
A Divide-And-Conquer-Method for Computing Multiple Conflicts for Diagnosis

Kostyantyn Shchekotykhin1 and Dietmar Jannach2 and Thomas Schmitz2
1Alpen-Adria University Klagenfurt, Austria

e-mail: kostyantyn.shchekotykhin@aau.at
2TU Dortmund, Germany

e-mail: {firstname.lastname}@tu-dortmund.de

Abstract
In classical hitting set algorithms for Model-
Based Diagnosis (MBD) that use on-demand con-
flict generation, a single conflict is computed
whenever needed during tree construction. Since
such a strategy leads to a full “restart” of the
conflict-generation algorithm on each call, we
propose a divide-and-conquer algorithm called
MERGEXPLAIN which efficiently searches for
multiple conflicts during a single call.
The design of the algorithm aims at scenarios in
which the goal is to find a few leading diagnoses
and the algorithm can – due to its non-intrusive
design – be used in combination with various un-
derlying reasoners (theorem provers). An em-
pirical evaluation on different sets of benchmark
problems shows that our proposed algorithm can
lead to significant reductions of the required diag-
nosis times when compared to a “one-conflict-at-
a-time” strategy.

1 Introduction
In Model-Based Diagnosis (MBD), the concept of conflicts
describes parts of a system which – given a set of observa-
tions – cannot all work correctly. Besides MBD, the calcu-
lation of minimal conflicts is a central task in a number of
other AI approaches [1]. Reiter [2] showed that the minimal
hitting sets of conflicts correspond to diagnoses, where a di-
agnosis is a possible explanation why a system’s observed
behavior differs from its expected behavior. He used this
property for the computation of diagnoses in the breadth-
first hitting set tree (HS-tree) diagnosis algorithm.

Over time, the principle of this MBD approach was used
for a number of different diagnosis problems such as elec-
tronic circuits, hardware descriptions in VHDL, program
specifications, ontologies, and knowledge-based systems [3;
4; 5; 6; 7]. A reason for the broad utilization of hitting set
approaches is that its principle does not depend on the un-
derlying knowledge representation and reasoning technique,
because only a general Theorem Prover (TP) – a component
that returns conflicts – is needed.

The implementation of a TP can be done in different
ways. First, the conflict detection can be implemented as
a reasoning task, e.g., by modifying a consistency check-
ing algorithm [8; 9]. Second, “non-intrusive” conflict de-
tection techniques can be used with a variety of reasoning

approaches, since they require only a very limited reasoning
functionality like consistency or entailment checking with-
out knowing the internals of the reasoning algorithm. Such
methods can benefit from the newest improvements in rea-
soning algorithms, such as incremental solving, heuristics,
learning strategies, etc., without any modifications.

A non-intrusive conflict detection algorithm which has
shown to be very efficient in different application scenar-
ios is Junker’s QUICKXPLAIN [10] (QXP for short) which
was designed to find a single minimal conflict based on a
divide-and-conquer strategy. The algorithm was originally
developed in the context of constraint problems, but since
its method is independent of the underlying reasoner, it was
used in several of the hardware and software diagnosis ap-
proaches mentioned above.

In many classical hitting set based approaches, conflicts
are computed individually with QXP during HS-tree con-
struction when they are required, as in many domains not
all conflicts are known in advance [11]. This, however, has
the effect that QXP has to be “restarted” with a slightly dif-
ferent configuration whenever a new conflict is needed.

In this paper, we propose MERGEXPLAIN (MXP for
short), a divide-and-conquer algorithm which searches for
multiple conflicts during a single decomposition run. Our
method is built upon QXP and is therefore also non-
intrusive. The basic idea behind MXP is that (a) the early
identification of multiple conflicts can speed up the overall
diagnosis process, e.g., due to better conflict “reuses” [2],
and that (b) we can identify additional conflicts faster when
we decompose the original components into smaller subsets
with the divide-and-conquer strategy of MXP.

The paper is organized as follows. After a problem char-
acterization in Section 2, we present the details of MXP in
Section 3 and discuss the properties of the algorithm. Sec-
tion 4 presents the results of an extensive empirical evalua-
tion using various diagnosis benchmark problems. Previous
work is finally discussed in Section 5.

2 Preliminaries
2.1 The Diagnosis Problem
We use the definitions of [2] to characterize a system, diag-
noses, and conflicts.

Definition 1 (System). A system is a pair (SD, COMPS)
where SD is a system description (a set of logical sentences)
and COMPS represents the system’s components (a finite set
of constants).

Proceedings of the 26th International Workshop on Principles of Diagnosis

3

A diagnosis problem arises when a set of logical sen-
tences OBS, called observations, is inconsistent with the
normal behavior of the system (SD, COMPS). The correct
behavior is represented in SD with an “abnormal” predicate
AB/1. That is, for any component ci ∈ COMPS the literal
¬AB(ci) represents the assumption that the component ci
behaves correctly.
Definition 2 (Diagnosis). Given a diagnosis problem (SD,
COMPS, OBS), a diagnosis is a minimal set ∆ ⊆ COMPS such
that SD ∪ OBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ COMPS\∆}
is consistent.

A diagnosis therefore corresponds to a minimal subset of
the system components which, if assumed to be faulty (and
thus behave abnormally) explain the system’s behavior, i.e.,
are consistent with the observations.

Two general classes of MBD algorithms exist. One relies
on direct problem encodings and the aim is often to find one
diagnosis quickly, see [12; 13; 14]. The other class relies on
the computation of conflicts and their hitting sets (see next
section). Such diagnosis algorithms are often used when the
goal is to find multiple or all minimal diagnoses. In the con-
text of our work, techniques of the second class can imme-
diately profit when the conflict generation process is done
more efficiently.

2.2 Diagnoses as Hitting Sets
Finding all minimal diagnoses corresponds to finding all
minimal hitting sets (HS) of all existing conflicts [2].
Definition 3 (Conflict). A conflict CS for (SD, COMPS,
OBS) is a set {c1, . . . , ck} ⊆ COMPS such that SD ∪ OBS

∪{¬AB(ci) | ci ∈ CS} is inconsistent.
Assuming that all components of a conflict work correctly

therefore contradicts the observations. A conflict CS is min-
imal, if no proper subset of CS is also a conflict.

To find the set of all minimal diagnoses for a given prob-
lem, [2] proposed a breadth-first HS-tree algorithm with tree
pruning and conflict reuse. A correction to this algorithm
was proposed by Greiner et al. which uses a directed acyclic
graph (DAG) instead of the tree to correctly deal with non-
minimal conflicts [15]. Our work, however, does not de-
pend on this correction as QXP as well as our proposed
MXP method always return minimal conflicts. Apart from
this, a number of algorithmic variations were suggested
in the literature which, for example, use problem-specific
heuristics [16], a greedy search algorithm, or apply paral-
lelization techniques [17], see also [18] for an overview.

2.3 QUICKXPLAIN (QXP)
QXP was developed in the context of inconsistent constraint
satisfaction problems (CSPs) and the computation of expla-
nations. E.g., in case of an overconstrained CSP, the prob-
lem consists in determining a minimal set of constraints
which causes the CSP to become unsolvable for the given
inputs. A simplified version of QXP [10] is shown in Al-
gorithm 1. The rough idea of QXP is to apply a recursive
procedure which relaxes the input set of faulty constraints
C by partitioning it into two sets C1 and C2 (line 6). If C1
is a conflict the algorithm continues partitioning C1 in the
next recursive call. Otherwise, i.e., if the last partitioning
has split all conflicts in C, the algorithm extracts a conflict
from the sets C1 and C2. This way, QXP finally identifies
single constraints which are inconsistent with the remaining
consistent set of constraints and the background theory.

Algorithm 1: QUICKXPLAIN(B, C)
Input: B: background theory, C: the set of possibly

faulty constraints
Output: A minimal conflict CS ⊆ C

1 if isConsistent(B ∪ C) then return ‘no conflict’;
2 else if C = ∅ then return ∅;
3 return GETCONFLICT(B,B, C)

function GETCONFLICT (B, D, C)
4 if D 6= ∅ ∧ ¬ isConsistent(B) then return ∅;
5 if |C| = 1 then return C;
6 Split C into disjoint, non-empty sets C1 and C2
7 D2 ← GETCONFLICT (B ∪ C1, C1, C2)
8 D1 ← GETCONFLICT (B ∪D2, D2, C1)
9 return D1 ∪D2

Theorem 1 ([10]). Let B be a background theory, i.e., a
set of constraints considered as correct, and C be a set of
possibly faulty constraints. Then, QUICKXPLAIN always
terminates. If B ∪ C is consistent it returns ‘no conflict’.
Otherwise, it returns a minimal conflict CS .

2.4 Using QXP During HS-Tree Construction
Assume that MBD is applied to find an error in the defini-
tion of a CSP. The CSP comprises the set of possibly faulty
constraints C. These are the elements of COMPS. The sys-
tem description SD corresponds to the semantics of the con-
straints in C. Finally, the observations OBS are encoded as
unary constraints and are added to the background theory
B. During the HS-tree construction, QXP is called when-
ever a new node is created and no conflict reuse is possi-
ble. As a result, QXP can either return one minimal conflict,
which can be used to label the new node, or return ’no con-
flict’, which would mean that a diagnosis is found at the tree
node. Note that QXP can be used with other algorithms,
e.g., preference-based search [19] or boolean search [20], in
the same way as with the HS-tree algorithm.

3 MERGEXPLAIN (MXP): Algorithm
Details

3.1 General Considerations
The pseudo-code of MXP, which unlike QXP can return
multiple conflicts at a time, is given in Algorithm 2. MXP,
like QXP, is generally applicable to a variety of problem do-
mains. The mapping to the terminology used in MBD (SD,
COMPS, OBS) is straightforward as discussed in the previous
section. In the following, we will use the notation and sym-
bols from [10], e.g., C or B, and constraints as a knowledge
representation formalism.

Note that there are applications of MBD in which the
function isConsistent has to be “overwritten” to take the
specifics of the underlying knowledge representation and
reasoning system into account. The ontology debugging
approach presented in [7] for example extends isConsis-
tent with the verification of entailments of a logical theory.
MXP can be used in such scenarios after the corresponding
adaptation of the implementation of isConsistent.

Furthermore, MXP can be easily extended for cases in
which the MBD approach has to support the specification
of (multiple) test cases, i.e., sets of formulas that must be

Proceedings of the 26th International Workshop on Principles of Diagnosis

4

consistent or inconsistent with the system description, e.g.,
[21; 22].

3.2 Algorithm Rationale
MXP (Algorithm 2) accepts two sets of constraints as in-
puts, B as the assumed-to-be-correct set of background con-
straints and C, the possibly faulty components/constraints.

In case C∪B is inconsistent, MXP returns a set of minimal
conflicts Γ by calling the recursive function FINDCONFLICTS

in line 3. This function again acceptsB and C as an input and
returns a tuple 〈C′,Γ〉, where Γ is a set of minimal conflicts
and C′ ⊂ C is a set of constraints that does not contain any
conflicts, i.e., B ∪ C′ is consistent.

The logic of FINDCONFLICTS is similar to QXP in that we
decompose the problem into two parts in each recursive call
(lines 7–9). Differently from QXP, however, we look for
conflicts in both splits C1 and C2 independently and then
combine the conflicts that are eventually found in the two
halves (line 10)1. If there is, e.g., a conflict in the first part
and one in the second, FINDCONFLICTS will find them inde-
pendently from each other. Of course, there might also be
conflicts in C whose elements are spread across both C1 and
C2, that is, the set C′1 ∪ C′2 ∪B is inconsistent. This situation
is addressed in lines 11–15. The computation of a minimal
conflict is done by two calls to GETCONFLICT (Algorithm 1).
In the first call this function returns a minimal set X ⊆ C′1
such thatX∪C′2∪B is a conflict (line 12). In line 13, we then
look for a subset of C′2, say Y , such that Y ∪X corresponds
to a minimal conflict CS . The latter is added to Γ (line 15).
In order to restore the consistency of C′1 ∪C′2 ∪B we have to
remove at least one element α ∈ CS from either C′1 or C′2.
Therefore, in line 14 the algorithm removes α ∈ X ⊆ CS
from C′1.

Note that MXP allows us to use different split functions
in line 7. In our default implementation we use a function
that splits the set of constraints C into two equal parts, i.e.,
split(n) = n/2, where |C| = n. In the worst case this split
function results in a perfect binary tree with n leaves. Con-
sequently, the total number of nodes is 2n − 1, which cor-
respond to 2(2n − 1) consistency checks (lines 5 and 11).
Other split functions might result in a similar number of
consistency checks in the worst case as well, since in any
case MXP has to traverse a binary tree with n leaves. For
instance, the function split(n) = n− 1 results in a tree with
one branch of the depth n − 1 and n leaves, that is, 2n − 1
nodes to traverse. However, while the number of nodes to
explore might be comparable, the important point is that the
computational costs for the individual consistency checks
can be different depending on the splitting strategy. Un-
der the reasonable assumption that consistency checking of
smaller sets of constraints requires less time, the function
split(n) = n/2 allows MXP to split the set of constraints
faster, thus, improving the overall runtime.

3.3 Example
Consider a CSP consisting of six constraints {c0, ..., c5}.
The constraint c0 is considered correct, i.e., B = {c0}. Let
{{c0, c1, c3}, {c0, c5}, {c2, c4}} be the set of minimal con-
flicts. Algorithm 2 proceeds as follows (Figure 1).

Since the input CSP (B ∪ C) is not consistent, the al-
gorithm enters the recursion. In the first step, FINDCON-
FLICTS partitions the input set (line 7) into the two subsets

1The calls in line 8 and 9 can in fact be executed in parallel.

Algorithm 2: MERGEXPLAIN(B, C)
Input: B: background theory, C: the set of possibly

faulty constraints
Output: Γ, a set of minimal conflicts

1 if ¬isConsistent(B) then return ‘no solution’;
2 if isConsistent(B ∪ C) then return ∅;
3 〈_,Γ〉 ← FINDCONFLICTS(B, C)
4 return Γ;

function FINDCONFLICTS (B, C) returns tuple 〈C′,Γ〉
5 if isConsistent(B ∪ C) then return 〈C, ∅〉;
6 if |C| = 1 then return 〈∅, {C}〉;
7 Split C into disjoint, non-empty sets C1 and C2
8 〈C′1,Γ1〉 ← FINDCONFLICTS(B, C1)
9 〈C′2,Γ2〉 ← FINDCONFLICTS(B, C2)

10 Γ← Γ1 ∪ Γ2;
11 while ¬isConsistent(C′1 ∪ C′2 ∪ B) do
12 X ← GETCONFLICT(B ∪ C′2, C′2, C′1)
13 CS ← X ∪ GETCONFLICT(B ∪X,X, C′2)
14 C′1 ← C′1 \ {α} where α ∈ X
15 Γ← Γ ∪ {CS}
16 return 〈C′1 ∪ C′2,Γ〉

C1 = {c1,c2,c3} and C2 = {c4,c5} and provides them as in-
put to the recursive calls (lines 8 and 9). In the next level
of the recursion – marked with 2 in Figure 1 – the input is
found to be inconsistent (line 5) and again partitioned into
two sets (line 7). In the subsequent calls, 3 and 4 , the two
input sets are found to be consistent (line 5) and, therefore,
the set {c1, c2, c3} has to be analyzed using GETCONFLICT

(lines 12 and 13) defined in Algorithm 1. GETCONFLICT

returns the conflict {c1,c3}, which is added to Γ. Finally,
FINDCONFLICTS removes c1 from the set C′1 and returns the
tuple 〈{c2,c3}, {{c1,c3}}〉 to 1 .

Next, the “right-hand” part of the initial input, the set
C2 = {c4,c5}, is provided as input to FINDCONFLICTS 5 .
Since C2 is inconsistent, it is partitioned into two sets
C1 = {c4} and C2 = {c5}. The first recursive call 6 re-
turns 〈{c4}, ∅〉 since the input is consistent. The second
call 7 , in contrast, finds that the input comprises only
one constraint that is inconsistent with the background the-
ory B. Therefore, it returns 〈∅,{{c5}}〉 in line 6. Since
C′1 ∪ C′2 = {c4} ∪ ∅ is consistent with B, FINDCONFLICTS 5
returns 〈{c4}, {{c5}}〉 to 1 .

Finally, in 1 the set of constraints C′1 ∪ C′2 = {c2,c3} ∪
{c4} is found to be inconsistent with B (line 11) and GET-
CONFLICT is called. The method returns the conflict {c2,c4}
and c2 is removed from C′1. The resulting set {c3,c4} is con-
sistent and MXP returns Γ = {{c1,c3}, {c5}, {c2, c4}}.

3.4 Properties of MERGEXPLAIN
Theorem 2. Given a background theory B and a set of con-
straints C, Algorithm 2 always terminates and returns

• ‘no solution’, if B is inconsistent,

• ∅, if B ∪ C is consistent, and

• a set of minimal conflicts Γ, otherwise.

Proof. In the first case, given an inconsistent background
theory B, the algorithm terminates in line 1 and returns ‘no
solution’. In the second case, if the set B ∪ C is consistent,

Proceedings of the 26th International Workshop on Principles of Diagnosis

5

1 :

C1 = {c1, c2, c3} C2 = {c4, c5}
〈{c2, c3} , {{c1, c3}}〉
〈{c4} , {{c5}}〉
Γ = {{c1, c3} , {c5}} ∪ {{c2, c4}}
C = {c3, c4}

2 :

C1 = {c1, c2} C2 = {c3}
〈{c1, c2} , ∅〉
〈{c3} , ∅〉
Γ = ∅ ∪ {{c1, c3}}
C = {c2, c3}

3 :
B ∪ C = {c0, c1, c2}
isConsistent X 4 :

B ∪ C = {c0, c3}
isConsistent X

5 :

C1 = {c4} C2 = {c5}
〈{c4} , ∅〉
〈∅, {{c5}}〉
isConsistent X

6 :
B ∪ C = {c0, c4}
isConsistent X 7 :

B ∪ C = {c0, c5}
isConsistent �
|C| = 1

yy

�� ��

%%

��
��

Figure 1: MERGEXPLAIN recursion tree. Each node shows values of selected variables in the FINDCONFLICTS function.

then no subset of C is a conflict. MXP terminates and re-
turns ∅.

Finally, if the set B ∪ C is inconsistent, the algorithm en-
ters the recursion in line 3. The function FINDCONFLICTS

in each call partitions the input set C into two sets C1 and
C2. The partitioning continues until either the found set
of constraints C is consistent or a singleton conflict is de-
tected. Therefore, every recursion branch ends after at most
log |C|−1 calls. Consequently, FINDCONFLICTS terminates if
the conflict detection loop in lines 11–15 always terminates.

We consider two situations. If the set C′1∪C′2 is consistent
with B, the loop terminates. Otherwise, in each iteration at
least one conflict in the set C′1 ∪ C′2 is resolved. This fact
follows from Theorem 1 according to which the function
GETCONFLICT in Algorithm 1 always returns a minimal con-
flict if the input parameter C is inconsistent with B. Since
the number of conflicts is finite and in each iteration one of
the conflicts in C′1 ∪ C′2 is resolved in line 14, the loop will
terminate after a finite number of iterations. Consequently,
Algorithm 2 terminates and returns a set of minimal con-
flicts Γ.

Corollary 1. Given a consistent background theory B and a
set of inconsistent constraints C, Algorithm 2 always returns
a set of minimal conflicts Γ such that there exists a diagnosis
∆i ⊆

⋃
CSi∈Γ CS i.

The proof follows from the fact that – similar to the HS-
tree algorithm – a conflict is resolved by removing one of its
elements from the set of constraints C1 in line 14. The loop
in line 11 guarantees that every conflict CS i ∈ C′1 ∪ C′2 is
hit. Consequently, FINDCONFLICTS hits every conflict in the
input set C and the set of constraints {α1, . . . , αn} removed
in every call of line 14 is a superset or equal to a diagnosis of
the problem. The construction of at least one diagnosis from
the found conflicts Γ can be done by the HS-tree algorithm.

MXP can in principle use several strategies for the res-
olution of conflicts in line 14. The strategy used in MXP
by default is conservative and allows us to find several con-
flicts at once. Two additional elimination strategies can be
used in line 14: (1) C′1 ← C′1 \X or (2) C′1 ← C′1 \ CS and
C′2 ← C′2 \ CS . These more aggressive strategies result in
a smaller number of conflicts returned by MXP in each call
but each call returns the results faster. However, for the latter

strategies MXP might not return enough minimal conflicts
for the HS-tree algorithm to compute at least one diagnosis.
For instance, let {{c1, c2} , {c1, c3} , {c2, c4}} be the set of
all minimal conflicts. If MXP returns Γ = {{c1, c2}}, which
is one of the possible valid outputs, then the HS-tree algo-
rithm fails to find a diagnosis as {c1, c2} must be hit twice.
In this case, the HS-tree algorithm must call MXP multiple
times or another algorithm for diagnosis computation must
be used, e.g., [23].
Corollary 2. Algorithm 2 is sound, i.e., every set CS ∈ Γ
is a minimal conflict, and complete, i.e., given a diagnosis
problem for which at least one minimal conflict exists, Algo-
rithm 2 returns Γ 6= ∅.

The soundness of the algorithm follows from Theorem 1,
since the conflict computation of MXP uses the GETCON-
FLICT function of QXP. The completeness is shown as fol-
lows: Let B be a background theory and C a set of faulty
constraints, i.e., B∪C is inconsistent. Assume MXP returns
Γ = ∅, i.e., no minimal conflicts are found. However, this is
impossible, since the loop in line 11 will never end. Con-
sequently, Algorithm 2 will not terminate which contradicts
our assumption. Hence, it holds that MXP is complete.

4 Evaluation
We have evaluated the efficiency of computing multiple con-
flicts at once with MXP using a number of different diagno-
sis benchmark problems. As a baseline for the comparison,
we use QXP as a Theorem Prover, which returns exactly
one minimal conflict at a time. Furthermore, we made mea-
surements with a variant of MXP called PMXP in which
the lines 8 and 9 are executed in parallel in two threads on a
multi-core computer.

4.1 Benchmark Problems
We made experiments with different benchmark problems.
First, we used the five first systems of the DX Competition
(DXC) 2011 Synthetic Track. For each system, 20 scenarios
are specified in which artificial faults were injected. In addi-
tion, we made experiments with a number of CSP problems
from the CSP solver competition 2008 and several CSP en-
codings of real-world spreadsheets. The injection of faults
was done in the same way as in [17].

Proceedings of the 26th International Workshop on Principles of Diagnosis

6

In addition to these benchmark problems, we developed
a diagnosis problem generator, which can be configured
to generate (randomized) diagnosis problems with varying
characteristics, e.g., with respect to the number of conflicts,
their size, or their position in the system description SD.

4.2 Measurement Method
We implemented all algorithms in a Java-based MBD
framework, which uses Choco as an underlying constraint
solver, see [17]. The experiments were conducted on a lap-
top computer (Intel i7, 8GB RAM). As a performance indi-
cator we use the time needed (“wall clock”) for computing
one or more diagnoses. The reported running time num-
bers are averages of 100 runs of each problem setting that
were done to avoid random effects. We furthermore ran-
domly shuffled the ordering of the constraints in each run to
avoid effects that might be caused by a certain positioning
of the conflicts in SD. For the evaluation of MXP we used
the most aggressive elimination strategy (2) as described in
Section 3.4.

Since MXP can return more than one conflict at a time, it
is expected to be particularly useful when the problem is to
find a set of n first (leading) diagnoses, e.g., in the context of
applying MBD to software debugging [5; 7]. We therefore
report the results for the tasks “find-one-diagnosis” (as an
extreme case) and “find-n-diagnoses”.

The task of finding a single diagnosis is comparably
simple and “direct encodings” or algorithms like INVERSE-
QUICKXPLAIN [23] are typically more efficient for this
task than the HS-tree algorithm. For instance, INVERSE-
QUICKXPLAIN requires only O(|∆| log(|C|/|∆|)) calls to TP.
If TP can check the consistency in polynomial time, then
one diagnosis can also be computed efficiently. The prob-
lem of finding more than one diagnosis is very different and
computationally challenging, because deciding whether an
additional diagnosis exists is NP-complete [24]. In such set-
tings the application of methods that are highly efficient for
finding one diagnosis is not always advantageous. For in-
stance, the evaluation presented in [14] demonstrates this
fact for direct encodings. Therefore a comparison of our al-
gorithm with approaches for the “find-one-diagnosis” prob-
lem is beyond the scope of our work, as we are interested
in problem settings in which the HS-tree algorithm is fa-
vorable and no assumptions about the underlying reasoner
should be made. When the task is to find all diagnoses, the
performance of MXP is similar to that of QXP as all exist-
ing conflicts have to be determined.

4.3 Results
DXC Benchmark Problems Table 1 shows the charac-
teristics of the analyzed and CSP-encoded DXC benchmark
problems. Since we consider multiple scenarios per system,
the number of faults and the corresponding diagnoses can
vary strongly across the experiment runs.

Table 2 shows the observed performance gains when us-
ing MXP instead of QXP in terms of absolute numbers (ms)
and the relative improvement. For the problem of finding the
first 5 diagnoses (QXP-5/MXP-5), the observed improve-
ments range from 15% up to 45%. For the extreme case of
finding one single diagnosis, even slightly stronger improve-
ments can be observed. The improvements when searching
for, e.g., the first 10 diagnoses are similar for cases in which
significantly more than 10 diagnoses actually exist.

System #C #V #F #D #D |D| #Cf |Cf|
74182 21 28 4 - 5 30 - 300 139 4.66 4.9 3.3
74L85 35 44 1 - 3 1 - 215 66.4 3.13 5.9 8.3
74283 38 45 2 - 4 180 - 4,991 1,232.7 4.42 78.8 16.1
74181 67 79 3 - 6 10 - 3,828 877.8 4.53 7.8 10.6
c432 162 196 2 - 5 1 - 6,944 1,069.3 3.38 15.0 19.8

Table 1: Characteristics of selected DXC benchmarks. #C:
number of constraints, #V: number of variables, #F: num-
ber of injected faults, #D: range of the number of diagnoses,
#D: average number of the diagnoses, |D|: average diag-
nosis size, #Cf: average number of conflicts, |Cf|: average
conflict size.

System QXP-5 MXP-5 QXP-1 MXP-1
[ms] Improv. [ms] Improv.

74182 17.0 19% 17.0 19%
74L85 20.9 15% 16.1 19%
74283 61.2 29% 53.8 32%
74181 691.8 45% 637.0 47%
c432 707.5 25% 503.9 37%

Table 2: Performance gains for DXC benchmarks when
searching for the first n diagnoses of minimal cardinality.

Constraint Problems / Spreadsheets The characteristics
for the next set of benchmark problems (six CSP compe-
tition instances, five CSP-encoded real-world spreadsheets
with injected faults [17]) are shown in Table 3.

Scenario #C #V #F #D |D| #Cf |Cf|
c8 523 239 8 4 6.25 7 1.6
costasArray-13 87 88 2 >5 3.6 >565 45.6
domino-100-100 100 100 3 81 2 2 15
graceful–K3-P2 60 15 4 >117 2.94 >12 29.2
mknap-1-5 7 39 1 2 1 1 2
queens-8 28 8 15 9 10.9 15 2.8
hospital payment 38 75 4 40 4 4 3
profit calculation 28 140 5 42 4.25 11 9
course planning 457 583 2 3024 2 2 55.5
preservation model 701 803 1 22 1 1 22
revenue calculation 93 154 4 1452 3 3 15.7

Table 3: Characteristics of selected CSP settings.

The results for determining the five first minimal diag-
noses are shown in Table 42. Again, performance improve-
ments of up to 54% can be observed. The obtained im-
provements vary quite strongly across the different problem
instances: the higher the complexity of the underlying prob-
lem, the stronger are the improvements achieved with our
new method. Only in the two cases in which only one single
conflict exists (see Table 3), the performance can slightly de-
grade as MXP performs an additional check if further con-
flicts among the remaining constraints exist.

Systematically Generated MBD Problems To be able to
systematically analyze which factors potentially influence
the obtained performance improvements, we developed an
MBD problem generator in which we could vary (i) the

2The results for finding one diagnosis follow the same trend.

Proceedings of the 26th International Workshop on Principles of Diagnosis

7

Scenario QXP MXP
[ms] [ms] Impr.

c8 615 376 39%
costasArray-13 1,379,842 629,366 54%
domino-100-100 417 389 7%
graceful–K3-P2 1611 1123 30%
mknap-1-5 32 36 -11%
queens-8 281 245 13%
hospital payment 1,717 1,360 21%
profit calculation 86 76 12%
course planning 2,045 1,544 25%
preservation model 371 391 -5%
revenue calculation 109 87 21%

Table 4: Results for CSP benchmarks and spreadsheets
when searching for 5 diagnoses.

overall number of COMPS, (ii) the number of conflicts and
their average size (and as a consequence the number of diag-
noses), and (iii) the position of the conflicts in the database.
We considered the last aspect because the performance of
QXP and MXP can largely depend on this aspect3. If,
e.g., there is only one conflict and the conflict is represented
by the two “left-most” elements in SD, QXP’s divide-and-
conquer strategy will be able to rule out most other elements
very fast.

We evaluated the following configurations regarding the
position of the conflicts (see Table 5): (a) Random: The
elements of each conflict are randomly distributed across
SD; (b) Left/Right: All elements of the conflict appear in
exactly one half of SD; (c) LaR (Left and Right): Conflicts
are both in the left and right half, but not spanning both
halves; (d) Neighb.: Conflicts appear randomly across SD,
but only involve “neighboring” elements.

One specific rationale of evaluating these constellations
individually is that conflicts in some application domains
(e.g., when debugging knowledge bases) might represent
“local” inconsistencies in SD.

Since the conflicts are known in advance in this exper-
iment, no CSP solver is needed to determine the consis-
tency of a given set of constraints. Because zero compu-
tation times are unrealistic, we added simulated consistency
checking times in each call to the TP. The value of the sim-
ulated time quadratically increases with the number of con-
straints to be checked and is capped in the experiments at 10
milliseconds. We made additional tests with different con-
sistency checking times to evaluate to which extent the im-
provements obtained with MXP depend on the complexity
of an individual consistency check for the underlying prob-
lem. However, these tests did not lead to any significant
differences.

Table 5 shows some of the results of this simulation. In
this evaluation, we also include the results of the parallelized
PMXP variant. The following observations can be made.

(1) The performance of QXP strongly depends on the po-
sition of the conflicts. In the probably most realistic Random
case, MXP helps to reduce the computation times around
20-30%. In the constellations that are “unfortunate” for
QXP, the speedups achieved with MXP can be as high as
75%. When QXP is “lucky” and all conflicts are clustered

3We assume a splitting strategy in which the elements are sim-
ply split in half in the middle with no particular ordering of the
elements.

#Cp #Cf |Cf| Cf Pos. QXP MXP PMXP
[ms] Impr. Impr.

50 5 2 Random 351 27% 30%
50 5 2 Left 161 6% 10%
50 5 2 Right 481 69% 70%
50 5 2 LaR 293 51% 57%
50 5 2 Neighb. 261 54% 58%

100 5 2 Random 417 33% 35%
100 5 2 Left 181 14% 17%
100 5 2 Right 622 75% 76%
100 5 2 LaR 351 58% 63%
100 5 2 Neighb. 314 62% 65%
50 15 4 Random 2,300 22% 20%
50 15 4 Left 452 -8% -4%
50 15 4 Right 1,850 72% 73%
50 15 4 LaR 3,596 22% 18%
50 15 4 Neighb. 166,335 43% 43%

Table 5: Results when varying the problem characteristics.

in the left part of SD, some improvements or light deterio-
rations can be observed for MXP. The latter two situations
(all conflicts are clustered in one half) are actually quite im-
probable but help us better understand which factors influ-
ence the performance.

(2) When comparing the results of the first two blocks
in the table, it can be seen that the improvements achieved
with MXP are stronger when there are more components in
SD and more time is needed for performing the individual
consistency checks. This is in line with the results of the
other experiments.

(3) Parallelization can help to obtain modest additional
improvements. The strongest improvements are observed
for the LaR configuration, which is intuitive as PMXP by
design explores the left and right halves independently in
parallel. Note that in the experiments with the DXC and the
CSP benchmark problems, in most cases we could not ob-
serve runtime improvements through parallelization. This is
caused by two facts. First, the consistency checking times
are often on average below 1 ms, which means that the rel-
ative overhead of starting a new thread can be comparably
high. Second, the used CSP solver causes some additional
overheads and thread synchronization when used in multiple
threads in parallel.

5 Related Work
In [10], Junker informally sketches a possible extension of
QXP to be able to compute multiple “preferred explana-
tions” in the context of Preference-Based Search (PBS). The
general goal of Junker’s approach is partially similar to our
work and the proposed extended version of QXP could in
theory be used during the HS-tree construction as well.

Technically, Junker proposes to set a choice point when-
ever a constraint ci is found to be consistent with a partial re-
laxation during search and thereby look for (a) branches that
lead to conflicts not containing ci and (b) branches leading
to conflicts in which the removal of ci leads to a solution.

Unfortunately, it is not fully clear from the informal
sketch in [10] where the mentioned choice point should
be set. If applied in line 5 of Algorithm 1, conflicts are
only found in the left-most inconsistent partition. The
method would then return only a small subset of all conflicts

Proceedings of the 26th International Workshop on Principles of Diagnosis

8

MERGEXPLAIN would return. If the split is done for every
ci consistent with a partial relaxation during PBS, the result-
ing diagnosis algorithm corresponds to the binary HS-tree
method [25], which according to the experiments in [11] is
not generally favorable over HS-Tree algorithms, in partic-
ular when we are searching for a limited set of diagnoses.

From the algorithm design, note that QXP applies a con-
structive conflict computation procedure prior to partition-
ing, whereas MXP does the partitioning first – thereby re-
moving multiple constraints at a time – and then uses a
divide-and-conquer conflict detection approach. Finally, our
method can, depending on the configuration, make a guaran-
tee about the existence of a diagnosis given the returned con-
flicts without the need of computing all existing conflicts.

In general, our work is related to a variety of (com-
plete) approaches from the MBD literature which aim to
find diagnoses more efficiently than with Reiter’s original
method. Existing works for example try to speed up the
process by exploiting existing hierarchical, tree-like or dis-
tributed structural properties of the underlying problem [16;
26], through parallelization [17], or by solving the dual
problem [27; 28; 29]. A main difference to these works
is that we make no assumption about the underlying prob-
lem structure and leave the general HS-tree procedure un-
changed. Instead, our aim is to avoid a full restart of the
conflict search process when constructing a new node by
looking for potentially existing additional conflicts in each
call, and to thereby speedup the overall process.

Beside complete methods, a number of approximate di-
agnosis approaches have been proposed in the last years,
which for example use stochastic and heuristic search [30;
31]. The relation of our work to these approaches is limited
as we are focusing on application scenarios where the goal
is to find a few first diagnoses more quickly but at the same
time maintain the completeness property. Finally, for some
domains, “direct” and SAT-based, e.g., [32], or CSP-based,
e.g., [33], encodings, have shown to be very efficient to find
one or a few diagnoses in recent years. For instance, [33]
suggests an encoding scheme that first translates a given di-
agnosis problem (SD, COMPS, OBS) into a CSP. Then a spe-
cific diagnosis algorithm is applied that searches for conflict
sets with increasing cardinality, i.e., 1, 2, . . . , |COMPS|. The
same method is then used to search for diagnoses in the set
of all found conflict sets. In order to speed up the compu-
tations the author suggests a kind of hierarchical approach
that helps the user spot the relevant components. Generally,
most of the “direct” methods require the use of additional
techniques like hierarchical diagnosis or iterative deepening
that constrain the cardinality of computed diagnoses while
computing minimal diagnoses.

The concept of conflicts plays a central role in different
other reasoning contexts than Model-Based Diagnosis, e.g.,
explanations or dynamic backtracking. Specifically, in re-
cent years a number of approaches were proposed in the
context of the maximum satisfiability problem (MaxSAT),
see [34] for a recent survey. In these domains the con-
flicts are referred to as unsatisfiable cores or Minimally Un-
satisfiable Subsets (MUSes); Minimal Correction Subsets
(MSCes) on the other hand correspond to the concept of
diagnoses in this paper. In [35] or [36], for example, dif-
ferent algorithms were recently proposed to find one so-
lution to the MaxSAT problem, which corresponds to the
problem of finding one minimal/preferred diagnosis. Other

techniques such as MARCO [29] aim at the enumeration of
conflicts. In general, many of these algorithms use a similar
divide-and-conquer principle as we do with MXP. How-
ever, such algorithms – including the ones listed above –
often modify the underlying knowledge base by adding re-
laxation variables to clauses of a given unsatisfiable formula
and then use a SAT solver to find the relaxations. This strat-
egy roughly corresponds to the direct diagnoses approaches
discussed above. MXP, in contrast, acts completely inde-
pendently of the underlying knowledge representation lan-
guage. Moreover, the problem-independent decomposition
approach used by MXP is a novel feature which – to the
best of our knowledge – is not present in the existing con-
flict detection techniques from the MaxSAT field. Specifi-
cally, it allows our algorithm to find multiple conflicts more
efficiently because it searches for them within independent
small subsets of the original knowledge base. In addition,
MXP can find conflicts in knowledge bases formulated in
very expressive knowledge representation languages, such
as description logics, which cannot be efficiently translated
to SAT, see also [23].

6 Conclusions
We have proposed and evaluated a novel, general-pur-
pose and non-intrusive conflict detection strategy called
MERGEXPLAIN, which is capable of detecting multiple
conflicts in a single call. An evaluation on various bench-
mark problems revealed that MERGEXPLAIN can help to
significantly reduce the required computation times when
applied in a Model-Based Diagnosis setting in which the
goal is to find a defined number of diagnoses and in
which no assumption about the underlying reasoning engine
should be made.

One additional property of MERGEXPLAIN is that the
union of the elements of the returned conflict sets is guaran-
teed to be a superset of one diagnosis of the original prob-
lem. Recent methods like the one proposed in [23] can
therefore be applied to find one minimal diagnosis quickly.

Acknowledgements
This work was supported by the Carinthian Science Fund
(KWF) contract KWF-3520/26767/38701, the Austrian Sci-
ence Fund (FWF), and the German Research Foundation
(DFG) under contract numbers I 2144 N-15 and JA 2095/4-
1 (Project “Debugging of Spreadsheet Programs”).

References
[1] Ulrich Junker. QUICKXPLAIN: Conflict Detection

for Arbitrary Constraint Propagation Algorithms. In
IJCAI ’01 Workshop on Modelling and Solving prob-
lems with constraints (CONS-1), 2001.

[2] Raymond Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 32(1):57–95, 1987.

[3] Gerhard Friedrich, Markus Stumptner, and Franz
Wotawa. Model-Based Diagnosis of Hardware De-
signs. Artificial Intelligence, 111(1-2):3–39, 1999.

[4] Cristinel Mateis, Markus Stumptner, Dominik
Wieland, and Franz Wotawa. Model-Based Debug-
ging of Java Programs. In Proceedings AADEBUG
’00 Workshop, 2000.

Proceedings of the 26th International Workshop on Principles of Diagnosis

9

[5] Dietmar Jannach and Thomas Schmitz. Model-based
diagnosis of spreadsheet programs: a constraint-based
debugging approach. Automated Software Engineer-
ing, 2014.

[6] Jules White, David Benavides, Douglas C. Schmidt,
Pablo Trinidad, Brian Dougherty, and Antonio Ruiz
Cortés. Automated Diagnosis of Feature Model
Configurations. Journal of Systems and Software,
83(7):1094–1107, 2010.

[7] Kostyantyn Shchekotykhin, Gerhard Friedrich,
Philipp Fleiss, and Patrick Rodler. Interactive
ontology debugging: Two query strategies for effi-
cient fault localization. Journal of Web Semantics,
12-13:88–103, 2012.

[8] Franz Baader and Rafael Penaloza. Axiom Pinpointing
in General Tableaux. Journal of Logic and Computa-
tion, 20(1):5–34, 2008.

[9] Johan de Kleer. A Comparison of ATMS and CSP
Techniques. In Proceedings IJCAI ’89, pages 290–
296, 1989.

[10] Ulrich Junker. QUICKXPLAIN: Preferred Explana-
tions and Relaxations for Over-Constrained Problems.
In Proceedings AAAI ’04, pages 167–172, 2004.

[11] Ingo Pill, Thomas Quaritsch, and Franz Wotawa. From
Conflicts to Diagnoses: An Empirical Evaluation of
Minimal Hitting Set Algorithms. In Proceedings DX
’11 Workshop, pages 203–211, 2011.

[12] Alexander Feldman, Gregory Provan, Johan de Kleer,
Stephan Robert, and Arjan van Gemund. Solv-
ing Model-Based Diagnosis Problems with Max-SAT
Solvers and Vice Versa. In Proceedings DX ’10 Work-
shop, pages 185–192, 2010.

[13] Amit Metodi, Roni Stern, Meir Kalech, and Michael
Codish. A Novel SAT-Based Approach to Model
Based Diagnosis. Journal of Artificial Intelligence Re-
search, 51:377–411, 2014.

[14] Iulia Nica, Ingo Pill, Thomas Quaritsch, and Franz
Wotawa. The Route to Success – A Performance Com-
parison of Diagnosis Algorithms. In Proceedings IJ-
CAI ’13, pages 1039–1045, 2013.

[15] R Greiner, B A Smith, and R W Wilkerson. A Correc-
tion to the Algorithm in Reiter’s Theory of Diagnosis.
Artificial Intelligence, 41(1):79–88, 1989.

[16] Markus Stumptner and Franz Wotawa. Diagnos-
ing tree-structured systems. Artificial Intelligence,
127(1):1–29, 2001.

[17] Dietmar Jannach, Thomas Schmitz, and Kostyantyn
Shchekotykhin. Parallelized Hitting Set Computation
for Model-Based Diagnosis. In Proceedings AAAI ’15,
pages 1503–1510, 2015.

[18] Johan de Kleer. Hitting set algorithms for model-based
diagnosis. In Proceedings DX ’11 Workshop, pages
100–105, 2011.

[19] Ulrich Junker. Preference-Based Search and Multi-
Criteria Optimization. Annals of Operations Research,
130:75–115, 2004.

[20] Ingo Pill and Thomas Quaritsch. Optimizations for
the Boolean Approach to Computing Minimal Hitting
Sets. In Proceedings ECAI ’12, pages 648–653, 2012.

[21] Alexander Felfernig, Gerhard Friedrich, Dietmar Jan-
nach, and Markus Stumptner. Consistency-based di-
agnosis of configuration knowledge bases. Artificial
Intelligence, 152(2):213–234, 2004.

[22] Gerhard Friedrich and Kostyantyn Shchekotykhin. A
General Diagnosis Method for Ontologies. In Pro-
ceedings ISWC ’05, pages 232–246, 2005.

[23] Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick
Rodler, and Philipp Fleiss. Sequential diagnosis of
high cardinality faults in knowledge-bases by direct
diagnosis generation. In Proceedings ECAI ’14, pages
813–818, 2014.

[24] Thomas Eiter and Georg Gottlob. The Complexity of
Logic-Based Abduction. Journal of the ACM (JACM),
42(1):1–49, 1995.

[25] Li Lin and Yunfei Jiang. The computation of hitting
sets: Review and new algorithms. Information Pro-
cessing Letters, 86(4):177–184, May 2003.

[26] F Wotawa and I Pill. On classification and modeling
issues in distributed model-based diagnosis. AI Com-
munications, 26(1):133–143, 2013.

[27] Ken Satoh and Takeaki Uno. Enumerating Minimally
Revised Specifications Using Dualization. In JSAI ’05
Workshop, pages 182–189, 2005.

[28] Roni Stern, Meir Kalech, Alexander Feldman, and
Gregory Provan. Exploring the Duality in Conflict-
Directed Model-Based Diagnosis. In Proceedings
AAAI ’12, pages 828–834, 2012.

[29] Mark H. Liffiton, Alessandro Previti, Ammar Malik,
and Joao Marques-Silva. Fast, Flexible MUS Enumer-
ation. Constraints, pages 1–28, 2015.

[30] Lin Li and Jiang Yunfei. Computing Minimal Hitting
Sets with Genetic Algorithm. In Proceedings DX ’02
Workshop, pages 1–4, 2002.

[31] A Feldman, G Provan, and A van Gemund. Approx-
imate Model-Based Diagnosis Using Greedy Stochas-
tic Search. Journal of Artifcial Intelligence Research,
38:371–413, 2010.

[32] Amit Metodi, Roni Stern, Meir Kalech, and Michael
Codish. Compiling Model-Based Diagnosis to
Boolean Satisfaction. In Proceedings AAAI ’12, pages
793–799, 2012.

[33] Yannick Pencolé. DITO: a CSP-based diagnostic en-
gine. In Proceedings ECAI ’14, pages 699–704, 2014.

[34] Antonio Morgado, Federico Heras, Mark Liffiton,
Jordi Planes, and Joao Marques-Silva. Iterative and
core-guided MaxSAT solving: A survey and assess-
ment. Constraints, 18(4):478–534, 2013.

[35] Jessica Davies and Fahiem Bacchus. Postponing opti-
mization to speed up MAXSAT solving. In Proceed-
ings CP ’13, pages 247–262, 2013.

[36] Alexey Ignatiev, Antonio Morgado, Vasco Man-
quinho, Ines Lynce, and Joao Marques-Silva. Progres-
sion in Maximum Satisfiability. In Proceedings ECAI
’14, pages 453–458, 2014.

Proceedings of the 26th International Workshop on Principles of Diagnosis

10

