; and Section 6 presents the preliminary work, the
future works and the contributions expected from my research.

1 www.phonegap.com
2 www.appcelerator.com
3 www.xamarin.com



2 Problem Statement

Cross-platform and multi-device development is a barrier for today’s IT solu-
tion providers, especially SMEs, due to the high cost and technical complexity
of targeting development to a wide spectrum of devices, which differ in format,
interaction paradigm, and software architecture. The challenges of mobile apps
developments that my research attempt to address are described in detail in the
next paragraphs.

P1: Platform. The market of mobile operating systems is fragmented and
rapidly changing. The diversity of OSs available on the market oblige software
developers that want to reach a large audience of users to develop their apps for
each platform (at least for the most competitive ones such as Android, iOS, and
Windows Phone [14, 10]) separately.

P2: Different Front End Requirements. From the user interactions per-
spective, mobile apps are expected to support a wider set of interactions that
are captured by means of a tactile surface (interaction through a set of gestures
like taps and swipes) and through the different sensors that are packed into
the device (sensor-based interactions like rotate and shake). Moreover, front-end
design of mobile apps must consider the size constraints imposed by the charac-
teristics of the screens of modern mobile devices. In addition, the mobile apps
must adapt to changes of the context (the communication network, the battery
level of the device and the environment surrounding the user) to deliver the most
efficient interface [6].

P3: Resource Scarcity. Even though the mobile OSs provide the optimization
strategies to cope with the scarcity of resources on mobile devices (like memory
and storage, battery, and the instability and diversity of the communication net-
works), mobile apps need to be able to receive system notifications (such as the
battery level and new networks availability) and react appropriately to them in
order to provide a consistent and reliable user experience.

P4: Device Diversity. Currently, the market offers several families of mo-
bile devices such as tablets, smart-phones and emerging smart-watches. Each
of them can show different amounts of information, uses particular navigation
patterns and has a diverse set of sensors available at run-time. These differences
imply that software developers have to create applications that can either adapt
to the specific device in which they are running, or create different versions of
the application, each of them targeting a specific device family.

3 Related work

This research is the first one that attempts to compare various model-driven
strategies for cross-platform and multi-device mobile apps development with
aim of providing guidelines to the developers who need to adopt MDD approach



in their mobile apps development process. Thus, this section assesses the existing
works that apply the MDD approach to the development of mobile apps in a
broad sense.

Those works can be divided into two different clusters. On one hand we
encounter a corpus of research that apply model-driven techniques to specify
application interfaces and user interaction (in a broad sense) for multi-device
UI modeling. Among them we can cite: TERESA(Transformation Environment
for inteRactivE Systems representations) [4], based on a so-called One Model,
Many Interfaces approach to support model based GUI development for mul-
tiple devices from the same ConcurTaskTree (CTT) model; MARIA [13], an-
other approach based on CTT; UsiXML (USer Interface eXtended Markup Lan-
guage) [17]; Unified Communication Platform (UCP); and IFML (Interaction
Flow Modeling Language) [5], a platform independent modeling language de-
signed to express the content, user interaction, and control behavior of the front-
end of software applications. However, none of them specifically addresses the
needs of mobile apps development.

My research will leverage on the IFML language which has been recently
adopted as a OMG standard. In particular my research provided a mobile ex-
tension [6] of IFM that will be used to describe, at PIM level, the main aspects
of a mobile app front-end. Moreover, since IFML can be used in tandem with
other modeling languages, aspects like the domain model and the business logic
of the app will be defined through standard languages like UML.

On the other hand we find a collection of works that proposes MDD solutions
for the development of cross-platform mobile apps. This cluster of researches can
be further divided into three groups depending on whether they produce native,
hybrid or web-based apps.

In the first group we encounter projects like MD2 [11], an approach that fo-
cuses on the code generation (for Android and iOS) of data-driven business apps
for tablets according to the MVC paradigm, Vaupel et al. [19] defined an infras-
tructure that supports the specification of different variants of an Android app
according to user roles, and Franzago et al. [9] defined a collaborative framework
for the design and development of data-intensive mobile apps. Their approach is
based on PIM languages allowing the specification of various viewpoints (naviga-
tion, content, user interface, and business logic) of a data-intensive mobile apps.
In contrast with MD2, which only targets Android and iOS, my research will al-
low for the generation of hybrid and native apps. Moreover, MD2 offers a textual
syntax that is suitable for users with a programming background. My research
instead will leverage on the graphic syntax provided by IFML to enable domain
experts participate in the design and specification of mobile apps. Finally, my
research is different from Franzago et al. because it uses standard languages like
IFML and UML for modeling the different concerns of mobile apps. Moreover
my proposed solution uses a single modeling language to specify the UI and
navigation, whereas Franzago et al. use one language for each concern.



The second group concerns solutions that generate hybrid apps to address the
cross-platform issue. As part of this group we can mention Applause4, a domain-
specific language and a set of code-generators to produce mobile apps for iPhone,
Android, Windows Phone on top of Google App Engine. As mentioned before,
my solution will consider the generation of both native and hybrid apps and will
provide a graphical syntax, which are both missing in Applause.

Finally, the third group contains MDD proposals that generate web-based
mobile apps. A good representative of this category is Mobl5, an open source
language designed to speed up building mobile apps. Mobl offers a concise lan-
guage to build native-feeling web apps for mobile system. Even though this
approach towards cross-platform development is not considered in my solution,
it could be seen as a complementary strategy suitable for specific scenarios where
the native or the hybrid solutions do not bring any additional value.

4 Proposed Solution

I propose to face the challenge of cross-platform multi-device mobile apps de-
velopment by applying a model driven development (MDD) approach. I will use
the model driven architecture (MDA)6 as a reference framework to illustrate the
proposed solution. MDA defines models at three different levels of abstraction:
Computation Independent Models (CIM), Platform Independent Models (PIM),
and Platform Specific Models (PSM). A set of mappings between each level and
the subsequent one can be defined through model transformations. Every CIM
can map to different PIMs, which in turn can map to different PSMs but many
other combinations can be followed, for instance skipping one of the levels.

My research proposes to address the problem of cross-platform mobile apps
development through four code generation alternatives depicted in Figure 1. The
code generators input the models that describe the app requirements and output
the app code. The domain model and the business logic of the app are defined
through UML while the app front-end is defined through IFML. In contrast I
will deal with the issue of multi-device mobile apps development through model
transformations that would be applied at the PIM level. Section 4.1 is dedicated
to the issue of cross-platform mobile apps development (P1, P2 and P3 ) while
the solution to the problem of multi-device development (P4 ) will be presented
separately in Section 4.2.

4.1 Cross-Platform Development

When following the MDD approach, several code generation strategies are pos-
sible depending, both, on the abstraction level to be used when modeling the
application and the abstraction level of the code to be generated.

4 https://github.com/applause/applause
5 http://www.mobl-lang.org/
6 //http://www.omg.org/mda/



In this research, I will analyze all four alternatives for cross-platform mobile
apps development (figure 1) with the aim of providing apps developers the guide-
lines to choose the right MDD approach for them according to their particular
requirements. To reach this goal, the pros and cons of each of those options will
be studied.

Platform Independent Model (PIM)

PSM

M2T M2T

Native 
Code

Cross Platform 
Framework 

Specific Model
(FSM)

M2M

M2T

Cross Platform 
Code

(1) (3)(2) (4)

Cross Platform 
Code

M2T

M2M

Native 
Code

Fig. 1. MDD approaches for cross-platform mobile apps development: the requirements
of the app are described in a PIM from which the app code is generated through the
application of a set of model-to-model(M2M) and/or model-to-text (M2T) rules.

(1) PIM-to-Native Code. By following this option, the app requirements shall
be specified through a Platform Independent Modeling Language such as
mobile IFML [6]. Using a Platform Independent Modeling Language shall
allow the modeling of the specific Front End requirements that characterize
mobile applications (P2), as well as the interactions that occur between the
application and the Operating System (P3). The last aspect is important
because these type of interactions allow mobile apps to react to changes in
their execution environment. Finally the creation of a cross-platform (P1)
app is achieved by providing different native code generators, one for each
targeted platform, that take as input the same PIM describing the app and
generate as outputs the code for the corresponding platforms. For example
to create a native iOS and Android application using this approach will
require the implementation of two code generators that are able to produce
Objective-C and Java code from the same model of the application.

(2) PIM-to-PSM-to-Native Code. Like in the previous option the front end re-
quirements of the application is defined through a Platfrom Independent
Model. In this case, however, the PIM is first transformed into different
PSMs, each of which refines the initial model adding the platform specific
details that are not captured at the PIM level. Once the PSMs have been
produced, a set of simple code generators transforms these models into the
native code of each of the target platforms. The previous means that besides



a set of code generators that produces the native code of each of the target
platforms, a Platform Specific Modeling Language for each of them will also
be needed. Despite of this added cost, the introduction of an additional PSM
level addresses the problems of platform diversity (P1), front-end require-
ments (P2) and resource scarcity (P3).

(3) PIM-to-Cross Platform Code. By following this option the application re-
quirements are specified in a Platform Independent Model from which the
code is generated. In this case, however, the generated code must conform to
the structure of a particular cross-platform framework. Then, it will be the
responsibility of the framework to guarantee that the generated app will run
across the different platforms. To achieve this the framework will typically
take the generated code and produce the binary files for each of the target
platforms using an automated process.
This option simplifies the creation of a cross-platform app (P1) because it
generates the code for a cross-platform solution. For example to create an
app that will run both on Android and iOS with PhoneGap as the cross-
platform framework a software designer will start by creating the Platform
Independent Model of the application. Then, using a single M2T transfor-
mation he will produce the HTML5, CSS and Javascript code required by
PhoneGap. Finally, using the build tools offered by the framework the code
will be transformed into the binary files required by each of the target plat-
forms, which in our case are the ipa file for iOS and apk file for Android.
A Platform Independent Modeling language shall allow the modeling of the
specific Front End requirements that characterize mobile applications (P2),
as well as the interactions that occur between the app and the OS (P3).

(4) PIM-to-Framework Specific Model (FSM)-to-CPC. With respect to the pre-
vious option, this approach introduces the FSM which gathers the infor-
mation regarding the cross platform framework (such as PhoneGap, Ap-
pCelerator Titanium, and Xamarin) used to produce the apps. FSM is a
PSM in which the Platform in the MDA terminology, is actually a cross-
platform framework for mobile apps development. In this case the PIM is
first transformed into the FSM which refines the initial model adding the
cross-platform framework specific details that are not captured at the PIM
level. Once the FSM has been produced, a simple code generator transform
that model into the code required by the cross-platform framework. The in-
troduction of FSM level requires to provide a FSM modeling language. Simi-
larly to the previous option, the problem of front-end requirements (P2) and
resource scarcity (P3) are addressed at modeling level while the problem of
platforms diversity is achieved by the cross-platform framework itself.

All the options mentioned so far require a modeling language allowing the
specification of application requirements in a platform independent manner. In
this research I will use an OMG standard, the Interaction Flow Modeling Lan-
guage (IFML) as a reference PIM language. In particular this research will define
a mobile extension of IFML to allow the modeling of the specific Front End re-
quirements that characterize mobile applications, as well as the interactions that



1Doctoral Symposium, STAF 2015. Eric Umuhoza

Interaction Flow Modeling Language

(IFML)

Platform Independent 

Extension

(Mobile IFML)

Platform-Specific 

Extension

Unified Modeling 

Language (UML)

Platform-Specific 

Extension
Platform-Specific 

Extension

Platform-Specific 

Extension
Platform-Specific 

Extension
Platform-Specific 

Extension

Fig. 2. Modeling languages stack: mobile IFML defined as a mobile extension of IFML
shall be used to model the front-end of the app at the PIM level. The required PSM
languages will be defined as extensions of the mobile IFML. While the domain model
and application logic will be specified through UML

occur between the application and the OS. The PSM languages required by op-
tions (2) and (4) will be defined as Platform Specific Extensions of the mobile
extension of IFML mentioned before. To clarify the solution, Figure 2 shows a
diagram with the proposed modeling stack.

4.2 Multi-Device Development

The solution I propose to address the issue of device diversity (P4) is based
on the following assumption: the characteristics of different devices of the same
family (tablet, smart-phone, smart-watch, etc) do not change drastically. For
instance different smart-watches are assumed to have more or less the same
screen dimensions and different smart-phones are assumed to have have roughly
the same sensors.

To deal with this issue, I propose a strategy based on a set of model to model
transformations (M2M) that are applied over the same general model of the mo-
bile application. Each of these transformations will produce a new model that
describes the shape the application will have in a particular device family (Figure
3). For example, when designing an application that should be used in a tablet,
a smart-phone and a smart-watch, a software designer will first create a single
general model of the application. Then, he will use a particular M2M transfor-
mation to generate a version of the model that is suitable for phones. He will
then repeat the same process using different M2M transformations to obtain the
model for the tablet and the watch. At the end of the day, the software designer
will have four different Platform Independent Models, that can be transformed
into running code following any of the previously discussed strategies.

It is important to highlight that the aforementioned M2M transformations
could be defined using two different approaches. The first approach is based on



PIM

PIM for 
Tablet

PIM for 
Smart-Phone

PIM for 
…

PIM for 
Smart-Watch

M2M 
M2M M2M 

M2M 

Fig. 3. Multi device development: The app requirements are described in a general
PIM. Different model transformations are applied to that PIM to produce a new PIM
that describes the shape of the app in each of the target device families. The M2M
transformations can be conceptualized for instance through a set of ATL [12] rules

the definition of a fixed set of transformation rules that given a general model,
are able to produce the model suitable for a particular device family. In the
second approach, the M2M transformation rules are defined by the software
designer with the support of a model editor that records at each step the mod-
ifications he applies over the general model to obtain the model of a particular
device family [16, 20, 18]. In summary, in the first approach the transformation
rules are fixed and application independent whereas in the second approach the
transformation rules are defined by the software designer and depend on the ap-
plication. During my research I will evaluate which of the two strategies yields
the best results.

5 Methodology and Tools

The results of a comparative study among different MDD approaches to cross-
platform and multi-device mobile apps development (Section 4) will constitute
guidelines for apps developers to choose a MDD approach that fits their require-
ments.

Front-end design of mobile apps is a complex task, the content and the nav-
igation among them must be well designed at the purpose of exploiting at best
the limited space available. Providing design patterns for both the content or-
ganization and navigation could help application designers to find solutions to
common design challenges and to reuse them. My research will provide a set of
design patterns as to illustrate and simplify the modeling of mobile app using
the defined method and tools.

6 Status and Future Works

Preliminary Work. My research starts from a deep state-of-the-art analysis
on mobile apps development in a wide sense on model driven approaches in
particular. The current implementations include:

– A platform Independent Modeling language for mobile apps [6] along with
its graphical modeling tool7, an eclipse plugin based on Sirius;

7 https://github.com/mobileIFML/ifml-editor



– A set of first prototypes of code generators both for native platforms and
cross-platform frameworks;

– Initial validation through developed mobile apps that includes Instangram,
CamScanner, and Foursquare.

The future works include:

– Model-driven analytic. I will study how model-driven techniques can be com-
bined with existing analytic in order to provide a rich message from web and
mobile apps monitoring;

– Multi-Devices Development. The issue of model to model transformations
(M2M) mentioned in Section 3.2 needs a deep investigation to understand
whether is better to rely on application independent and fixed M2M rules,
application dependent rules or a combination of both [7].

– Platform-Specific Extensions. The mobile language defined, allows the mod-
eling the app in a platform independent manner. However, in some cases
(options (2) and (4) figure 1) it could be worth to model the app or some
part of it taking into account some platform specific detail that are not
captured at the PIM level;

– Mobile-Specific Design Patterns and Anti-Patterns. Identification and mod-
eling of common design patterns for model-driven mobile applications design
and identification of mobile-specific anti-patterns (common design patterns
not suitable for mobile world);

– Modernization. I will study how to transform legacy applications into mobile
apps. The design patterns will be useful in this phase;

– Use Cases. I will provide a portfolio of B2C and B2B vertical mobile apps,
demonstrating the effectiveness of the research approach.

Expected Contributions. My research is expected to make three main con-
tributions. Firstly, it will give a comprehensive overview of current MDD ap-
proaches for cross-platform app development. Secondly, it will provide a frame-
work of criteria for evaluating MDD approaches to mobile apps development.
The proposed criteria could be used for future assessments. Thirdly, it will pro-
vide decision advice allowing developers to choose a MDD approach that better
fits their requirements.
In practice the contribution of my research can be appreciated from two different
perspectives. First, from the point of view of the software development compa-
nies who could appreciate a MDD approach to cross-platform mobile applica-
tions development that can reduce the technical complexity and the development
costs [8]. From the perspective of the final users, having access to cross-platform
apps that are available in the different online markets will let them choose freely
the type of device and OS they can use, without worrying about the availability
of particular apps for their device.



References

1. emarketer report. http://www.emarketer.com/. (April 2013).
2. Flurry. http://www.flurry.com/. (April 2015).
3. Statista. http://www.statista.com/. (April 2015).
4. Silvia Berti, Francesco Correani, Giulio Mori, Fabio Paternò, and Carmen Santoro.

Teresa: a transformation-based environment for designing and developing multi-
device interfaces. In CHI Extended Abstracts, pages 793–794, 2004.

5. Marco Brambilla, Piero Fraternali, and et al. The interaction flow modeling lan-
guage (ifml), version 1.0. Technical report, Object Management Group (OMG),
http://www.ifml.org, 2014.

6. Marco Brambilla, Andrea Mauri, and Eric Umuhoza. Extending the Interaction
Flow Modeling Language (IFML) for Model Driven Development of Mobile Appli-
cations Front End. In MobiWIS, pages 176–191, 2014.

7. Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In OOPSLA, volume 45, pages 1–17, 2003.

8. Oscar Diaz and Felipe M. Villoria. Generating blogs out of product catalogues:
An mde approach. Journal of Systems and Software, 83(10):1970 – 1982, 2010.

9. Mirco Franzago, Henry Muccini, and Ivano Malavolta. Towards a collaborative
framework for the design and development of data-intensive mobile applications.
In MOBILESoft, pages 58–61, 2014.

10. Henning Heitkötter, Sebastian Hanschke, and Tim A. Majchrzak. Evaluating cross-
platform development approaches for mobile applications. In WEBIST, pages 120–
138, 2012.

11. Henning Heitkötter, Tim A. Majchrzak, and Herbert Kuchen. Cross-platform

model-driven development of mobile applications with md2. In SAC, pages 526–
533, 2013.

12. Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In MoDELS,
MoDELS’05, pages 128–138, 2006.

13. Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. Maria: A universal,
declarative, multiple abstraction-level language for service-oriented applications in
ubiquitous environments. ACM Trans. Comput.-Hum. Interact., 16(4), 2009.

14. Gartner Press Release. Gartner says worldwide mobile phone sales declined 1.7 per-
cent in 2012. http://www.gartner.com/newsroom/id/2335616. (February 2013).

15. ABI Research. Abi research (march 2013) application revenues coming from either
smart phone or tablets. http://mobithinking.com. (October 2013).

16. Yu Sun, Jules White, and Jeff Gray. Model transformation by demonstration. In
Model Driven Engineering Languages and Systems, pages 712–726. Springer, 2009.

17. Jean Vanderdonckt. A MDA-compliant environment for developing user interfaces
of information systems. In CAiSE, pages 16–31, 2005.

18. Dániel Varró. Model transformation by example. In Model Driven Engineering
Languages and Systems, pages 410–424. Springer, 2006.

19. Steffen Vaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh, René Gerlach,
and Michael Guckert. Model-driven development of mobile applications allowing
role-driven variants. In Model-Driven Engineering Languages and Systems, pages
1–17. Springer, 2014.

20. Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. Towards
model transformation generation by-example. In System Sciences, 2007. HICSS
2007. 40th Annual Hawaii International Conference on, pages 285b–285b. IEEE,
2007.


