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Preface

MULTI 2015 was the second installment of the MULTI workshop series focusing on multi-
level modeling. It was held as a satellite event of the ACM/IEEE sponsored conference
MODELS 2015, in Ottawa (Canada). The goal of this workshop was to continue the
community building initiated in the first edition held in conjunction with MODELS 2014
in Valencia (Spain). In order to increase the level of dissemination of work in multi-
level modeling and to provide more opportunities for plenary discussions and/or group
work, MULTI 2015 was organized as a two-day workshop rather than the typical one-day
workshop.

The aim of the first day of the workshop was to set the scene for discussions by means
of paper presentations that included an invited paper and two regular paper sessions.
The invited paper by Professor Martin Gogolla of the University of Bremen, entitled
“Experimenting with Multi-Level Models in a Two-Level Modeling Tool”, explored the
extent to which multi-level models can be simulated in two-level modeling environments
by explicitly modeling different underlying linguistic (meta) models at the class level, and
simulating ontological classification relationships at the instance level in the form of links.

The first paper in the first regular paper session by Colin Atkinson and Ralph Gerbig,
entitled “Aspect-oriented Concrete Syntax Definition for Deep Modeling Languages”, de-
scribed how to support a deep, context sensitive visualization of multi-level models using
concepts from aspect-orientation to merge concrete syntax elements across instantiation
chains. The second paper by Iris Reinhartz-Berger, Arnon Sturm and Tony Clark, entitled
“Exploring Multi-Level Modeling Relations Using Variability Mechanisms”, explored the
relationship between the instantiation forms found in multi-level modelling and those used
in product line engineering.

The first paper of the afternoon session by Vadim Zaytsev, entitled “Multi-Language
Modelling with Second Order Intensions”, proposed the use of second-order intensions
and extensions to more closely model linguistic and ontological conformance. The sec-
ond paper by Kosaku Kimura, Yoshihide Nomura, Yuka Tanaka, Hidetoshi Kurihara and
Rieko Yamamoto, entitled “Practical Multi-level Modeling on MOF-compliant Modeling
Frameworks” explored how multi-level modeling can be supported using existing model-
ing frameworks based on the MOF. The third paper by Zoltan Theisz and Gergely Mezei,
entitled “An algebraic instantiation technique illustrated by multilevel design patterns”
proposed a new algebraic instantiation approach aiming to provide a solid, algebraic foun-
dation for multi-level meta-modelling which is easily customizable. The first day concluded
with a plenary session that allowed participants to discuss issues raised in the presentations
and find consensus on how to best structure the second afternoon.

The morning of the second day of the workshop was devoted to providing an insight
into the range of tools currently available to support multi-level modeling. Six different
tools with various kinds of multi-level modeling capabilities were demonstrated over two
sessions: the DPF workbench from Bergen University College, Norway (presented by
Xiaoliang Wang and Yngve Lamo), WebDPF from Bergen University College, Norway
(presented by Fazle Rabbi and Yngve Lamo, Melanee – The Deep Modeling Domain-
specific Language Workbench from the University of Mannheim, Germany (presented by
Ralph Gerbig), MetaDepth – a tool for multi-level model-driven engineering, from the
Universidad Autnoma de Madrid, Spain (presented by Juan de Lara and Esther Guerra),
a tool for Multilevel Modelling and Reasoning with FOML from Ben-Gurion University,
Israel and SUNY Stony Brook, USA (presented by Mira Balaban, Igal Khitron and Michael
Kifer), and TouchCORE from McGill University, Montreal (presented by Jörg Kienzle).
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The final afternoon of the workshop was structured by two plenary sessions discussing
the state of multi-level modelling technology and identifying areas where further clarifica-
tion would be helpful to the community. The debate included arguments on the nature
of the distinction between linguistic and ontological classification and the roles these dif-
ferent forms of classification should play within classification architectures. One of the
intensely discussed questions was whether ontological classification relationships should
require certain syntactic conformance rules in addition to being based on (either explic-
itly or implicitly represented) mappings to the meaning of the related elements. Due to
a lack of time, the idea of agreeing on a definition of “multi-level modeling” could only
be partially pursued by collecting a set of candidate definitions. Likewise, a concrete
identification of use cases, scenarios, reference architectures, etc. had to be deferred.

In order to further support the dissemination of new information and provide a common
repository for definitions, tool descriptions, modeling artifacts, etc., the participants agreed
to establish a forum for online interaction for the multi-level modelling community in the
form of a wiki web. The respective wiki can be found at:
http://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/ and everyone is invited to
update contents. The website devoted to the MULTI workshop series is still hosted at:
http://www.miso.es/multi/.

We are grateful to all authors of submitted papers, to the reviewers for their construc-
tive criticism, to all participants of the workshop for the interesting and lively discussions,
and to the organizers of MODELS 2015 for their support.

October 2015 Colin Atkinson, Georg Grossmann, Thomas Kühne, Juan de Lara
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Experimenting with Multi-Level Models
in a Two-Level Modeling Tool

Martin Gogolla

Database Systems Group, University of Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract. This paper discusses two ways to establish the connection
between two levels in a multi-level model. The first approach uses normal
associations and generalizations under the assumption that the multi
levels are represented in one UML and OCL model. The second approach
views a middle level model both as a type model and as an instance model
and introduces operations to navigate between the type and instance
level. The paper reports on some experiments that have been carried
out.
Keywords. UML, OCL, Model, Multi-level model, Metamodel, Level
connection.

1 Introduction

Metamodeling has become a major topic in software engineering research [6, 7,
16]. There are, however, a lot of discussions about central notions in connection
with metamodels like potency or clabject where no final conceptual definition has
been achieved. On the other hand, software tools for metamodeling are beginning
to be developed [9, 2].

Metamodeling is closely connected to multi-levels models because the instantia-
tion of a metamodel is a model. That model, when viewed as a type model, may
be instantiated again and can then be viewed as an instance model. Proceeding
this way, at least three model levels arise.

This paper discusses two ways to establish the connection between two levels in
multi-level models. The first approach uses ordinary associations and general-
izations under the assumption that the multi levels are represented in one UML
and OCL model. The second approach views a middle level model both as a type
model and as an instance model and introduces operations in order to navigate
between the type and instance level. The paper reports on some experiments
that have been carried out. The first approach joins the metamodels of several
levels into one model as in our previous work [12]. Details about the first ap-
proach can be found in [13]. The second approach has not been put forward in
a paper yet.

Our work has links to other related or similar approaches. The tool Melanie [2]
is designed as an Eclipse plug-in supporting strict multi-level metamodeling and
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support for general purpose as well as domain specific languages. Another tool
is MetaDepth [9] allowing linguistic as well as ontological instantiation with
an arbitrary number of metalevels supporting the potency concept. In [16] the
authors describe an approach to flatten metalevel hierarchies and seek for a level-
agnostic metamodeling style in contrast to the OMG four-layer architecture. The
approach in [14] also transforms multi-level models into a two-level model and
focusses on constraints. Similar to our approach employing UML and OCL, the
work in [17] uses F-Logic as an implementation basis for multi-level models
including constraints. A conceptual clean foundation for multi-level modeling
is discussed in [8]. [4] studies model constraints and [3] discusses multi-level
connections in presence of a multi-level architecture distinguishing between a
linguistic and an ontologic view on modeling.

The structure of the rest of the paper is as follows. Section 2 gives a small example
for establishing the multi-level connection with associations and generalizations.
Section 3 discusses the second approach that uses operations to connect the
multi-levels. The contribution is closed with a conclusion and future work in
sect. 4.

2 Connecting Multi-Levels with Associations and
Generalizations

The first approach connects multi-levels with usual model elements: associations
and generalizations. The example in Fig. 1 shows a substantially reduced and
abstracted version of the OMG four-level metamodel architecture with modeling
levels M0, M1, M2, and M3. Roughly speaking, the figure states: Ada is a Person,
Person is a Class, and Class is a MetaClass. The figure does so by formally
building an object diagram for a precisely defined class diagram including an
OCL invariant that requires cyclefreeness when constructing instance-of connec-
tions. The distinction between MetaClass and Class is that when MetaClass

is instantiated something is created that can be instantiated on two lower levels
whereas for Class instantiation can only be done on one lower level. The model
has been formally checked with the tool USE [11, 10]. In particular, we have
employed the features supporting UML generalization constraints as discussed
in [1, 15].

Concepts on a respective level Mx are represented in a simplified way as a class
Mx. All classes Mx are specializations of the abstract class Thing whose objects
cover all objects in the classes Mx. On that abstract class Thing one association
Instantiation is defined that is intended to represent the instance-of connec-
tions between a higher level object and a lower level: an object of a lower level
is intended to be an instance of an object on a higher level. The association
Instantiation on Thing (with role names instantiater and instantiated)
is employed for the definition of the associations Typing0, Typing1, and Typing2

between Mx and Mx+1 all having roles typer and typed. The role typer is a
redefinition of instantiater, and typed is a redefinition of instantiated. The
multiplicity 1 of typer narrows the multiplicity 0..1 of instantiater.
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Fig. 1. Ada, Person, Class, MetaClass within Single Object Diagram.
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In the abstract class Thing the transitive closure instantiatedPlus() of
instantiated is defined by means of OCL. Analogously, instantiaterPlus()
is defined for instantiater. The closure operations are needed to define an
invariant in class Thing requiring Instantiation links to be acyclic.

abstract class Thing

operations

instantiatedPlus():Set(Thing)=

self.instantiated->closure(t|t.instantiated)

instantiaterPlus():Set(Thing)= ...

constraints

inv acyclicInstantiation: self.instantiatedPlus()->excludes(self)

end

The class diagram from the left side of Fig. 1 is made concrete with an object
diagram on the right side. The fact that the three associations Typing0, Typing1,
and Typing2 are all redefinitions of association Instantiation is reflected in
the object diagram by the three dashed links for association Instantiation

with common role names instantiater and instantiated (dashed links in
contrast to continuous links for ordinary links). Viewing Instantiation as a
generalization (in terms of redefinition) of all Typingx associations allows to use
the closure operations from class Thing on objects from classes M0, M1, M2 or
M3. Thus the displayed OCL expressions and their results reflect the following
facts: object Person is a (direct resp. indirect) instantiation of objects Class and
MetaClass; objects Ada and Person are (direct resp. indirect) instantiations of
object Class.

Metamodeling means to construct models for several levels. The metamodels
on the respective level should be described and modeled independently (e.g., as
M0, M1, M2, and M3). The connection between the models should be estab-
lished in a formal way by a typing association (e.g., Typing0 gives a type object
from M1 to a typed object from M0). The Typing associations are introduced
as redefined versions of the association Instantiation from (what we call) a
multi-level superstructure. This superstructure contains the abstract class Thing
which is an abstraction of all metamodel elements across all levels and addi-
tionally contains the association Instantiation and accompanying constraints.
Because Instantiation is defined as union, an Instantiation link can only
connect elements of adjacent levels, i.e., the Typingx links are level-conformant
and strict. The aim of the devices in the superstructure is to establish the con-
nection between metamodel levels in a formal way and to provide support for
formally restricting the connections.

3 Connecting Multi-Levels with Operations

The second approach for connecting multi-levels is based on viewing one model
both as a type model and as an instance model. In Fig. 2 an example as elabo-
rated with USE [11, 10] is shown. The object diagram on the left side is essentially
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equivalent to the class diagram on the right side. The displayed example can be
realized in USE in this way, however, there is currently no option to connect
the two equivalent representations in form of the class diagram and the object
diagram. Additional features would be needed.

In Fig. 4 such a connection is indicated with (a) one operation accessing a
model element through its String-valued name $_$ : String -> ModelElement

and (b) one operation returning the String-valued name of a model ele-
ment #_# : ModelElement -> String.

Apart from the two new operations dollar $ and sharp # some new modeling
features for UML and OCL would be needed as well: (a) OCL clauses (for el-
ements such as invariants or pre- and postconditions) should allow parameters
that represent variables for model elements and (b) the new operations dollar
and sharp should be allowed in expressions for model elements in clauses (e.g.,
for a class or an attribute). The following examples try to give an impression of
the aimed functionality.

parameter[rs:RelSchema]

let relSchemaClass = $rs.name$ in -- in this example: $rs.name$=rs

let keyAttr = $rs.attr->any(a|a.isKey=true).name$ in

context relSchemaClass inv keyAttrUnique:

relSchemaClass.allInstances->forAll(x,y |

x<>y implies x.keyAttr<>y.keyAttr)

parameter[rs:RelSchema]

let relSchemaClass = $rs.name$ in

let keyAttr = $rs.attr->any(a|a.isKey=true).name$ in

context x,y:relSchemaClass inv ’keyAttrUniqueIn’ + #rs#:

x<>y implies x.keyAttr<>y.keyAttr

In these examples it is assumed that there is exactly one key attribute for each
class. When these parameterized features become actualized, then in this case
the following invariants would be required. It is an open question whether the
actualization is implicit or explicit: The actualization mechanism may be consid-
ered as being implicit for all actual features that are available in the model, or
the actualization mechanism may be considered as being something the modeler
has to explicitly ask for.

context Town inv keyAttrUnique:

Town.allInstances->forAll(x,y | x<>y implies x.name<>y.name)

context Country inv keyAttrUnique:

Country.allInstances->forAll(x,y | x<>y implies x.name<>y.name)

context x,y:Town inv keyAttrUniqueInTown:

x<>y implies x.name<>y.name

context x,y:Country inv keyAttrUniqueInCountry:

x<>y implies x.name<>y.name

7



Fig. 2. Example for Multiple Representations of Middle Level Model.
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Fig. 3. General Scheme for Multiple Representations of Middle Level Model.

Fig. 4. Operations between Multi-Levels.
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4 Conclusion

This paper is based on the idea to describe different metamodels in one model
and to connect the metamodels either (a) with generalizations and associations
employing appropriate UML and OCL constraints or (b) with special operations
allowing to navigate between different multi-levels in a model. The paper does
not claim to present final results, but some experiments and ideas in the context
of multi-level models.

Future research includes the following topics. We would like to work out for our
approach formal definitions for notions like potency or strictness. The notion of
powertype will be given special attention in order to explore how far this concept
can be integrated. Our tool USE could be extended to deal with different meta-
model levels simultaneously. So far USE deals with class and object diagram.
In essence, we think of at least a three-level USE (cubeUSE) where the middle
level can be seen at the same time as an object and class diagram, as has been
sketched in the second approach in this paper. Furthermore, larger examples and
case studies must check the practicability of the proposal.
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Aspect-oriented Concrete Syntax Definition for
Deep Modeling Languages

Colin Atkinson1 and Ralph Gerbig1

University of Mannheim
{atkinson, gerbig}@informatik.uni-mannheim.de

Abstract. Multi-level modeling tools provide inherent support for mod-
eling domain scenarios with multiple classification levels. However, as the
success of domain-specific modeling tools illustrates users increasingly
expect to be able to visualize models using domain-specific languages. It
is relatively straightforward to support this using traditional “two-level”
modeling technologies, but many of the benefits of multi-level model-
ing would be lost. For example, in a multi-level context it is not only
desirable to define concrete syntax that is applicable over more than
just one instantiation level, it should also be possible to customize the
visualization of model elements as they become more specialized over in-
stantiation and inheritance levels. In this paper we present an approach
for multi-level concrete syntax definition which addresses this need by
using aspect-oriented principles to parametrize the visualization associ-
ated with model elements. We also explain how this is implemented in
the Melanee deep modeling tool.

Keywords: aspect-orientation; deep modeling; concrete syntax

1 Introduction

Since concrete syntax definition is one of the core foundations of domain-specific,
model-driven development a large number of tools supporting this capability are
available today. Important examples include MetaEdit+ [17] and the Graphical
Modeling Framework [11] for graphical languages, XText [9] and Spoofax [12]
for textual languages and EMF Forms [8] for form-based languages. Other con-
crete syntax formats can also be supported such as table-based and wiki-based
languages. However, these tools are all based on traditional “two-level” model-
ing technology which only supports two classification levels. As a result, they
have no inherent capability to support the definition of concrete syntax that
can “span” (i.e. automatically be applied over) multiple classification levels. In
other words, they can only inherently support the application of a concrete syn-
tax definition to instances at the level immediately below. To apply a concrete
syntax to two or more levels below its definition, complex transformation and
editor generation/deployment steps are needed. This not only complicates the
initial defintion and use of concrete syntaxes, it significantly increase the effort
involved in maintaining and evolving them.
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Deep modeling has the potential to address this problem because it inher-
ently supports multiple classification levels. However, some challenges need to
be addressed to support effective level-spanning concrete syntax definition and
application within a deep modeling environment. The most significant is to find
a suitable tradeoff between the need to define common syntax elements that are
suitable across multiple levels whilst providing the flexibility to customize the
common syntax elements as and where needed. In other words, the most signif-
icant challenge is to allow the concrete syntax used to visualize model elements
to reflect the specialization that inherently takes place in the instantiation and
inheritance hierarchies in a deep model.

The Melanee [3] deep modeling environment addresses this problem through
an aspect-oriented approach which essentially allows concrete syntax definitions
to be parametrized. Using this capability it is possible for the concrete syntax
applied to a model element to be customized to reflect the specialization that
naturally takes place in a deep model, significantly reducing the complexity in-
volved in defining, maintaining, and evolving different concrete syntaxes. The
implemented mechanism paves the way towards general concrete-syntax reposi-
tories which can be configured for particular domains and application scenarios
in a simple and straightforward way.

The remainder of this paper is structured as follows: In the next section
(Section 2) the underlying deep modeling approach is introduced. Section 3
then introduces the concept of aspect-oriented concrete syntax definition while
Section 4 presents pragmatic observations made during the use of the approach
in three different domains. The paper closes with conclusions (Section 5).

2 OCA-based Deep Modeling

The most widely implemented deep modeling architecture is the orthogonal clas-
sification architecture shown schematically in Figure 1. Its most obvious differ-
ence to the traditional linear modeling infrastructure of the UML is that there
are two “orthogonal” classification dimensions. One dimension, the linguistic
classification dimension, is represented by the vertical stack of levels labeled
L2 to L0, and the other dimension, the ontological classification dimension, is
represented by the horizontal stack of levels labeled O0 to O2.

The linguistic levels essentially capture the organization of the model infor-
mation from the perspective of how deep modeling is realized in a meta-modeling
framework such as EMF. The top most linguistic level (L2), contains all language
constructs available in the deep modeling language, while the middle level (L1)
contains the user-modeled domain languages and is thus often referred to as the
domain level. The ontological dimension, in turn, consists of “ontological” lev-
els which are stacked horizontally within L1. Each model element at this level is
classified by exactly one model element at level L2, indicated by vertically dashed
classification lines. The lowest level, L0, contains the real-world concepts mod-
eled by L1. The light bulb represents the concept of EmployeeType which captures
the common properties of all employees. The group of stick-men with a wrench

14



L 2

L 1

EmployeeType2

expertise =2

Feature

Element
name

Clabject
potency durability

Method

Attribute
mutability

* feature

O 0 O 1 O 2

WebshopAdmin1

expertise =Linux0

Bob :WebshopAdmin0

expertise =Linux0

Level

*

content

1 01

EmployeeType WebshopAdmin Bob
L 0

Fig. 1. The orthogonal classification architecture.

in the upper right instantiates this concept as WebshopAdmin (a particular type
of employee) which is then further instantiated as Bob (a particular instance of
a WebshopAdmin). Classes located in the middle levels (e.g., WebshopAdmin) are
instances of the classes at higher levels and types for the classes at the lower
levels. Hence, they are named “clabjects” which is a concatenation of the terms
“class” and “object”.

The domain level, L1, consists of three ontological levels O0 to O2 which are
intended to represent the domain concepts/objects. Even though three levels are
shown here, the number of levels available is not limited. The concrete syntax
used in Figure 1 looks similar to the UML but with some modifications to make
it level-agnostic. Ontological classification is shown using horizontal dashed lines
or the UML colon notation as used in object specifications (e.g. Bob). The most
important difference to the UML is the association of numerical values with
clabjects, attributes and attribute values in the form of superscripts after their
names. Depending on whether they are associated with clabjects, attributes
or attribute values they are respectively referred to as “potency”, “durability”
or “mutability”. The potency specifies over how many subsequent ontological
classification levels a clabject can be instantiated and thus influence the contents
of a deep model. In the example EmployeeType has a potency of two stating that it
can be instantiated at the following two levels, here WebshopAdmin with potency
one and Bob with potency zero. The durability displayed next to the name of an
attribute indicates over how many subsequent instantiation steps an attribute
endures. In the example, expertise has a durability of two so all offspring of
EmployeeType over the next two levels have to possess such an attribute, here
WebshopAdmin and Bob. Finally, the mutability displayed next to the value of an
attribute defines over how many levels the value of an attribute can be changed.
The mutability for expertise of EmployeeType is one, hence it can be changed at
the next instance level and is fixed from then on. On level O1 of the example the
expertise for all WebshopAdmins is set to Linux which means that instance Bob has
to have Linux as his expertise.
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3 Apsect-oriented Concrete Syntax Definition

Aspect-oriented concrete syntax definition employs concepts from aspect-oriented
programing languages [14], e.g. AspectJ [13]. More specifically it allows concrete
syntax definitions to be parametrized using uniquely-named join-points. Aspects
can then be used to contribute to a join-point to customize the notation used
to visualize a specialized version of the associated model element. An aspect
contains the name of the join-point to which it is applied, a condition deter-
mining when the aspect is applied and an “advice” which is introduced to the
join-point. The advice can be configured to be added before, after or to replace
the join-point. Moreover, multiple aspects can be provided for one join-point.

The meta-model supporting the aspect-oriented definition of graphical con-
crete syntax in Melanee is shown in Figure 2. The model is unique for each
type of concrete syntax format (e.g. graphical, textual, tabular etc.) to best fit
the needs of that particular format. Here, for space reasons, the approach is ex-
plained only in the context of graphical concrete syntax definition, but Melanee
supports the approach for other formats as well. Melanee’s algorithm for visu-
alizing model elements is designed in such a way that it can be configured to
work with any concrete syntax definition model that supports the join-point and
aspect concepts explained below.

AbstractDSLVisualizer
instanceLevel:boolean

GraphicalDSLVisualizer
VisualizationDescriptor
name:String

1

*
content

LayoutDescriptor

LayoutContentDescriptor
name:String

Aspect
kind:Aspect={around,=before,=after}

1

* content

1

* content

ConditionalDescriptor
condition:String

notation:String

Fig. 2. The graphical concrete syntax definition meta-model.

In Melanee any model element can have multiple AbstractDSLVisualizers at-
tached, defining the concrete syntax in a specific concrete syntax format. The
notation attribute groups visualizers from the same format into “notations” so
that families of symbols can be grouped into a given logical “notation”. The
instanceLevel attribute specifies whether a visualizer is applied only to the in-
stance level or to the level at which the visualizer is defined as well. The Graph-

icalDSLVisualizer shown here defines concrete syntax in a graphical format using
VisualizationDescriptors. This is the base class for all types of elements in a con-
crete syntax definition. It assigns a name to each element of a concrete syntax
definition making each of those potential join-points. To explicitly declare an el-
ement as a join-point a unique name has to be assigned to it. A concrete syntax
definition consist of three types of VisualizationDescriptors: LayoutDescriptor , Lay-

outContentDescriptor and Aspect. A LayoutDescriptor describes the layout which is
applied to layout content (e.g. table layout, flow layout etc.). A LayoutContentDe-

scriptor , which is contained by a LayoutDescriptor , describes the actual displayed
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Fig. 3. Visualizer search traces: (a) not aspect-oriented, (b) aspect-oriented.

shape such as a rectangle, circle, label mappings etc. By nesting these two con-
cepts any concrete syntax can be defined as desired. The language is designed
to be similar to well known languages for describing UIs such as the Standard
Widget Toolkit (SWT), and languages describing concrete syntax for diagrams
such as the Graphical Modeling Framework (GMF).

Aspects for join-points are provided by the Aspect model element which in-
herits the condition attribute from ConditionalDescriptors which are executed when
the condition holds true. Aspects are not only ConditionalDescriptors they are also
subclasses of VisualizationDescriptor so that they can be added to GraphicalDSLVisu-

alizers. The kind attribute defines the application strategy of the advice (content)
of the Aspect. Three kinds are available – before (adding the content before), after
(adding the content after) and around (replacing the content of the join-point).
The current meta-model limits the content of an aspect to be LayoutContentDe-

scriptors. However, this does not limit the expressive power of the model.

Based on the visualizer and aspect-oriented concrete syntax definition ap-
proach a special search algorithm is employed to generate the desired visualiza-
tion for each model element in a deep model. This is based on an algorithm for
two-level models [10]. It was first extended to deep modeling in [2] and since then
steadily refined to the point where it supports deep aspect-oriented visualization.

Figure 3 shows an example of the “Employee” language with concrete syntax
attached to model elements indicated by clouds. The concrete syntax definition
uses the meta-model of Figure 2. The order in which clabjects are visited when
searching for a model element visualization is indicated by dashed arrows anno-
tated with a number. The search algorithm starts searching at the level of the
clabject to visualize. First the clabject itself is visited to determine whether it
has an associated visualizer, if not the clabjects in the inheritance hierarchy of
the clabject are visited. If no visualizer is found at this level the types of the
clabject at the level above are visited. The search continues until a suitable visu-
alizer is found for the clabject. If none is found the pre-defined concrete syntax
is used to render the clabject.
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The example in Figure 3(a) shows the “aspect-unaware” search trace of the
algorithm for Bob and Online Marketing Employee. Bob has no visualizer attached,
so the algorithm visits WebshopAdmin, the type of Bob, which has a visualizer
attached. The algorithm stops, returning the stick man icon with a small wrench
in the upper right. To find a suitable visualizer for Online Marketing Employee its
supertype (Employee) is visited which contains a visualizer. However, because its
instanceLevel attribute is set to true (indicated by the dashed cloud) the algorithm
continues searching the type level. The direct type, BusinessEmployeeType, has no
visualizer but its supertype (EmployeeType) has. Hence, the search terminates
and returns the group-of-stickmen icon to visualize Online Marketing Employee.

Figure 3(b) shows the same example but using aspect-oriented concrete syn-
tax definition. Only one visualizer is defined at EmployeeType defining the join-
points (dashed rectangles) JA, JB and JC . Variations are modeled through aspects
of kind around along the classification hierarchy, here at TechnicalEmployeeType

and Employee. This focus on modeling variations only reduces the number of
fully specified Visualizer from four in Figure 3(a) (EmployeeType, BusinessEmploy-

eeType, Employee, WebshopAdmin) to one in Figure 3(b) (EmployeeType). The main
difference between the two search algorithm versions is that discovered aspects
are collected on the way to a model element with an aspect-less visualizer and
then merged into the visualizer. The trace for OnlineMarketingEmployee is identical
to the aspect-unaware version as no aspects are defined along its classification
hierarchy. For Bob the search ends at EmployeeType and merges the collected
aspects JA, JB and JC into this visualizer.

Comparing the “aspect-unaware” and “aspect-aware” approaches shows that
the search algorithm traverses more model elements when applying the aspect-
aware variant of the algorithm. Additionally, the aspect aware version involves
additional computational overhead for merging aspects into join-points, leading
to a potential performance issue. The impact of this overhead has to be empir-
ically determined by analyzing numerous practical examples. In the following
section pragmatic observations about the approach are made.

4 Examples

Because of the novelty of the aspect-oriented concrete syntax definition approach
only three languages using this features have been published to date. The first
describes executable behavior of robots [5], the second a language for model-
ing executed environments in a game [1] and the third a distributed extension
scenario in the domain of business process modeling and analysis [4].

The model shown in Figure 4 is part of a deep robot behavior modeling and
execution framework in [5]. The excerpt focuses on the behavior modeling part of
the model. At the highest level, O0, the goal is to provide a generic language for
modeling robot behavior. This is then used to create a robot behavior modeling
language for a specific type of robot at O1, here humanoid robots. One of the
goals is to make the concrete syntax as configurable as possible to reflect the type
of modeled behavior. For example, the Move action should show the coordinates
alongside a small walking pictogram, while the Gesture action should show a
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textual description of the gesture to do alongside a corresponding pictogram. To
achieve this the concrete syntax definitions at the O0 level offer join-points (JA,
JB, JC) which are used by the robot behavior language at O1 for concrete syntax
customization. The language is then used at level O2 to model robot behavior.
The behavior modeled in this example first instructs the robot to walk, then
detect a ball and finally make an agree or disagree gesture.

O0

ActionType3

ControlFlowType 3

post
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name

name':'type

typeName  = 
platformName  = 

1
1

1 1FlowType0
post1
1

*
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1executionTime3
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3
3

JA

JBTypeName
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JD
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y:Integer
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typeName= 'posture'

XOR :ControlFlowType2

Or :ControlFlowType2

AND :ControlFlowType2
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J  =B
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J  =B +

X

O
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J  =B
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typeName = 'move'
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executionTime2
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DetectRedBall :ActionType2
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J  =D

J  =D

Move
x=4;y=2.6;theta=0.785

Agree
ballDetected

Disagree

Detect Red Ball
O2

platformName  =Nao 02

X
not ballDetected

Fig. 4. Robot behavior modeling language after [5].

To realize the language without aspect-oriented concrete syntax definition
features it would be necessary to define a complete visualizer for each model
element at level O1 (e.g. Move, XOR) even though the concrete syntax at level O1

is only a slight variation of the one defined at O0. This unnecessary replication
of visualizers would significantly increase the accidental complexity involved in
developing, maintaining and evolving deep models [6, 7]. A change made to the
general language at level O0 would need to be synchronized with all visualizer
definitions at level O1. Aspect-oriented concrete syntax definitions avoid this
problem by making it possible to specify a generic concrete syntax definition
on level O0 that can be customized at level O1. At level O1 the variations are
modeled only and changes to the generic syntax at level O0 are automatically
promoted to instances without any manual effort. This reduces the number of
manual changes to the concrete syntax definitions that have to be made after a
change and thus reduces the overall complexity involved.
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Fig. 5. Game modeling language after [1].

In contrast to the previous example where the customization takes place
along the classification hierarchy, in Figure 5 aspect-orientation is used to model
concrete syntax variations in an inheritance hierarchy. The example shows a
model for a game environment with a focus on how the inheritance hierarchy is
used to determine the concrete syntax of Weapons in an aspect-oriented style. At
the center of each Weapon symbol is an icon indicating the type of weapon (e.g.
Shuriken). The character at the top right of the symbol indicates the weapon kind
(A: AttackWeapon; D: DefenseWeapon) and the text at the bottom gives the name
and details of the weapon such as regeneration information. The only common
part of all weapon visualizations is the information at the bottom. The weapon
kind and type change per subclass. To optimize the concrete syntax definition,
only the weapon details at the bottom are defined in the visualizer associated
with Weapon along with two join-points — one for weapon type (JT ) and one
for weapon kind (JK). The weapon kind is associated with the AttackWeapon and
DefenseWeapon subclasses since it is fixed for all of their subclasses. On the other
hand, the weapon types which change for each weapon are defined locally at
Telekinesis, Rocket, etc. The lowest level O2 shows an instance of a modeled game
environment which can be executed. Again the aspect-oriented concrete syntax
definition reduces the number of elements involved in concrete syntax definition
as only variations are modeled instead of the whole concrete syntax.

In the examples presented so far, aspect-oriented concrete syntax definition
is used to reduce accidental complexity. Figure 6, however, shows a scenario
that cannot be supported without this mechanism. It contains three packages
created by independent parties and distributed over the internet — 1. BPMN:
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providing a business process modeling language, 2. MDPE : supporting model-
driven performance analysis and 3. Security : supporting business process security
modeling.
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Fig. 6. Distributed business process modeling language after [4].

The BPMN language was defined with modeling language and concrete syntax
extension in mind. To enable the latter, join-points JA and JB are defined in the
concrete syntax definition of Task. These two are used by the LatencyTask and
SecurityTask subclasses from the MDPE and Security packages linked to the BPMN

package. They introduce new language constructs into the BPMN language and
extend the concrete syntax. The rectangle at O1 contains a detailed view of one
Task which is an instance of Task, LatencyTask and SecurityTask for demonstration
purposes. In a real model, however, this would be shown as one model element
with multiple classifications. The four rendering options for this model instance,
which it is possible to switch between on-the-fly, are shown at the bottom of
Figure 6. This example shows how distributed deep models can enhance each
others concrete syntax definitions in a decoupled style by using aspect-oriented
concrete syntax definition. Even though the example only shows a linking depth
of one, chains of linked models which contribute towards one concrete syntax
can be envisaged.

5 Conclusion

Deep modeling technologies not only facilitate the definition of models that span
more than one class/instance level they also allow domain-specific (i.e. user-
defined) modeling languages to be used to represent them. These user-defined
modeling languages often use concrete syntax definitions which span multiple
classification levels, multiple inheritance levels or even multiple models. In this
paper we have shown the potential of aspect-oriented concrete syntax definitions
to reduce accidental complexity, positively impact model development, evolution
and maintenance, and support new modeling scenarios. The three published lan-
guages and one running example described in this paper demonstrate the po-

21



tential advantages of the approach which is fully implemented in the Melanee
tool. The authors are not aware of any other deep modeling tool supporting
aspect-aware, concrete syntax definition. Besides Melanee, two other deep mod-
eling tools explicitly support the definition of user-defined concrete syntax —
MetaDepth [16], a textual tool, and DPF [15], a graphical tool. Both provide
concepts for concrete syntax definition but do not support aspect-orientation.
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Abstract. Over the last decade multi-level modeling (MLM) approaches have 

been addressing the need for relaxing the strict constraints on intra- and inter-

layer type-instance relationships that are imposed by traditional approaches to 

meta-modeling. In this paper we explore MLM approaches in the context of 

Software Product Line Engineering (SPLE), propose a meta-language, and 

show how it can represent three commonly used variability mechanisms - con-

figuration, parameterization, and template instantiation - within the context of 

MLM. By this we contribute to simplifying the representation of complex rela-

tionships in current MLM approaches and to the formal definition of SPLE var-

iability mechanisms utilizing MLM concepts.  

1 Introduction 

Promoting models as the primary artifacts in software development, early approaches 

to Model-Driven Engineering (MDE) refer to four layers of abstraction: data (M0), 

model (M1), meta-model (M2), and meta-meta model (M3) where elements of Mn are 

instances of types defined at level Mn+1. Of those layers, three are practically used by 

MDE practitioners: M2 to build metamodels for general purpose modeling languages 

(e.g., UML) or Domain Specific Modeling Languages (DSML), M1 to instantiate 

those metamodels in the form of models, and M0 to process instances of the models. 

Together these three levels are called a ‘golden-braid’ [11] and traditional approaches 

to modeling have used two occurrences (M0-M2 and M1-M3) whilst maintaining 

strict separation between elements of different levels. Furthermore, most traditional 

approaches follow a similar definition of the type-instance relationship between levels 

whereby, for example, an object at M0 structurally conforms to a class at M1 when all 

the object’s properties have names and values corresponding to the names and types 

defined by the class attributes. 

Recently, multi-level modelling (MLM) approaches aim to extend this architecture 

by enabling modelling at an arbitrary number of levels [12], and propose variations 

and liberalizations of the traditional type-instance relationship between levels. Current 

MLM approaches relax these limitations so that multiple golden-braid occurrences 
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can co-exist within the same model to support an arbitrary number of levels. Type-

instance relationships in these cases can be expressed via concepts, such as clabjects 

[2], power types [1521], and deep meta-modeling [24]. 

Software Product Line Engineering (SPLE) [10, 22] can be considered as dealing 

with multi-levels. SPLE uses families of products and subsequent adaptation of each 

family to produce a single model describing a particular product in the line. Families 

represent multiple variations in a single definition and adaptation involves the selec-

tion of choices amongst the variations and potentially modification and extension of 

these choices. The different levels handled in SPLE can be classified into domain and 

application engineering [19]. The domain engineering layer includes activities and 

tasks to create and handle core assets, i.e., artifacts that are intended to be (re)used by 

more than one product in the family. These assets include both common and variable 

parts. The application engineering layer consists of activities and tasks to adapt and 

tailor core assets in order to satisfy particular requirements of the products at hand. 

The reuse between the layers is done systematically applying mechanisms, commonly 

termed variability or reuse mechanisms [5, 17]. Examples of such mechanisms are 

configuration, parameterization, and template instantiation.  

In this paper, we aim to explore the potential relations between the two worlds – 

SPLE and MLM. Our hypothesis is that the elements in the SPLE families correspond 

to types and the elements in the particular products correspond to instances of types. 

The relationships derived from the variability mechanisms may refine the type-

instance relationship that is variegated and liberalized by current MLM approaches. 

Thus, the contribution of the paper has two aspects. To MLM, SPLE variability 

mechanisms can be used to simplify the representation of complex relationships in 

current MLM approaches, and to SPLE – MLM concepts can be used to more precise-

ly define SPLE variability mechanisms. 

In the sequel, Section 2 reviews variations of and extensions to the type-instance 

relationship in existing MLM approaches. Section 3 discusses commonly used SPLE 

variability mechanisms – configuration, parameterization, and template instantiation – 

demonstrating their use. In Section 4 we discuss the ability to identify the relations 

derived from the variability mechanisms as being special cases of the type-instance 

relationship. Finally, in Section 5 we conclude and set the ground for future research. 

2 Related Work 

Recent modeling language research has addressed the limitations of traditional strict-

modelling approaches that impose boundaries between elements from different levels 

of the golden-braid. Several researchers have begun to explore variations on the type-

instance relation that is intrinsic to most modeling languages and to relax traditional 

strictness with the aim of providing a richer notion of ‘type’ within a model. This 

section reviews the current advances, broadly categorized as ‘multi-level modeling’ 

(MLM), towards this aim. 

MLM approaches have been suggested for a variety of uses, including designing 

models for the use of non-modelers [14] and developing modeling tools [16]. In many 

cases there is a requirement to allow types and their instances to co-exist, for example 
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enactment [16] of business processes requires the type of a process and its active in-

stance to be co-represented.  

Traditional approaches to the type-instance relationship often focus on classes and 

their instances. UML, for example, defines that an instance is related to a type by 

‘instance-of’ when the class structurally and behaviorally defines all features of the 

instance. The relationship may hold between a class and an object or a meta-class and 

a class. The semantics of a language is usually defined in terms of the ‘instance-of’ 

relationship both by intrinsic rules that hold and by (at least in UML) constraints that 

are expressed by the modeler and attached to the type. Therefore, researchers address-

ing issues related to model-based language engineering provide mechanisms that 

affect the intra- and inter-level type-instance relationships.  

To address the dual role that a certain element plays in MLM approaches (as an in-

stance of the higher level and a type of the lower level), Atkinson [2] coined the term 

clabjects to simultaneously refer to classes and objects. He further suggested a poten-

cy-based multi-level approach to support deep meta-modeling [3]. Following that 

approach, each element is assigned with a potency number, which indicates the num-

ber of levels in which the element can be instantiated. A special case of potency is the 

intrinsic features, suggested by Frank [13], in which the potency number is one. 

Observing that an element may be an instance of two elements residing in different 

levels, Atkinson and Kuhne [34] suggest the notion of orthogonal classification archi-

tecture (OCA). In OCA, elements can be instantiated along the linguistic dimension 

and orthogonally along the ontological dimension. The linguistic dimension refers to 

instantiation across levels whereas the ontological dimension refers to instantiation 

within levels.  

Another approach to MLM that does not involve mixing elements from different 

type levels is to use a pattern to encode the relationship between a meta-class and the 

class that acts as its instance. Gonzalez-Perez and Henderson-Sellers [15] utilize the 

notion of power types [21] by introducing the concept of a power type pattern which 

exists at a single level but represents elements from different levels. The power type 

pattern is defined as “a pair of classes in which one of them (the power type) parti-

tions the other (the partitioned type) by having the instances of the former be subtypes 

of the latter.” This allows the modeler to capture the semantics of the type-instance 

within a strict-modelling framework. 

To support information integration in heterogeneous information systems, Jordan 

et al. [18] suggested modelling primitives that extend standard specialization and 

instantiation mechanisms. Particularly, they distinguish between specialization by 

extension (that supports adding attributes, associations, or behavior) and specializa-

tion by refinement (that supports adding granularity to the description), as well as 

between standard instantiation (in which all attributes must be assigned a value from 

their domain) and instantiation with extension (which enables adding attributes, be-

havior, and so on). They further introduce the subset by specification relation for rep-

resenting “the existence of a class of specification construct that identifies particular 

subtypes of another type”, the membership relation, and the specification by enumera-

tion relation that describes how the extensions of sets of entities are related. 
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In summary, the need for flexible modeling technologies has led a collection of re-

searchers to seek ways to relax traditional strict-modelling and to open up the ‘type-

instance’ semantics to the modelers. Most recent advances have sought to mix types 

and instances and have allowed structural features to be annotated in order to influ-

ence their instantiation semantics. We see that there is a similarity with the aims of 

SPLE variability mechanisms, as they require mixed type-levels and offer control of 

instantiation through variability. 

3 Exploring Alternatives for Relationships in MLM 

As noted, frameworks of SPLE commonly distinguish between domain and applica-

tion engineering (e.g., [19], [23]). In both layers, modeling plays a central role to 

analyze and design artifacts. As an example, consider the model depicted in Fig. 1. 

The left part of the model describes a library management system (LMS) or a family 

of such systems. Respectively, this level can belong to the application or domain en-

gineering layers. The model refers to books (titles) written by authors, as well as to 

the actual book copies that can be checked out and have (physical) location. A book 

may have up to n copies. 

 

LMS LMS4Univ

BookBook

ISBN
Title
PublicationYear

ISBN
Title
PublicationYear

AuthorAuthor

AuthorNameAuthorName
 written by p 

1

*

1..n

is of p 

*

BookCopyBookCopy
Constraints

LocationLocation

CheckOut(Constraints)CheckOut(Constraints)

<<bind>> Constraints->
Enumeration

UnivBookUnivBook

ISBN
Title

ISBN
Title

UnivBookCopyUnivBookCopy

  

UnivAuthorUnivAuthor

AuthorNameAuthorName

 written by p 

1

*

1..5

is of p 

*

Conf.

Conf.

Param.

 

Fig. 1. The LMS example 

The second level in our example, partially described in the right part of Fig. 1, re-

fers to library management system(s) in universities (LMS4Univ for short). Here 

again, the level can be interpreted as specifying a (narrower) domain or an applica-

tion, and as such it can be considered as an adaptation of the LMS model. Checking-

out book copies is constrained according to the (enumerated) user type, e.g., student 

vs. staff, and a book may have up to 5 copies (for economic reasons). In LMS4Univ 

books have no publication year information. 
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Note that the two levels depicted in Fig. 1 could be part of a larger chain of levels 

that includes, for example, a wider domain of Check-In Check-Out applications, or 

sub-classes of LMS4Univ applications.  

For traversing from a higher level to a lower level in SPLE, different variability 

mechanisms are commonly utilized. These are actually techniques applied to adapt 

core assets developed in the domain engineering layer to the context of particular 

products (i.e., artifacts in the application engineering layer). However, they can be 

used for adapting domains or applications as well. Over the years, different variability 

mechanisms have been suggested for different development stages, e.g., [1] for im-

plementation, [5], [17] for architecture design, and [6], [7] for reference modeling. 

We mention here only three common variability mechanisms (see Table 1 for defini-

tions and demonstration of their use through the LMS example):  

 In configuration, elements of the higher level are selected to be included in the 

lower level. Partial selections are possible, as in the case of UnivBook which se-

lects only 2 out of the 3 attributes of Book: ISBN and Title.  

 Parameterization supports assigning values to parameters defined in a higher level. 

The assignment is done in a lower level. In our example, the maximal number of 

copies of a certain book is assigned to 5 in LMS4Univ.  

 Template instantiation, which, in contrast to parameterization that deals with value 

assignment, deals with type adaptation, is exemplified by constraining book copy 

check out with enumeration type (which represents user type, e.g., student vs. 

staff). 

Table 1. Common variability mechanisms, their definitions, and use 

Variability 

Mechanism 

Definition Example 

Configuration 

Choice between alternative functions and imple-

mentations [17]; Modifying selected elements of a 

core asset based on predefined rules that refer to 

specific requirements or situations [6, 7]. 

UnivBook in LMS4Univ (with 
respect to Book in LMS). 

Parameterization 

Variation points for features [17]; Data items 

serving as arguments for distinguished software 

behavior [5]. 

Up to 5 UnivBookCopies in 
LMS4Univ (with respect to up 

to n BookCopy’s in LMS). 

Template 

Instantiation 

Type adaptation or selecting alternative pieces of 

code [17]; Enables filling in product-specific parts 

in a generic body [5]. 

UnivBookCopy in LMS4Univ 

(with respect to BookCopy in 

LMS). 

 

Next, we explore to what extent the aforementioned mechanisms can be represented 

by the type-instance relationship and its variations and by this – contribute to simpli-

fying the representation of complex relationships. 
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4 Variability Mechanisms and Type-Instance Relationships 

Our claim is that configuration, parameterization, and template instantiation can be 

viewed as special cases of the type-instance relationships in the context of MLM. To 

expand this claim, we first provide a core meta-language that supports our MLM ap-

proach. 

Consider the simple example shown in Fig. Error! Reference source not found.. 

It uses a MLM approach to model both parametric (as manifested by parameterization 

or template instantiation) and configurable classes. This is done via the relationship 

‘of’ that works consistently in all cases that are shown. A class defines constraints that 

must be satisfied by its instances. The relationship ‘of’ is a declarative statement that 

the object at its source satisfies the constraints of the class at its target. In the case of 

BookCopy, ParametricClass is used to model the type parameter used for the method 

CheckOut. In the case of the UnivBook, the class Book is a family specifying that 

publication year is an optional attribute of book. Therefore, our approach is based on 

a use of the type-instance relationship which is supported through the consistent use 

of constraints, the implication of which is a uniform representation for all model-

elements. To achieve this everything is an object [16]. 

Configurable 
Class

of

of

Parametric 
Class [Type]

of

of

UnivBook
ISBN

Title

Book
ISBN
Title

PublicationYear

opt PublicationYear
spec

Class

of

of

Feature Spec

specof

Book
Copies: BookCopy[n]

UnivBook
Copies: BookCopy[5]

of

BookCopy

CheckOut(Constraints)

UnivBookCopy

CheckOut(Enumeration)

of

 

Fig. 2. Configuration, parameterization, and template instantiation expressed via type-instance 

relationship 

Fig. 2 shows a model that contains a kernel meta-language and its extension to 

support configuration, parametrization, and template instantiation (the last two re-

ferred as parametric). Since the basis of our approach is a self-describing meta-

language in which everything is an object, the root class is Object. Furthermore, alt-
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hough only Class is shown as explicitly inheriting from Object, all classes in the lan-

guage inherit from the root. To simplify the representation we consider only classes 

with attributes, hence the use of directed relationships between classes. 

Since everything is an object it is possible to access the internal data of any model 

element through reflection via the attribute named ‘slots’ defined by Object. Inher-

itance is supported though the ‘parents’ attribute defined by Class and the implication 

is that all attributes are inherited. An important feature of the approach is defined 

using constraints on classes. A constraint is a predicate whose ‘check’ operation is 

supplied with a candidate object. 

 
Fig. 2. A Kernel Language 

 

A language definition relies heavily on constraints to specify the ‘of’ relationship 

that holds between a class and its instances. A key meta-circular constraint that is 

defined by Class can be paraphrased: ‘An object c is a valid class if it enforces all of 

its constraints c.constraints when checking o:c for any object o’. Clearly, this con-

straint allows Class to classify itself and, because of the universal object representa-

tion, the object ‘o’ could be a ground instance, a class, or a meta-class. 

A snapshot is a container of objects; it can be used as the basis of a wide range of 

containers where specializations of Snapshot introduce constraints that must hold for 

the contents. A package is a container of classes (with the associated implied con-

straint on Package) and a snapshot links to a package that contains the classes that 

type the contained snapshot-instances. Again, this meta-circularity helps us to ensure 

that models are objects and that MLM principles work over all levels. 
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The ‘of’ relationship between a class and an object is defined by the constraints on 

the class. Since a class may be an extension of the base class Class, it is possible that 

the constraints used to define a particular occurrence of the relationship ‘of’ might use 

slot-value information other than those slots defined by Class. Therefore, the ‘of’ 

relationship can be overloaded by the language designer as described below. 

Configuration can be expressed via a configurable class that specifies options such 

that an instance of the class has chosen consistently amongst the available options. 

Therefore an ‘of’ relationship can hold between a configurable class and its instances 

if the constraints on the class require the features of each instance to be consistent 

with the options of the class. Recall that ‘of’ may hold between a ground instance and 

a class, or a class and a meta-class. Therefore, we may define configuration at any 

level.  

Fig. 2 also shows that configuration is supported via Family – an extension of 

Package with the implied constraint that a Family is a container of configurable clas-

ses. A configurable class defines feature-specifications that are Boolean combinations 

of attributes. The constraints on a configurable class require that any candidate in-

stance be a class and that the features of the class be consistent with the specification. 

Therefore, configuration is modeled as a form of type-instance, where the constraints 

match attributes in the class against feature-specifications in the meta-class.  

Parametric model elements define formal parameters or templates that range over 

element-definitions. When supplied with model elements as actual parameter values 

or types the formals are consistently replaced within the body of the definitions in 

order to produce new model elements. Note the term ‘consistently’: the new model 

elements view the parametric version as a type whose constraints must be satisfied.  

  

Table 2. A MLM Representation for Variability Mechanisms 
Variability 

Mechanism 

MLM Instantiation Constraints and Examples 

Configuration 

Checks that the structure of the instance is consistent with the variability specified by 

the type. Fig. 1 shows LMS as a family with Book as an instance of ConfigurableClass 

with PublicationYear as an optional attribute. The class UnivBook is a type-consistent 

instance, and therefore a configuration of Book. 

Parameterization 

Assigns a value to a type to create an instance of that type. Fig. 1 shows that  

LMS4Univ assigns the value 5 to the parameter n, appearing in LMS and specifying 

the maximal number of BookCopy associated to a single Book. 

Template 

Instantiation 

 

Assigns a value to a type to create another type. The class BookCopy is parametric 

with respect to the parameter Constraints and the binding of Constraints to Enumera-

tion is shown to produce the instantiated class UnivBookCopy (details of the definition 

are omitted). 

 

Fig. 2 shows an extension of Kernel with features for parameterization and tem-

plate instantiation. A parametric class has a collection of typed parameters and a defi-

nition. The definition ranges over all model elements and supports an operation 

‘subst’ that is supplied with some bindings for the parameters and produces a collec-

tion of model elements via consistent substitution. An instantiated class is a normal 

class that is associated with some parameter bindings. A new constraint on an instan-
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tiated class requires that the attributes of the class are consistent with the definition of 

its class after the bindings have been substituted. Therefore, parameterization and 

template instantiation are modeled as a form of type-instance, where the constraints 

match bindings against formal parameters and substitution into a body. 

In Table 2 we demonstrate the use of the Kernel Language for applying the varia-

bility mechanisms. 

5 Conclusions and Future Work 

MLM approaches have been proposed in order to relax the traditional strictness re-

quirements on inter- and intra-level type-instance relationships. However, while these 

proposals are formal, they address the representation of complex relationships to a 

limited extent. SPLE, on the other hand, distinguishes between different relationships, 

introducing a variety of variability mechanisms that are more intuitive to the modelers 

but are less formal in their definitions. The current paper addresses this tradeoff by 

expressing three key mechanisms to SPLE reuse – configuration, parameterization, 

and template instantiation – within a type-instance framework. We defined a simple 

MLM-based kernel-language to show that those mechanisms can be implemented 

within that framework and can co-exist with other meta-modeling techniques includ-

ing potency, deep modeling, and power-types (see [8] for an example). This provides 

a feature-rich, integrated and consistent approach to model-based language engineer-

ing. The language used is a much-simplified version of the kernel for the XModeler 

toolkit [9]. The language is based on a uniform representation for model elements and 

can support a wide variety of languages that are both general-purpose and domain-

specific. We plan to further develop the kernel language and test it in the context of 

SPLE and to use it as the basis of mixing different MLM approaches with SPLE vari-

ability mechanisms. 
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Abstract. In the last decade, there have been several fundamental ad-
vances in the field of ontological and linguistic metamodelling. They
proposed the use of megamodels to link abstract, digital and physical
systems with a particular set of useful relations; the distinction between
ontological and linguistic layers, identification and separation of them;
even formalised the act of modelling and the sense and denotation of a
language. In this paper, we propose second order intensions and exten-
sions to more closely model linguistical and ontological conformance and
mapping.

1 Formal modelling of languages

In the classic theory of formal languages, a language L is defined as a set of
sequences of alphabet symbols: L ⊆ Σ∗ [9]. This definition is easily applica-
ble to textual languages (traditionally associated with programming) and visual
languages (traditionally associated with modelling). It is also almost trivially
generalisable to graph languages by substituting the reflexive transitive closure
in the definition by another operation that (usually recursively) constructs all
possible valid language instances from symbols of the alphabet. Even then, all
manipulations with the language are done as if it were a set of language instances.
For example, a parser is generally considered a mapping from the textual lan-
guage to the tree language in that it assigns a valid parse tree to each valid
textual input [18]. Hence, the only relation that is needed to formally describe
such processes is an element of (∈ or ε) relation with rare exceptions like gener-
alised parsers [16] that associate one textual input with a set of several possibly
valid parse trees. Since in practice such mapping usually gets implemented to
output a representation of a set instead of the actual set itself, such cases are
more sidesteps than real exceptions: the range of a general parser is a set of parse
forests, and each output in an element of this set.

Traditional metamodelling abandons the concept of a language in favour of
a modelling layer [14,15]. The formal arsenal is expanded to a strict hierarchical
structure: the lowest layer is too close to real life to formally decompose and
study (e.g., raw data, real life objects, concrete systems), the highest layer is
so abstract that it is self-descriptive, and the middle layers Mi contain entities
that model entities from the layer below (Mi−1) and are expressed in languages
defined by entities from the layer above (Mi+1). Thus, user data is expressed
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Fig. 1. A grammar G is a model of a language L, it is also a metamodel for the
program P to conform to. The said program P is an element of the language L and
it models a real system S. (The example demonstrates a megapattern of metamodel
conformance [6, Fig.8]).

in user concepts that use UML concepts; UML concepts model user concepts in
MOF; and MOF models UML concepts and defines both a language for them
and a metalanguage for expressing itself. In this view, a new relation emerges:
an instance of (we will denote it as ι), which is more abstract than the ε relation
since it works formally even in situations when a set of all valid models cannot be
expressed or when it does not make sense conceptually to express it. For example,
an object is an instance of its class, and it is much less interesting to consider
the set of all possible objects of a class than to investigate the nature of this
instantiation and the consequences thereof. Since instantiations is sometimes
hard to express universally, we also speak of a conforms to (χ) relation [2]:
a model conforms to a metamodel, an object conforms to a class, a program
conforms to a programming language, a database conforms to a schema. Since
this theory is rooted in the modelling community, relations ι and χ are commonly
used together with a representation of relation µ used in the conceptual sense: an
object Cat models a real cat even though there might be no “language of cats” and
the construction of a set of all possible cats is often unnecessary. Relations can
be diagrammatically combined to form so called megamodels [3,6,5], an example
shown on Figure 1.

Formal metamodelling distinguishes between two kinds of instance of rela-
tions: the linguistic instance of and the ontological instance of [1]. This com-
plicates the metamodelling process somewhat but removes most ambiguity as-
sociated with the ι relation: the object Fluffy models a very particular cat and
it is both an ontological instance of a class Cat (because Fluffy the real cat is
a conceptual instance of cats in general) and a linguistic instance of an Object
(because it needs to belong to a certain class, to be instantiated in a certain
way and obey other constraints typical for all objects but not for all cats). An
example is given on Figure 2 and is easily extensible to new ontological levels:
cats are ontological instances of species, which are ontological instances of a
biological rank [1, Fig.5] — and the formalisation still allows us to distinguish
these modelling statements from ones that stay within one ontological level (i.e.,
that cats are pets, carnivores, mammals, animals, etc — in the object-oriented
technological space this is called inheritance). Adding more languages and trans-
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Fig. 2. The linguistic (on the left) and ontological (on the right) metamodelling views
on the same megamodel. Fluffy is a cat (instance of a concept of a cat or an element
in the set of all cats). Fluffy is modelled (µ) by an object F which is a linguistic
instance (ιL) of an object (O) and an ontological instance (ιO) of a class Cat (C).
The object O is in an instance-type relation to T . Columns on the left and rows on
the right roughly correspond to ontological levels; rows in the left and columns on
the right roughly correspond to language levels or modelling layers. (The example is a
simplified/adapted version from [1, Figs.2,3]).

formations into the megamodel is somewhat more problematic due to the grid
nature of the diagrams and to the lack of definitions of ontological instantiation
for some languages. Coming back from biology to computer science, this allows
us to properly specify that a particular program is a (linguistic) instance of say
Java, but an ontological instance of a database application and as such, also
obeys a set of structural and behavioural rules.

The next step in refining the theory of metamodelling of megamodels was
separating the intensional and the extensional parts of the language [7]. The
extensional part is argued to be the set of models allowed in the language. The
intensional part models constrains and properties that are characteristic to the
instances of the language. If such a distinction is introduced, the meaning of
being the “instance of” something becomes ultimately apparent: the model in
question must conform (χ) to the intensional part and it is an element (ε) of the
extensional part. Since the extension of an abstract system always resides on the
lower ontological level, the diagram is also nicely composed of tiles of the meta-
level entry and its intentional part on top and its extensional part (the set of valid
instances) and the model-level entry that conforms to the intensional part, is an
element of the extensional part and is at the same time an instance of the abstract
system. An example migrated from the technological space of cats, dogs, breeds
and animals, to programming languages, can be seen on Figure 3 (read δ∧ as “has
intension” and δ∨ as “has extension”, as δ was often used for “decomposed in”).
In general, tiles like these can always substitute the megapattern from Figure 1,
it is in fact its ontology-aware refinement.
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P
µ−→ a particular Haskell program

H
µ−→ the Haskell language

∨H
µ−→ set of all valid Haskell programs

∧H
µ−→ constraints imposed on a Haskell program

L
µ−→ a programming language

∨L
µ−→ set of all programming languages

∧L
µ−→ properties that make up a language

Fig. 3. Two tiles on the left diagram show how an abstract system (a language) H
or L is decomposed into an intensional part ∧X and an extensional part ∨X. Haskell
(H) is a programming language (L), so it is an instance (ι) of a language. This means
it conforms (χ) to the intension of being a language (∧L) and is an element (ε) in the
set of all programming languages (∨L). Similarly, P is a program in Haskell, so it is an
instance of H, it conforms to ∧H and is an element of ∨H. (The example is ported to
a more fitting technological space from [7, Fig.7]).

2 The role of a grammar

In the domain of programming languages, one often speaks of a conformance of
a program to the grammar of the language in which the program was written in.
Is such a grammar the same as the intensional part of the language? (G = ∧L?)

The answer given by the formal language theory is yes — however, this
theory has a slightly different megamodel of the situation: since a language is
equated with its extensional part, the “instance of” relation is equated with the
“element of” relation. Furthermore, instead of the language being decomposed
into two parts, its intension is treated as a model of its extension (which is
typically infinite, so it helps to have a finite model of it). The result is depicted
on Figure 4 in the same style we have used so far. As an example we can consider
the technological space of XML: then P is an XML document, G is a DTD or an
XML Schema definition, the validator uses G to check P χ−→ G and programs
in XSLT, XQuery, JavaScript and other languages can be written to work on
elements of L.

In a more general case, the role of a grammar is the G µ−→ L chain is called
generative or derivational and is used in most proofs in the theory of formal
languages and automata. Its role in the P χ−→ G chain is called analytical and
is often utilised by using it prescriptively [8] and generating a parser out of it.
What does such a parser do? In the simplest case, it analyses the text of the
program and constructs a term that aligns tokens (lexemes) of the input with
its understanding of how the structure of any program should look like. This
already does not fit our picture at all, and we lack means to express that not
only the grammar serves in at least two different roles, but also the language
apparently at the same time is a language of strings (that are acceptable inputs
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Fig. 4. The formal language theory view on relating languages and instances: the
program P is an encoding of a solution JP K, which is an element of the formal language
L and conforms to the grammar G. The grammar G is also a finite model of a (typically
infinite) language instance set L. The conceptual language L is implicit and utterly
intangible, and its instantiation is never discussed explicitly.

for a parser) and a language of terms or trees (that are outputs of a parser).
An attempt to fit this transformational megapattern into our view is shown on
Figure 5: a grammar G serves a model of both two languages (textual and tree
language) and the mapping between two representations of the same program
(the text and the parse tree). However, since LC and LT are implicit, we cannot
make any statement about the relation between LT and LC , which makes the
megamodel a bit less useful.

This multipurposefulness of grammars in a broad sense is unfortunate from
the modelling point of view, but it explains their omnipresence in software en-
gineering [10]. In terms of modelling modelling1, G µ X for all megamodel
elements X related to G: they share some intention and can be partially repre-
sented by one another [13]. We will explore this intersection in the next section
and make it explicit.

In practical software language processing, grammars try to balance in be-
tween all these roles, with a varying degree of success. In certain cases, people
separate some constraints (traditionally called static semantic rules) that are
too hard to express in the chosen grammar formalism and are purely related to
G

µ−→ L and P χ−→ G; in other cases (in particular related to mapping between
already structured concrete syntax and an improved abstract syntax) there could
be several grammars defining separate languages, with G µ−→ τ included in one
of them or shipped as a third separate artefact.

Interestingly, the role of a language in modelware engineering is slightly dif-
ferent yet also not perfect. Consider the following statement [13]:

F
µ−→ L

µ−→
{
M |M µ−→ S

}

What is stated here is that the formal system F truthfully models a language
L which in turn models a set of modelsM such that they all model the system S.

1 NB: the original MoDELS 2009 paper used “|µ ” for shared intention instead, we use
a much more fitting notation from the extended journal version.
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Fig. 5. The classic grammar theory view on relating languages and instances: the text
of the program PT and a concrete parse tree PC both model the conceptual program
(algorithm) JP K and both conform (χ) to the grammar G which acts as a model (µ)
of both the string language LT and the tree/term language LC viewed as the sets
of their corresponding instances. The same grammar G simultaneously models the
transformation between text instances and tree instances. Conceptual languages LT
and LC remain intangible, denotation JP K might exist in a form of flow diagrams.

If represented diagrammatically on Figure 6, we see the main differences between
our approach and the method of Muller et al: instead of being decomposed into
an intension and an extension, the language is considered to be a model of its
extension, and its intension (grammar in a broad sense, some kind of formal
model by requirements) is considered to be its model. Furthermore, there is no
explicit consideration for the conformance between the models and this formal
definition.

3 Second order to the rescue

As we have seen, the grammar of a software language is its intensional part (or
approximates it very closely). Let us deconstruct it further. For ∧Collie, Gaše-
vić et al claimed it was a model of the real world intension of the concept of a
collie, combining properties such as “has long hair”, “has bushy tail” and “can
herd sheep” [7]. For a programming language, the intension is a model of two
kinds of properties: essential (“supports parametric polymorphism”, “uses lazy
evaluation”, “contains a conditional statement which must contain a condition
and a statement”, “variable names should start with a letter”) circumstantial
(“functions have comma-separated arguments”, “statement blocks are defined by
indentation”, “one statement per line of code”). The essential properties refer to
the way the language concepts are constructed and manipulated — therefore,
their model is the intension of the intension of the language (∧∧L). The circum-
stantial properties refer to the way the concepts of the language are represented
in the instances — in other words, how language instances (elements of ∨L) are
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L �
µ

F

∨L

µ

?
� ε

M
µ - S

Fig. 6. Modelling modelling modelling: all models M that model a system S, are
collected in a set ∨L. The language L is considered to be a model of its extension, and is
in turn modelled by a formal system F which is conceptually its intension which remains
disconnected from the model M . (This example is a diagrammatic representation of
[13, Fig.17]).

constructed; hence, it is the intension of the extension of the language (∧∨L).
The extension of the intension is even more interesting because it is supposed
to collect examples of how the intensions can be expressed: it is a collection of
all possible syntaxes for a language. To the best of our knowledge such an entity
has not yet been formally investigated, but if it also represented as a set, the
intension of the extension is an element of that set; otherwise it is still bound to
be an instance of ∨∧L. The resulting diagram is depicted on Figure 7 with the
decomposition, conformance and instantiation relations.

Since now we have ∧∧L to denote the constraints essential to the language
L, it should be the same for all related languages. Indeed, if the modelling
intent [17] is limited to this essence, and a grammar that respects it, it also
models all variants of languages closely without any regard to the choice of ∧∨L.
In other words, for µ′ = µ/∧∧L,

∨LT
µ′
←− G µ′

−→ ∨LC

This result agrees with the “shift in linguistical conformance” by Muller et
al [13] (when talking about mapping among models with the same intent) and
with the “constant functions all the way down” by Dowty et al [4] (when talking
about intensions of intensions). The final diagram is presented on Figure 8: a
“real” program can be encoded by a programmer as either text (conforming to
∧∨LT ) or a tree (conforming to ∧∨LC), and as long as the intension of the inten-
sion is preserved (PT

χ−→ ∧∧L), the languages stay same but different and valid
instances can be freely mapped in any direction. The same holds for mappings
between abstract syntax and concrete syntax, up to a homomorphism (such map-
pings often permute arguments and perform other component rearrangements).

4 Concluding remarks and related work

In short, we have proposed to consider four components of software languages:
intension-intensions (conceptual constraints to always conform to); extension-
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Fig. 7. The language L is decomposed (δ) into its intensional (∧L) and extensional
(∨L) parts. They are, in turn, decomposed in the same fashion. The extensional part ∨L
is a set, so the extension of the extension ∨∨L is the same set. However, the intension
of the extension ∧∨L represents structural constraints of the elements of the set, while
the intension of the intension ∧∧L represents linguistic constraints that refer to the
intensional language and not to its accidental representation. The extension of the
intension ∨∧L represents a model of possible syntactic representations of programs in
the language: it is modelled by a simple set, the particular syntax ∧∨L is an element
of that set, otherwise it is still bound there in an instance of (ι) relation.

extensions (sets of valid language instances in a given notation); intentions of
extensions (circumstantial constraints specific to the chosen syntax but not the
the language as such); extensions of intensions (models of possible syntaxes com-
patible with the language core), in a hope that it brings us closer to understand-
ing the nature of modelling languages and various artefacts related to them. In
previously existing work, languages are mostly considered either with a fixed
syntax or with two or three of them which are also fixed and claimed to be
related to different aspects of language processing. This work can serve as a
foundation for formal manipulation of languages with multiple syntaxes, or sys-
tems where “the same” language is claimed to be used across technical spaces
(ORM, parsing, convergence, etc).

For the sake of clarity and conciseness of notation, we have opted for the
use of commutative diagrams to represent megamodels instead of using any of
the existing megamodelling languages. We have adopted Favre’s symbols for re-
lations: µ as “models” or “representation of”; ε as “element of”, χ as “conforms
to”. Atkinson and Kühne did not have a shorthand notation so we used ιO for
“ontological instance of”, ιL for “linguistic instance of” and just ι for “instance
of” where the meaning is unknown or universal. We have adopted Montague no-
tation: ∧L for intensions and ∨L for extensions. We also took the liberty of using
JP K for denotations of single instances — in formal semantic theory denotation
is equated to extension but in the current state of multi-level metamodelling
we do not yet need to differentiate between ∧P and ∨P . However, in the future
research on multi-language modelling, we recommend to consider substituting
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Fig. 8. Each language shown — the textual language LT and the concrete tree lan-
guage LC — are decomposed (δ) into their intensions (∧Lx) and extensions (∨Lx),
which are in turn also decomposed into their intensions and extensions. The denota-
tion of a program (JP K) is modelled by two entities: the program text (PT ) and its
concrete parse tree (PC). They follow the same megapatterns: each Px conforms (χ)
to both the intension of the extension of the corresponding language (∧∨Lx) and the
intension of the intension of the language (∧∧Lx). Each Px is also an element (ε) of
the extension of the language (∨Lx). The intension of an extension (∧∨Lx) is an in-
stance (ι) of the extension of the intension (∨∧Lx), and in the simplest case also just
its element.

JP K with ∧P and using ∨P for the hypothetical set of all possible representations
of a program P .

The notion of commitment to grammatical structure was discussed by Klint,
Lämmel and Verhoef [10], and recently was elaborated by a megamodel of various
software language engineering artefact kinds such as parse trees, visual models,
lexical templates, etc, in the context of (un)parsing in a broad sense [18]. The
contribution of this paper to that trend was showing that concrete syntaxes are
ontological instances of the abstract syntax (more precisely, ∧∨L ι−→ ∨∧L). The
idea that a software language should be allowed to have different syntaxes while
staying essentially the same language, is not new but has always been rejected
by formalisations.

Atkinson [1], Bézivin [3], Favre [6], Gašević [7], Kühne [11], Muller [13] and
many others have made significant contributions to comprehension and refine-
ment of the processes of modelling, metamodelling and megamodelling. This
paper is an endeavour to contribute to that trend by making a yet another step
in improving the formalisations, as well as by providing concrete examples from
software and grammarware engineering, even when they seemed less suitable
to discuss ontological matters than the classic Lassie/Fido – Collie – Breed ex-
ample. We hope such results will both help to identify problems we can solve
in the future and bring less meta-minded modelling practitioners and language
engineers closer.
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Apart from the Fregean perspective on intensional logic, Montague consid-
ered a Russelian variant where the extension of the intension (called the “sense
denotation”) is not a fundamental concept [12]. It has proven to be less useful
to him, but in software language engineering this idea has never even been tried
yet.
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Abstract. This paper describes practices for multi-level modeling by
only using existing modeling frameworks that comply Meta-Object Fa-
cility (MOF). We design modeling patterns for achieving the multi-level
modeling methodologies on Eclipse Modeling Framework, and implement
the dataflow model by applying the patterns. Moreover, we attempt
to compare the patterns regarding the facilitation of developing both
our tool and plugins. We found Orthogonal Classification Architecture
(OCA) pattern is easier to develop our tool than powertypes pattern,
but regarding plugins for our tool, powertypes pattern can define model-
to-text transformation templates more simply than OCA pattern.

1 Introduction

Model-driven engineering (MDE) gains productivity of software developments
providing several powerful tools for designing, developing or verifying software.
Especially, model transformation technologies (i.e., model-to-model and model-
to-text) are important for facilitating agile software developments. For the model-
to-text transformation enables to generate executable source codes from a model,
developers can develop complex applications by using graphical editors.

There are various kinds of graphical editing tools for developing and exe-
cuting applications, e.g., Extract-Transform-Load [2, 5], Business Analytics [3]
and Workflow Management [4]. We also have been developing a graphical edit-
ing tool on a cloud platform for facilitating developments of big data processing
applications [18]. Figure 1 shows the web interface of our tool.

Many of the tools are based on modeling frameworks and provide automatic
generation features for executable source codes. However, extending models of
the tools tends to be difficult for third-party developers, and therefore, there have
been a few plugins published from developer communities. Nowadays, the meta-
models of graphical editing tools have to be easily extensible so that developers
can develop more plugins [16].

Meta-Object Facility (MOF)1 is a standard for MDE provided by Object
Management Group (OMG), and Eclipse Modeling Framework (EMF)2 is one

1 http://www.omg.org/mof/
2 https://eclipse.org/modeling/emf/
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Fig. 1. EMF-based graphical editing tool for developing and executing big data pro-
cessing.

of mature MOF-compliant modeling frameworks, and there are various toolkits
in the EMF community, such as Acceleo3, Query/View/Transformation (QVT)
Operational4 and ATL Transformation Language5. Those toolkits also conform
to or follow the OMG’s standards. In this paper, we attempt to achieve multi-
level modeling on EMF. EMF provides the Ecore metamodel, which is compati-
ble with Essential MOF, and tools for creating models that conform to the Ecore
metamodel.

One of the major drawbacks of EMF is that it is hard to define and use
a new metamodel located at the same level as the Ecore metamodel, because
EMF is basically adequate to create models and objects just based on the Ecore
metamodel. If we use our own metamodel, although it is obviously possible to
develop a proprietary tool based on it by using the code generation feature
of EMF [1, 19], the tool tends to force an unusual manner to developers, and
eventually, most of them may feel that “I do not want to use it.” This issue is
crucial for developing the ecosystem and the community of our tool.

In order to overcome the drawbacks of existing modeling frameworks, various
methodologies of multi-level modeling have been proposed such as Orthogonal
Classification Architecture (OCA) [6, 7, 9, 11], powertype-based meta-
modeling [13, 14] and deep instantiation [12, 17]. The methodologies can
provide simple solutions to design metamodels along with models and objects.
However, there is little consensus in the literature on fundamental multi-level
modeling concepts [10], and therefore, it is still difficult to determine to apply
them to industries. For now, multi-level models must be defined by only using ex-
isting MOF-compliant modeling frameworks, so we have to clarify a workaround
for that.

3 http://www.eclipse.org/acceleo/
4 http://www.eclipse.org/mmt/?project=qvto
5 https://eclipse.org/atl/
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EventData

+Input: Process

+Output: Process

+eventId: int

+timeStr: string
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+type: string

+value: string

AddTimestamp

+Input: Data

+Output: Data

+time: string

+millis: string

+storedIn: string

Duplication

+Input: Data

+Output: Data[]

TemporaryData

+Input: Process

+Output: Process

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

+timestamp: string

Output
Output

Output

Output[0]

Output[1]
Input Input

Input

Sensor data Add timestamp
temp

Copy data to datastores

time := timeStr
millis := millisStr

storedIn := timestamp

Fig. 2. Hierarchy of dataflow model.

This paper describes practices for achieving multi-level models on EMF. We
use a hierarchy of a dataflow model as an example model that is used on graphical
editing tools. We design multi-level modeling patterns on EMF, and implement
the dataflow model by applying the patterns. Moreover, we attempt to compare
the patterns regarding the facilitation of developing both our tool and plugins.

The remainder of this paper is organized as follows. Section 2 describes a
model of a graphical editing tool as our motivating example. Section 3 describes
patterns for multi-level modeling on EMF. In Sect. 4 we discuss the comparison
of the patterns, and our conclusions are presented in Sect. 5.

2 Motivating example: a dataflow model for graphical
editing tools

A typical graphical editing tool consists of a palette and a canvas as well as Fig.
1. The palette shows icons representing types of nodes, and the canvas is used
to define a diagram by putting a node of the type selected from the palette and
drawing an edge between nodes. By using such tool, we can easily develop a
data processing application as a flow diagram that consists of nodes and edges
representing icons and lines, respectively.

Figure 2 shows the hierarchy of the dataflow model that we want to design.
Layer M3 represents the original Ecore metamodel, and layer M2 represents the
metamodel of the dataflow model. Objects in layer M2 (i.e., Dataflow, Data and
Process) are instances of Class. An instance of Dataflow composes instances
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Fig. 3. OCA pattern.
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Fig. 4. Powertypes pattern.

of Data and Process, and represents how data is processed and the order of
execution in the processing methodologies as well as the definition in [15].

Layer M1 represents definitions of types and subtypes of Data and Process

that are displayed on the palette. Classes in layer M1 are instances of the
classes in layer M2 and have definitions of type names, input ports, output ports
and owned properties. In Fig. 2, Table and Model are instances of Data, and
AddTimestamp and Duplication are instances of Process. Moreover, EventData
and TemporaryData are subclasses of Table, and SVMModel is subclasses of
Model. Those subclasses define their own properties and data schemata for stor-
ing databases. A plugin created by a third-party developer defines a new instance
of Process in layer M1, i.e., a new type of nodes in the palette.

Layer M0 represents an instance of Dataflow edited on the canvas in Fig. 1.
Objects in layer M0 are instances of the objects in layer M1. Data node Sensor
data in layer M0 represents data that is produced and sent by sensors and has
the schema defined by EventData.

3 Multi-level modeling on EMF

Several multi-level modeling methodologies introduce a new concept of objects.
A clabject is an object that is both a class and an instance of another class [8].
Clabjects sometimes have a potency feature that represents the depth to which
an attribute can be instantiated [12] and is utilized in deep instantiation. In
order to achieve multi-level model by only using EMF, we consider that it is
difficult to introduce them on EMF, because applying those concepts obviously
needs to develop a new modeling editor.

We attempt to implement the dataflow model described in Sect. 2 by ap-
plying the following two methodologies: OCA and powertype-based meta-
modeling. Figure 3 and 4 show modeling patterns as workarounds for each
methodology.

3.1 Model applying OCA pattern

The OCA has two dimensions of model layers: linguistic layers and ontological
layers. In Fig. 3, L and O denotes linguistic layers and ontological layers, re-
spectively. Layer L0 contains the Ecore metamodel and class Element that is an
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Element

+id: string

+name: string

DefinitionElement InstanceElement

PropertyDefinition

+type: string

+defaultValue: string
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+value: string
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+category: string

PortDefinition
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+type: string
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Data
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Port

+index: int
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DataflowDataflowDefinition
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data

definition

input
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AddTimestamp

<<Definition>>

EventData

<<Definition>>
Sensor data

Add timestamp

instance-of

instance-of instance-of

instance-of

definition

definition

A data processing

instance-of

Dataflow

<<Definition>>

instance-of

definition

data

data
input

output

-- for instance objects of Data

context Data

inv DataHasDefinition: definition <> null

inv DataHasValidProperties:

definition.property->forAll(i | property->exists(definition = i))

inv DataHasValidFields:

definition.field->forAll(name <> null and type <> null)

-- for instance objects of Process

context Process

inv ProcessHasDefinition: definition <> null

inv ProcessHasValidProperties:

definition.property->forAll(i | property->exists(definition = i))

inv ProcessHasValidInputPorts:

definition.input->forAll(i | input->exists(definition = i))

inv ProcessHasValidOutputPorts:

definition.output->forAll(i | output->exists(definition = i))

...

Fig. 5. Dataflow model and excerpt of OCL constraints in OCA pattern.
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+id: string

+name: string

Data Process

Dataflow

data process

in

out

Model

EventData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

Table

Duplication
AddTimestamp

+time: string

+millis: string

+storedIn: string

in
out

in
outFirst

outSecond

Sensor data Add timestamp A data processing

instance-ofinstance-of

instance-of

SVMModel

context EClass

def: isA(typeName : String) : Boolean =

name = typeName or oclIsKindOf(EClass)

and oclAsType(EClass).eAllSuperTypes->exists(name = typeName)

-- for subclasses of Data

inv DataHasNoExtraProcessRefs:

isA(’Data’) implies eReferences->forAll(

eReferenceType.isA(’Process’) implies name.matches(’in|out’)

)

-- for subclasses of Process

inv ProcessHasValidInputPorts:

isA(’Process’) implies eReferences->forAll(

name.matches(’^in.*’) implies eReferenceType.isA(’Data’)

)

inv ProcessHasValidOutputPorts:

isA(’Process’) implies eReferences->forAll(

name.matches(’^out.*’) implies eReferenceType.isA(’Data’)

)

...

Fig. 6. Dataflow model and excerpt of OCL constraints in powertypes pattern.
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instance of class Class, for defining elements of ontological layers (O0 and O1)in
layer L1. Class DefinitionElement in layer O0 and class InstanceElement in
layer O1 defines the type and the instance of elements of the dataflow model,
respectively. Layer L2 contains definition objects and instance objects that are
instances of class DefinitionElement and InstanceElement, respectively.

We represent an ontological instantiation relationship by a reference to a
definition object. The instance object has a reference to the definition object,
and the correctness of the relationship between them is verified by constraints
written in Object Constraint Language (OCL).

Figure 5 shows the dataflow model that conforms to the OCA pattern. Class
Dataflow, Data, Process, Port and Property are instance classes, which are
subclasses of class InstanceElement, and all of them respectively have their
own definition classes, which are subclasses of class DefinitionElement. Ob-
ject Dataflow, EventData and AddTimestamp are definition objects, i.e., in-
stances of the definition classes. Object A data processing, Sensor data and
Add timestamp are instance objects, i.e., instances of the instance classes.

Examples of OCL constraints for instance objects of class Data and Process

are shown in the lower part of Fig. 5.

3.2 Model applying powertypes pattern

Powertype-based metamodeling introduces a powertype that is defined as
a type whose instances are types inheriting a subtype [14]. While in the original
idea, every object in layer M1 must be a clabject that is both an instance of a
powertype and a subclass of a subtype, we define an object in layer M1 of Fig.
4 just as an instance of a powertype, i.e., class Class, and use OCL constraints
for defining the relationship between the object and a subtype. We define that
the object is regarded as a genuine subclass of the subtype if it satisfies the OCL
constraints.

Figure 6 shows the dataflow model that conforms to the powertypes pat-
tern. As class Dataflow, Data and Process are subclasses of class Element,
the hierarchy of all classes are represented as inheritance relationships. Class
EventData, which is a subclass of class Table, has attributes that represent
data schema. Class AddTimestamp, which is a subclass of class Process, has at-
tributes that represent parameters of the process. Class AddTimestamp also has
an input port and an output port as references to class Table, which means that
it consumes and produces Table-typed data.

Object A data processing, Sensor data and Add timestamp are instances
of class Dataflow, EventData and AddTimestamp respectively.

Examples of OCL constraints for subclasses of class Data and Process are
shown in the lower part of Fig. 6.

4 Evaluation

We attempt to compare our modeling patterns, OCA and powertypes, re-
garding the facilitation of the following developments: developing our tool by
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Table 1. Definition of AddTimestamp.

Name Description

Input a single port that consumes a subclass of Table
Output a single port that produces a subclass of Table

time a formatted date string, e.g., ‘‘yyyy-MM-dd hh:mm:ss’’

millis an integer string of a millisecond value
storedIn a field name to which a timestamp value is assigned

ourselves and developing plugins for our tool by third-party developers. We con-
sider there are a lot of viewpoints regarding the facilitation, but we have not yet
completed the comprehensive evaluation from the viewpoints. In this paper, we
concentrate the following two viewpoints: model manipulation for our tool and
template description for plugins.

4.1 Model manipulation for our tool

Regarding the development of our tool, we focus on how to manipulate the
model on the methodology. The OCA pattern can utilize the code generation
features of EMF, because we do not need to extend metamodels in layer L0 of
Fig. 3. All objects that are added by plugins for new types of data or processes
are located in layer O0, and they can be manipulated by using automatically
generated codes. On the other hand, when we apply the powertypes pattern,
we have to extend the Ecore metamodel dynamically, so it is difficult to utilize
the code generation. We have to manipulate objects in layer M0 by only using
the default Ecore APIs that are not intuitive and troublesome to manipulate.

4.2 Template description for plugins

Regarding the development of plugins, we focus on the description of the model-
to-text transformation template for process AddTimestamp in Fig. 1, 2, 5 and 6.
Table 1 shows the definition of process AddTimestamp. The process produces a
record that is appended a new field named as the string value of storedIn. The
new field is assigned a string value of a timestamp that is calculated by using
time, and millis of an original record.

Now, we consider a template for producing the following SQL-like processing
query.

insert into <Output> select <Field of Input>[,<Field of Input> ...],

UDF.timestamp(<time>, <millis>) as <storedIn> from <Input>

We use Acceleo, which is an implementation of MOFM2T6, for generating
the query. By applying the OCA pattern, the template can be described as
follows.

6 http://www.omg.org/spec/MOFM2T/
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[template public generate(aProcess : Process) overrides generate

? (definition.name=’AddTimestamp’)]

insert into [output->any(definition.name=’out’).data.name/]

select [for (input->any(definition.name=’in’)

.data.definition.field) separator(’,’)][name/][/for]

, UDF.timestamp(

[property->any(definition.name=’time’).value/],

[property->any(definition.name=’millis’).value/]

) as

[property->any(definition.name=’storedIn’).value/]

from [input->any(definition.name=’in’).data.name/]

[/template]

By applying the powertypes pattern, the template can be described as
follows.

[template public generate(aProcess : AddTimestamp) overrides generate]

insert into [out.name/]

select [for (_in.eClass().eAttributes) separator(’,’)][name/][/for]

, UDF.timestamp([time/],[millis/]) as [storedIn/] from [_in.name/];

[/template]

By contrasting those descriptions, the powertypes pattern can describe the
template more simply than the OCA pattern. This is because objects in layer
M1 of Fig. 4 are just models of the Ecore metamodel, so we can directly access
the attribute values of their instances. This advantage is valid not only Acceleo
but also other EMF-based toolkits, and the fact indicates that the powertypes
pattern is more usable by following the existing common manners of MOF-
compliant modeling frameworks.

5 Conclusion

In this paper, we described the practices for achieving multi-level modeling by
only using EMF. We defined modeling patterns of the following two method-
ologies: OCA and powertype-based metamodeling. We implemented the
dataflow model for graphical editing tools by applying the patterns. By compar-
ing the implementations on the two methodologies, We found the OCA pattern
is easier to develop our tool than the powertypes pattern, but regarding plugins
for our tool, the powertypes pattern can define model-to-text transformation
templates more simply than the OCA pattern.

We consider we have to achieve the ease of developing plugins for our tool
rather than the ease of developing our tool itself, because increasing the number
of plugins can benefit our tool and our communities. Although regarding the
simplicity of template descriptions, the powertypes pattern is a better choice
than the OCA pattern, further evaluations from other viewpoints are needed
for determining the best pattern.

We hope that the multi-level modeling methodology is standardized ade-
quately following the existing common manners of MOF-compliant modeling
frameworks.

51



References

1. Metamodeling with EMF: Generating concrete, reusable Java snippets, http://
www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/

2. Pentaho Data Integration, http://community.pentaho.com/projects/

data-integration/

3. RapidMiner, https://rapidminer.com/
4. RunMyProcess, https://www.runmyprocess.com/en/
5. Talend Data Integration, http://www.talend.com/products/data-integration
6. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel lan-

guage engineering. Software Engineering, IEEE Transactions on 35(6), 742–755
(Nov 2009)

7. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
Software, IEEE 20(5), 36–41 (Sept 2003)

8. Atkinson, C.: Meta-modelling for distributed object environments. In: Enterprise
Distributed Object Computing Workshop [1997]. EDOC’97. Proceedings. First In-
ternational. pp. 90–101. IEEE (1997)

9. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering
environment. In: Proceedings of the 2nd International Master Class on Model-
Driven Engineering: Modeling Wizards. ACM (2012)

10. Atkinson, C., Gerbig, R., Kühne, T.: Comparing multi-level modeling approaches.
In: MULTI 2014–Multi-Level Modelling Workshop Proceedings. pp. 53–61 (2014)

11. Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In: Soft-
ware Language Engineering, pp. 266–275. Springer (2011)

12. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: UML
2001The Unified Modeling Language. Modeling Languages, Concepts, and Tools,
pp. 19–33. Springer (2001)

13. Henderson-Sellers, B., Gonzalez-Perez, C.: The rationale of powertype-based meta-
modelling to underpin software development methodologies. In: Proceedings of
the 2nd Asia-Pacific Conference on Conceptual Modelling - Volume 43. pp. 7–16.
APCCM ’05, Australian Computer Society, Inc., Darlinghurst, Australia, Australia
(2005)

14. Henderson-Sellers, B., Gonzalez-Perez, C.: On the ease of extending a powertype-
based methodology metamodel. Meta-Modelling and . WoMM 2006 pp. 11–25
(2006)

15. Kimura, K., Nomura, Y., Kurihara, H., Yamamoto, K., Yamamoto, R.: Multi-query
unification for generating efficient big data processing components from a dfd. In:
Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on. pp.
260–268. IEEE (2013)

16. Kimura, K., Nomura, Y., Tanaka, Y., Kurihara, H., Yamamoto, R.: Runtime Com-
position for Extensible Big Data Processing Platforms. In: 2015 IEEE 8th Inter-
national Conference on Cloud Computing. pp. 1053–1057 (2015)

17. Neumayr, B., Schrefl, M.: Abstract vs concrete clabjects in dual deep instantiation.
In: MULTI 2014–Multi-Level Modelling Workshop Proceedings. pp. 3–12 (2014)

18. Nomura, Y., Kimura, K., Kurihara, H., Yamamoto, R., Yamamoto, K., Tokumoto,
S.: Massive event data analysis and processing service development environment
using dfd. In: Services (SERVICES), 2012 IEEE Eighth World Congress on. pp.
80–87 (2012)

19. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)

52



An algebraic instantiation technique
illustrated by multilevel design patterns

Zoltan Theisz1 and Gergely Mezei2

1 Huawei Design Centre, Ireland,
zoltan.theisz@huawei.com

2 Budapest University of Technology and Economics, Budapest, Hungary,
gmezei@aut.bme.hu

Abstract. Multi-level meta-modeling hinges on the precise conceptual-
ization of the instantiation relation between elements of the meta-model
and the model. In this paper, we propose a new algebraic instantiation
approach, the Dynamic Multi-Layer Algebra. The approach aims to pro-
vide a solid algebraic foundation for multi-level meta-modeling, which is
easily customizable through different bootstrap elements and a dynamic
instantiation procedure. The paper describes the major parts of the ap-
proach and also demonstrates their modeling capabilities by covering
some of the most-often used design patterns for multi-level modeling.

Keywords: multi-level meta-modeling, dynamic instantiation, design
patterns

1 Introduction

Multi-level meta-modeling is enjoying a renaissance thanks to the dynamic mod-
eling needs of contemporary complex software systems. For example, next gen-
eration telecom management systems set new challenges towards centralized,
model-based extendable network element repositories that must be able to be
used both in design- and run-time. The model repository must be open-ended
with respect to complex types: both through gradual extension and the introduc-
tion of new elements. Therefore, many well-known meta-modeling patterns such
as type-object, dynamic features or the dynamic auxiliary domain concepts [5]
frequently reappear there. Although potency-based meta-modeling can handle
these situations, alternative formalisms may simplify their modeling by allowing
more dynamism in the instantiation.

In this paper, we aim to illustrate how such an alternative multi-level meta-
modelling approach, referred to as Dynamic Multi-Layer Algebra (DLMA) [7],
can be applied equally well to those multi-level meta-modelling patterns. The
paper is structured as follows: Section 2 introduces the technical background
of multi-level modeling, then, in Section 3, we introduce our DLMA approach
in some detail. Next, in Section 4, the approach is illustrated by its targeted
application to those three well-know multi-level meta-modeling design patterns
that are often observed in real-life applications as analyzed in [5]. Finally, Section
5 concludes the paper with our future research directions.
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2 Background

Instantiation lies at the heart of any metamodel-based model development tech-
nique. Instantiation is the key operation that defines the semantic linkage be-
tween the meta-model and the model level. This linkage can be ontological or
linguistic, or even both at the same time, depending on the actual methodol-
ogy and the available tools used for meta-modelling. Standard approaches prefer
the linguistic interpretation which results in a two level architecture, where the
metamodel is built first and then it is instantiated into models. This archi-
tecture has been implemented, for example, in Eclipse Modelling Framework
(EMF) [1], which enforces the definition of the meta-model within one single
meta-level by relying on natively available meta-modeling facilities such as type
definition, inheritance, data types, attributes and operations. However, it is hard
to modify the meta-model once instance models have been built, thus explicit
meta-modeling of an ontological interpretation of instantiation is also necessary.

With only linguistic interpretation enforced, the resulting multi-level models
may become ad-hoc and usually involve accidental complexity. In order to avoid
mixed ontological and linguistic instantiation and to overcome the limits set
by the two-meta-level architecture, pure multi-level meta-modeling approaches
have been put in action. These techniques can distinguish between two kinds of
instantiation: shallow instantiation means that information is used at the imme-
diate instantiation level, while deep instantiation allows to define information on
the deeper modeling levels as well. If we need each meta-level to be instantiable,
there must be some means to add new attributes and operations to the existing
models. There are two options: one can either bring the source of the informa-
tion along through all model levels (and use it where it may be needed), or one
can add the source of that information directly to the model element where it is
actually used. The concept of potency notion and dual field notion [3] [2] were
introduced as solutions of the problem. Here, elements within a model may not
only be instances of some element in the meta-model above, but, at the same
time, they may also serve as types to some other elements in the meta-level
below. In other words, one assumes the existence of an unrestricted meta-model
building facility that is controlled only by the explicit definition of potency limits
allowing a preset number of meta-levels an element can be instantiated at. In
effect, there are non-negative numbers attached to all model elements that are
decremented by each instantiation until they reach 0. In some sense, this solution
is both too liberal and too restrictive at the same time: too liberal because at
each meta-level the full potential of meta-model building facilities is available,
but it is also too restrictive because the modeler must know in advance on which
level the information will be needed and set a potency value accordingly.

Although potency allocation at end-points can be consistently extended to
connections as well [6], next generation telecom management systems often re-
quire more flexibility vis-a-vis setting in advance the allowed number of multi-
levels and less universality with respect to the permitted modeling facilities avail-
able at each modeling level. In other words, scheduled and gradual instantiation
of information modeling is necessary. Under gradual instantiation we mean the
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instantiation of some attributes and operations of the meta definitions, and not
necessarily all of them in one single go. This added dynamicity in the instanti-
ation is the main driver of our approach. Although our ASM formalism differs
from the set theoretical foundation of potency based approaches we believe that
it is at least so expressive for practical multi-level meta-modelling and simplifies
the implementation of the solution. In order to prop up this conjecture three
of the most frequent design patterns for multi-level meta-modelling [5] will be
rewritten in DMLA.

3 Dynamic Multi-Layer Algebra

In this section, we shortly introduce our Abstract State Machines (ASM, [4])
based multi-level instantiation technique. Dynamic Multi-Layer Algebra (DMLA)
consists of three major parts: The first part defines the modeling structure and
defines the ASM functions operating on this structure. In essence, the ASM for-
malism defines an abstract state machine and a set of connected functions that
specify the transition logic between the states. The second part is the initial
set of modeling constructs, built-in model elements (e.g. built-in types) that are
necessary to make use of the modeling structure in practice. This second part is
also referred to as the bootstrap of the algebra. Finally, the third part defines
the instantiation mechanism. We have decided to separate the first two parts
because the algebra itself is structurally self-contained and it can also work with
different bootstraps. Moreover, the a concrete bootstrap selection seeds the con-
crete meta-modeling capability of the generic DMLA, which we consider as an
additional benefit compared to the unlimited and universal modeling capability
potency supports at all meta-levels. In effect, the proper selection of the boot-
strap elements determines the later expressibility of DMLA’s modeling capability
on the lower meta-levels.

3.1 Data representation

In DMLA, the model is represented as a Labeled Directed Graph. Each model
element such as nodes and edges can have labels. Attributes of the model ele-
ments are represented by these labels. Since the attribute structure of the edges
follows the same rules applied to nodes, the same labeling method is used for
both nodes and edges. Moreover, for the sake of simplicity, we use a dual field
notation in labeling that represents Name/Value pairs. In the following, we refer
to a label with the name N of the model item X as XN .

We define the following labels: (i) XName (the name of the model element),
(ii) XID (a globally unique ID of the model element), (iii) XMeta (the ID of the
metamodel definition), (iv) XCardinality (the cardinality of the model element,
which is applied during the instantiation as an explicit constraint imposed on
the number of instances the model element may exist in within the instance
model), (v) XV alue (the value of the model element is only used in the case of
attributes!), (vi) XAttributes (a list of attributes)
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Due to the complex structure of attributes, we do not represent them as
atomic data, but as a hierarchical tree, where the root of the tree is always
the model item itself. Nevertheless, we handle attributes as if they were model
elements. More precisely, we create virtual nodes from them. Virtual here means
that these nodes do not appear as real (modeling) nodes in diagrams but – from
the algebra’s formal point of view – they behave just like usual model elements.
This solution allows us to handle attributes and model elements uniformly and
avoid multiplication of labeling and ASM functions. Since we use virtual nodes,
all the aforementioned labels are also used for them: attributes have a name,
an ID, a reference to their meta definition, a cardinality and they may have
attributes as well. Moreover, they may also have a value. By the way, this is the
reason why we have defined the Value label.

After the structure of the modeling elements has been briefly introduced, we
now define the Dynamic Multi-Layer Algebra itself.

Definition 1. The superuniverse |A| of a state A of the Dynamic Multi-Layer
Algebra consists of the following universes: (i) UBool (containing logical values
{true/false}), (ii) UNumber (containing rational numbers {Q} and a special sym-
bol representing infinity), (iii) UString (containing character sequences of finite
length), (iv) UID (containing all the possible entity IDs), (v) UBasic (containing
elements from {UBool ∪ UNumber ∪UString ∪UID}).

Additionally, all universes contain a special element, undef, which refers to an un-
defined value. The labels of the entities take their values from the following uni-
verses: (i) XName (UString), (ii) XID (UID), (iii) XMeta (UID), (iv) XCardinality

([UNumber,UNumber]), (v) XV alue (UBasic), (vi) XAttrib (UID[]).
Note that we modeled cardinality as a pair of lower and upper limits. Ob-

viously, this representation could be extended to support ranges (e.g. “1..3”) as
well. The label Attrib is an indexed list of IDs, which refers to other entities.

Now, let us have an example: BookID = 42, BookMeta= 123, BookCardinality

= {0, inf}, BookV alue = undef , BookAttrib = [] The definition formalizes the
entity Book with its ID of 42 and the ID of its metamodel being 123. Note that
in the algebra, we do not require that the universe of IDs uses the universe of
natural numbers, this is only one possible implementation we use for illustration.
In effect, the only requirement imposed on the universe is that it must be able
to identify its elements uniquely. Now, one can instantiate any number of the
Book entities in the instance model, which will have no components and values
defined. For the sake of legibility, we will use a more compact notation from now
on without loosing the original semantics:

{"Book", 42, 123, [0, inf], undef, []}.

3.2 ASM functions

Functions are used to define rules to change states in ASM. In DMLA, we rely on
shared and derived functions. The current attribute configuration of a model item
is represented using shared functions. The values of these functions are modified
either by the algebra itself, or by the environment of the algebra (for example
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by the user). Derived functions represent calculations, they cannot change the
model, they are only used to obtain and restructure existing information. Thus,
derived functions are used to simplify the description of the abstract state ma-
chine. The vocabulary

∑
of the Dynamic Multi-Layer Algebra formalism is as-

sumed to contain the following characteristic shared functions: (i) Name(UID):
UString, (ii) Meta(UID): UID, (iii) Card(UID): [UNumber,UNumber], (iv) At-
trib(UID, UNumber): UID, (v) Value(UID): UBasic.

The functions are used to access the values stored in the corresponding
label. Note that the functions are not only able to query the requested in-
formation, but they can also update the information. For example, one can
update the meta definition of an entity by simply assigning a value to the
Meta function: Meta(IDConcreteObject) : = IDNewMetaDefinition. Moreover, there
are two derived functions: (i) Contains(UID,UID): UBool and (ii) Derive-
From(UID,UID): UBool. The first function takes an ID of an entity and the
ID of an attribute and checks if the entity contains the attribute. The second
function checks whether the entity identified by the first parameter is an instan-
tiation, also transitively, of the entity specified by the second parameter. The
detailed, precise definition of the above functions are reported in [7].

3.3 Bootstrap mechanism

The aforementioned functions make it possible to query and change the model.
However by only these constructs, it is very hard to use the algebra since it
lacks the basic, built-in modeling constructs. For example, entities are required
to represent the basic types, otherwise one cannot use the label Meta when it
refers to a string because the label is supposed to take its value from UID and not
from UString. To draw a parallel, functions are like empty hardware components.
They are useless unless an operation system to invigorates the system.

In DMLA, there is no universal setup for this initial set of modeling con-
structs. For example, one can restrict the usage of basic types to an absolute
minimum, or one can extend them by allowing technology domain or meta-
modeling specific types. Also, meta-modeling constructs such as attribute injec-
tion or inheritance may be defined explicitly here. Using our previous analogy:
we can install different operating systems on our hardware for different purposes.
It is worth mentioning that the bootstrap and the instantiation mechanism can-
not be defined independently of each other. When an entity is being instantiated
there are constructs to be handled in a special way. For example, we can check
whether the value of an attribute violates the type constraints of the meta-model
only if the algorithm can find and use the basic type definitions. The bootstrap
presented in this paper provides a practically useful minimal set of constructs,
however that can be freely modified if needed without changing the foundational
algebra. The bootstrap has two main parts: basic types and principal modeling
entities.

The built-in types of the DMLA are the following: Basic, Bool, Number,
String, ID. All types refer to a value in the corresponding universe. In the boot-
strap, we define an entity for each of these types, for example we create an
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entity called Bool, which will be used to represent Boolean type expressions.
Types Bool, Number, String and ID are inherited from Basic. Besides the basic
types, we also define three principal entities: Attribute, Node and Edge. They act
as the root meta elements of attributes, nodes and edges, respectively. All three
principal entities refer to themselves by meta definition (more precisely, they are
self-referring among themselves). Thus, for example, the meta of Attribute is the
Attribute entity itself.

{"Attribute",IDAttr,IDAttr,[0,inf],undef,

[{"Attributes",IDAttrs,IDAttr,[0,inf],undef,[]}]

}

We should also mention here that attributes are not only used as simple data
storage units, but also for creating annotations that are to be processed by
the instantiation. Similarly to basic types, we can define special attributes with
specific meaning. By adding these annotational attributes to entities, we can fine-
tune their handling. We define three annotation attributes: AttribType, Source
and Target. AttribType is used as a type constraint to validate the value of the
attribute in the instances. The Value label of AttribType specifies the type to be
used in the instance of the referred attribute. Using AttribType and setting its
Value field are mandatory if the given attribute is to be instantiated. AttribType
is only applied for attributes.

{"AttribType",IDAttrT,IDAttr,[0,1],undef,[

{"AType",IDAType,IDAttrT,[0,1],IDID,[]}

]}

Source and Target are used both as type constraints and data storage units to
store the source and target node of an edge. The constraint part restricts which
nodes can be connected by the edge, while the data storage contains its current
value. The constraint is expressed by AttribType, while the actual data is stored
in the Value field. The complete definition of the boostrap is presented in [7].

3.4 Dynamic instantiation

Based on the structure of the algebra and the bootstrap, we can represent our
models as states of DMLA. Now, we will discuss the instantiation procedure that
takes an entity and produces a valid instance of it. During the instantiation, one
can usually create many different instances of the same type without violating
the constraints set by the meta definitions. Most functions of the algebra are
defined as shared, which means that they allow manipulation of their values
also from outside of the algebra. However, the functions do not validate these
manipulations because that would result in a considerably complex exercise.
Instead, we distinguish between valid and invalid models, where validity checking
is based on formulae describing different properties of the model. We also assume
that whenever external actors change the state of the algebra, the formulae are
evaluated. The complete definition of validation formulae is presented in [7].

The instantiation process is specified via validation rules that ensure that if
an invalid model may result from an instantiation, it is rejected and an alterna-
tive instantiation is selected and validated. The only constraint imposed on this
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procedure is that at least one instantiation step (e.g. instantiating an attribute,
or model element) must succeed in each step. The procedure consists of instruc-
tions that involves a selector and an action. We model these instructions as a
tuple {λselector, λaction} with abstract functions. The function λselector takes an
ID of an entity as its parameter and returns a possibly empty list of IDs referring
to the selected entities. The function λaction takes an ID of an entity and exe-
cutes an action on it. The actions λaction must invoke only functions previously
defined for the ASM. Hence, the functions λselector and λaction can be defined
as abstract, which allows us to treat them as black boxes. Also, the operations
can be defined a priori in the bootstrap similar to attributes.

4 Multi-level Modeling with DMLA

In our opinion, the most effective way to demonstrate the applicability of DMLA
to multi-level meta-modeling problems is through the reproduction of some of
the reoccurring practical meta-modeling patterns reported in [5]. DMLA is a
multi-level modeling approch, thus we focus only on the potency based formal-
ism of those design patterns without any contemplation on their structure or
benefits. Hence, the potency based definition of the those modeling patterns are
copied verbatim from [5] and their equivalent DLMA constructs are produced in
parallel. Also, the correspondence and/or potential differences between the two
multi-level modeling formalisms are briefly explained by the various examples.

4.1 Type-Object pattern

The pattern serves to dynamically add both types and instances to the model.
The pattern is broadly applied in network management systems where new de-
vice types may be added to the network on-demand, in an ad-hoc fashion, and
those types serve to facilitate the management of their instances.

The example below shows the gradual binding of attributes in both type and
object level. While potency @1 indicates that vat must take its value in the next
meta-level, @2 allows price to get its value after another meta-level jump.

The DMLA formalism defines Product as a Node instance with two Attributes
whose value types are defined both as Numbers. Then, during the first instanti-
ation Attribute vat is instantiated to 4.0, which is followed by the instantiation
of price to 35. Since no further instantiation is possible the GoF object is ready.

4.2 Dynamic features

The pattern serves to dynamically add new attributes to a type which also be-
come part of each instance of the type. The pattern is broadly applied in network
management systems where existing device types may be extended by new fea-
tures on-demand, in an ad-hoc fashion, and those features are automatically
made manageable on all the corresponding instances.
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Level 2:

{"Product",IDProduct,IDNode,[0,inf],undef,

[

{"vat", IDvat,IDAttribute,[1,1],undef,

[{"vatType",IDvatT,IDAttribType,

[0,1], IDNumber,[]}]

},

{"price",IDprice,IDAttribute,[1,1],undef,

[{"priceType",IDpriceT,IDAttribType,

[0,1],IDNumber,[]}]

}

]}

Level 1:

{"Book",IDBook,IDProduct,[0,inf],undef,

[

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDpriceC,IDAttribute,[1,1],undef,

[

{"priceType",IDpriceT,IDAttribType,

[0,1],IDNumber,[]}

]}

]}

Level 0:

{"GoF",IDBookC,IDBook,[0,inf],undef,

[

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDpriceC,IDprice,[1,1],35,[]},

]}

Fig. 1. The Type-Object pattern

The example below shows the addition of attribute pages to Book and its
later instantiation within GoF. The DMLA formalism defines Product as a Node
instance and further enables the potential addition of an arbitrary number of
attributes in it. Book introduces the attribute pages and binds its type to Num-
ber. It also shuts down the possibility to append more attributes by setting the
cardinality of Attribute to zero. Finally, within GoF, the pages takes its value
as 349.

Similar to the type-object pattern, DMLA can correctly replicate the original
potency example. Moreover, it provides the possibility to remove attributes by
setting their cardinality to 0. This feature derives from the formal ASM definition
of DMLA thanks to the explicit representation of cardinalities there. Hence, even
though an attribute may be allowed at some position by its structural definition,
it cannot be instantiated if the related upper cardinality is later set to 0.
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Level 2:

{"Product",IDProduct,IDNode,[0,inf],undef, [

{"vat", IDvat,IDAttribute,[1,1],undef,

[{"vType",IDvatT,IDAttribType,[0,1],

IDNumber,[]}]

},

{"price",IDprice,IDAttribute,[1,1],undef,

[{"pType",IDpriceT,IDAttribType,[0,1],

IDNumber,[]}]

},

{"Attribs",IDAF,IDAttribute,[0,inf],undef,[]}

]}

Level 1:

{"Book",IDBook,IDProduct,[0,inf],undef,[

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDprice,IDAttribute,[1,1], undef,

[{"priceType",IDpriceT,IDAttribType,

[0,1],IDNumber,[]}]

},

{"pages",IDpage,IDAttribute,[1,1],undef,

[{"pType",IDpageT,IDAttribType,[0,1],

IDNumber,[]}]

}

]}

Level 0:

{"GoF",IDBookC,IDBook,[0,inf],undef, [

{"vat",IDvatC,IDvat,[1,1],4,[]},

{"price",IDpriceC,IDprice,[1,1],35,[]},

{"pages",IDpageC,IDpage,[1,1],349,[]},

]}

Fig. 2. Dynamic features

4.3 Dynamic auxiliary domain concepts

The pattern serves to dynamically add new entities to a type whose instances will
be correctly related to the instance of the type. Also, the new entities may have
attributes and further related entities. The pattern is broadly applied in network
management systems where new network concepts are added to device types
based on network technology evolution, and those concepts and their instances
automatically become part of the management system. Due to the page limits
only an excerpt of the DLMA representation of the full design pattern is shown
here. In essence, this design pattern is a mixture of the previous two with the
extension that the meta-model must provide a possibility to inject new Nodes
and Edges at will. Therefore, a ”root container” element, let us call it Domain,
is to be added to the original bootstrap.
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{"Domain", IDDomain, IDNode, [0, inf], undef,[

{"Nodes", IDnodes, IDNode, [0,inf], undef, [ ]},

{"Edges", IDedges, IDEdge, [0,inf], undef, [ ]}

]}

Then, arbitrary domain concepts can be introduced dynamically into Domain
until the model is ready as

... {"authors", IDauthors, IDEdge, [0,inf], undef, [

{"Source", IDautSrc, IDSrc, [1,1], undef, [

{"SType",IDSType,IDAttribType,[0,1],IDBook,[ ]}]},

{"Target", IDautTrg, IDTrg, [1,1], undef, [

{"TType",IDTType,IDAttribType,[0,1],IDAuthor,[ ]}]}, ...

5 Conclusion and Future Work

We have applied our novel multi-level meta-modeling approach, DLMA, to three
well-known design patterns for deep meta-modeling. During this exercise, our im-
mediate purpose was to illustrate the expressivity of DLMA by rewriting these
well-known design patterns that were already published [5] in a mainstream
multi-level modeling formalism. Our solution seems to allow higher level of dy-
namism in instantiation than those existing solutions do, thus it offers a more
implementation ready formalisation of instantiation. Moreover, DMLA enables
to use different bootstrap alternatives, which may ultimately recreate the full
flexibility of state-of-the-art meta-model building facilities modeling profession-
als of particular technical domains would need. Hence, our concrete goal is to
implement the presented approach and to investigate different bootstraps (e.g.
adding operations, association classes) to validate the full capability of the ap-
proach.
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