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Abstract

“All models are wrong but some are useful" [1].
We address the problem of identifying which di-
agnosis models are more useful than others. Mod-
els are critical to diagnostics inference, yet little
work exists to be able to compare models. We de-
fine the role of models in diagnostics inference,
propose metrics for models, and apply these met-
rics to a tank benchmark system. Given the many
approaches possible for model metrics, we argue
that only information-theoretic methods address
how well a model mimics real-world data. We
focus on some well-known information-theoretic
modelling metrics, demonstrating the trade-offs
that can be made on different models for a tank
benchmark system.

1 Introduction
A core goal of Model-Based Diagnostics (MBD) is to ac-
curately diagnose a range of systems in real-world appli-
cations. There has been significant progress in developing
algorithms for systems of increasing complexity. A key
area where further work is needed is scaling-up to real-
world models, as multiple-fault diagnostics algorithms are
currently limited by the size and complexity of the models
to which they can be applied. In addition, there is still a great
need for defining metrics to measure diagnostics accuracy,
and to measure the computational complexity of inference
and of the models’ contribution to inference complexity.

This article addresses the modeling side of MBD: we fo-
cus on methods for measuring the size and complexity of
MBD models. We explore the role that diagnostics model
fidelity can play in being able to generate accurate diagnos-
tics. We characterise model fidelity and examine the trade-
offs of fidelity and inference complexity within the overall
MBD inference task.

Model fidelity is a crucial issue in diagnostics [2]: mod-
els that are too simple can be inaccurate, yet highly detailed
and complex models are expensive to create, have many pa-
rameters that require significant amounts of data to estimate,
and are computationally intensive to perform inference on.
There is an urgent need to incorporate inference complexity
within modelling, since even relatively simple models, such
as some of the combinational ISCAS-85 benchmark models,
pose computational challenges to even the most advanced
solvers for multiple-fault tasks. In addition, higher-fidelity

models can actually perform worse than lower-fidelity mod-
els on real-world data, as can be explained using over-fitting
arguments within a machine learning framework.

To our knowledge, there is no theory within Model-Based
Diagnostics that relates notions of model complexity, model
accuracy, and inference complexity. To address these issues,
we explore several of the factors that contribute to model
complexity, as well as a theoretically sound approach for
selecting models based on their complexity and diagnostics
performance, i.e., their accuracy in diagnosing faults.

Our contributions are as follows:
• We characterise the task of selecting a diagnosis model

of appropriate fidelity as an information-theoretic
model selection task.
• We propose several metrics for assessing the quality of

a diagnosis model, and derive approximation versions
of a subset of these metrics.
• We use a dynamical systems benchmark model to

demonstrate our compare how the metrics assess mod-
els relative to the accuracy of diagnostics output based
on using the models.

2 Related Work
This section reviews work related to our proposed approach.

Model-Based Diagnostics: There is some seminal work
on modelling principles within the Model-Based Diagnosis
(MBD) community, e.g., [2; 3]; this early work adopts an
approach based on logic or qualitative physics for model
specification. However, this work provides no means for
comparing models in terms of diagnostics accuracy. More
recent work ([4]) provides a logic-based specification of
model fidelity. There is also work specifying metrics for
diagnostics accuracy, e.g., [5].

However, none of this work defines precise metrics for
computing both diagnostics accuracy and model complex-
ity, and their trade-offs. This article adopts a theoretically
well-founded approach for integrating multiple MBD met-
rics.

Multiple Fidelity Modeling There is limited work de-
scribing the use of models of multiple levels of fidelity. Ex-
amples of such work includes [6; 7; 8]. In this article we
focus on methods for evaluating multi-fidelity models and
their impact on diagnostics accuracy, as opposed to devel-
oping methodoligies for modelling at multiple levels of fi-
delity.

Multiple-Mode Modeling One approach to MBD is to
use a separate model for every failure mode, rather than to
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define a model containing all failure modes. Examples of
this approach include [9; 10; 11; 12]. Note that this work
does not specify metrics for computing both diagnostics ac-
curacy and model complexity, or their trade-offs.

Model- Selection The metrics that we adopt and extend
have been used extensively to compare different models,
e.g., [13]. The metrics are used to compare simulation per-
formance of models only. In contrast, we extend this frame-
work to examine diagnostics performance. In the process,
we explore the use of multiple loss functions for penalising
models, in addition to the standard penalty functions based
on number of model parameters.

Model-Order Reduction Model-Order reduction [14]
aims to reduce the complexity of a model with an aim to
limit the performance losses of the reduced model. The re-
duction methods are theoretically well-founded, although
they are highly domain-specific. In contrast to this ap-
proach, we assume a model-composition approach from a
component library containing hand-constructed models of
multiple levels of fidelity.

3 Diagnostics Modeling and Inference
This section formalises the notion of diagnostics model
within the process of diagnostics inference. We first intro-
duce the task, and then define it more precisely.

3.1 Diagnosis Task
Assume that we have a system S that can operate in a nom-
inal state, ξN , or a faulty state, ξF , where Ξ is the set of
possible states of S. We further assume that we have a dis-
crete vector of measurements, Ỹ = {ỹ1, ..., ỹn} observed
at times t = {1, ..., n} that summarizes the response of
the system S to control variables U = {u1, ...,un}. Let
Yφ = {y1, ..., yn} denote the corresponding predictions
from a dynamic (nonlinear) model, φ, with parameter values
θ: this can be represented by Yφ = φ(x0, θ, ξ, Ũ), where x0

signifies the initial states of the system at t0.
We assume that we have a prior probability distribution

P (Ξ) over the states Ξ of the system. This distribution de-
notes the likelihood of the failure states of the system.

We define a residual vector R(Ỹ ,Yφ) to capture the dif-
ference between the actual and model-simulated system be-
haviour. An example of a residual vector is the mean-
squared-error (MSE). We assume a fixed diagnosis task T
throughout this article, e.g., computing the most likely diag-
nosis, or a deterministic multiple-fault diagnosis.

The classical definition of diagnosis is as a state estima-
tion task, whose objective is to identify the system state that
minimises the residual vector:

ξ∗ = argmin
ξ∈Ξ

R(Ỹ ,Yφ) (1)

Since this is a minimisation task, we typically need to
run multiple simulations over the space of parameters and
modes to compute ξ∗. We can abstract this process as
performing model-inversion, i.e., computing some ξ∗ =

φ−1(x0, θ, ξ, Ũ) that minimisesR(Ỹ ,Yφ).
During this diagnostics inference task, a model φ can play

two roles: (a) simulating a behaviour to estimateR(Ỹ ,Yφ);
(b) enabling the computation of ξ∗ = φ−1(x0, θ, ξ, Ũ). It
is clear that diagnostics inference requires a model that has
good fidelity and is computationally efficient for performing
these two roles.

We generalise that notion to incorporate inference effi-
ciency as well as accuracy. We can define an inference com-
plexity measure as C(Ỹ , φ). We can then define our diagno-
sis task as jointly minimising a function g that incorporates
the accuracy (based on the residual function) and the infer-
ence complexity:

ξ∗ = argmin
ξ∈Ξ

g
(
R(Ỹ ,Yφ), C(Ỹ , φ)

)
. (2)

Here g specifies a loss or penalty function that induces a
non-negative real-valued penalty based on the lack of accu-
racy and computational cost.

In forward simulation, a model φ, with parameters θ, can
generate multiple observations Ỹ = {ỹ1, ..., ỹn}. The di-
agnostics task involves performing the inverse operation on
these observations. Our objective thus involves optimising
the state estimation task over a future set of observations,
Ỹ = {Ỹ1, ..., Ỹn}. Our model φ and inference algorithm
A have different performance based on Ỹi, i = 1, ..., n: for
example, [15] shows that both inference-accuracy and -time
vary based on the fault cardinality . As a consequence, to
compute ξ∗ we want to optimise the mean performance over
future observations. This notion of mean performance op-
timisation has been characterised using the Bayesian model
selection approach, which we examine in the following sec-
tion.

3.2 Diagnosis Model
We specify a diagnosis model as follows:
Definition 1 (Diagnosis Model). We characterise a Diag-
nosis Model φ using the tuple 〈V ,θ,Ξ, E〉, where
• V is a set of variables, consisting of variables denoting

the system state (X), control (U ), and observations
(Y ).

• θ is a set of parameters.
• Ξ is a set of system modes.
• E is a set of equations, with a subset Eξ ⊆ E for each

mode ξ ∈ Ξ.
We will assume that we can use a physics-based approach

to hand-generate a set E of equations to specify a model.
Obtaining good diagnostics accuracy, given a fixed E , en-
tails estimating the parameters θ to optimise that accuracy.

3.3 Running Example: Three-Tank Benchmark
In this paper, we use the three-tank system shown in Fig. 1
to illustrate our approach. The three tanks are denoted as T1,
T2, and T3. Each tank has the same area A1 = A2 = A3.
For i = 1, 2, 3, tank Ti has height hi, a pressure sensor pi,
and a valve Vi, i = 1, 2, 3 that controls the flow of liquid
out of Ti. We assume that gravity g = 10 and the liquid has
density ρ = 1.

Tank T1 gets filled from a pipe, with measured flow q0.
Using Torricelli’s law, the model can be described by the
following non-linear equations:

dh1

dt
=

1

A1

[
−κ1

√
h1 − h2 + q0

]
, (3)

dh2

dt
=

1

A2

[
κ1

√
h1 − h2 − κ2

√
h2 − h3

]
, (4)

dh3

dt
=

1

A3

[
κ2

√
h2 − h3 − κ3

√
h3

]
. (5)
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Figure 1: Diagram of the three-tank system.

In eq. 3, the coefficient κ1 denotes a parameter that cap-
tures the product of the cross-sectional area of the tank
A1, the area of the drainage hole, a gravity-based constant
(
√

2g), and the friction/contraction factor of the hole. κ2

and κ3 can be defined analogously.
Finally, the pressure at the bottom of each tank is obtained

from the height: pi = g hi, where i is the tank index (i ∈
{1, 2, 3}).

We emphasize the use of the κi, i = 1, 2, 3 because we
will use these parameter-values as a means for “diagnos-
ing” our system in term of changes in κi, i = 1, 2, 3. Con-
sider a physical valveR1 between T1 and T2 that constraints
the flow between the two tanks. We can say that the valve
changes proportionally the cross-sectional drainage area of
q1 and hence κ1. The diagnostic task will be to compute the
true value of κ1, given p1, and from κ1 we can compute the
actual position of the valve R1.

We now characterise our nominal model in terms of Def-
inition 1:

• variables V consist of variables denoting
the system state (X = {h1, h2, h3}), con-
trol (U = {q0, V1, V2, V3}), and observations
(Y = {p1, p2, p3}).
• θ = {{A1, A2, A3}, {κ1, κ2, κ3}} is the set of pa-

rameters.

• Ξ consists of a single nominal mode.

• E is a set of equations, given by equations 3 through 5.

Note that this model has a total of 6 parameters.
Fault Model In this article we focus on valve faults,

where a valve can have a blockage or a leak. We model
this class of faults by including in equations 3 to 5 an addi-
tive parameter β, which is applied to the parameter κ, i.e., as
κi(1+βi), i = 1, 2, 3, where−1 ≤ βi ≤ 1

κi
−1, i = 1, 2, 3.

β > 0 corresponds to a leak, such that β ∈ (0, 1/κ − 1];
β < 0 corresponds to a blockage, such that β ∈ [−1, 0).
The fault equations can be written as:

dh1

dt
=

1

A1

[
−κ1(1 + β1)

√
h1 − h2 + q0

]
, (6)

dh2

dt
=

1

A2

[
κ1(1 + β1)

√
h1 − h2

− κ2(1 + β2)
√
h2 − h3

]
,

dh3

dt
=

1

A3

[
κ2(1 + β2)

√
h2 − h3 − κ3(1 + β3)

√
h3

]
.

The fault equations allow faults for any combination of
the valves {V1, V2, V3}, resulting in system modes Ξ =
{ξN , ξ1, ξ2, ξ3, ξ12, ξ13, ξ23, ξ123}, where ξN is the nominal

mode, and ξ· is the mode where · denotes the combination
of valves (taken from a combination of {1, 2, 3}) which are
faulty. This fault model has 9 parameters.

4 Modelling Metrics
This section describes the metrics that can be applied to esti-
mate properties of a diagnosis model. We describe two types
of metrics, dealing with accuracy (fidelity) and complexity.

4.1 Model Accuracy
Model accuracy concerns the ability of a model to mimic a
real system. From a diagnostics perspective, this translates
to the use of a model to simulate behaviours that distinguish
nominal and faulty behaviours sufficiently well that appro-
priate fault isolation algorithms can identify the correct type
of fault when it occurs. As such, a diagnostics model needs
to be able to simulate behaviours for multiple modes with
“appropriate" fidelity.

Note that we distinguish model accuracy from diagnosis
inference accuracy. As noted above, model accuracy con-
cerns the ability of a model to mimic a real system through
simulation, and to assist in diagnostics isolation. Diagnosis
inference accuracy concerns being able to isolate the true
fault given an observation and the simulation output of a
model.

A significant challenge for a diagnosis model is the need
to simulate behaviours for multiple modes. Two approaches
that have been taken are to use a single model with multiple
modes explicitly defined (a multi-mode approach), or to use
multiple models [9; 16; 17], each of which is optimised for
a single or small set of modes (a multi-model approach).

The AI-based MBD approach typically uses a single
model φ with multiple modes explicitly defined [18], or a
single model with just nominal behaviour [19]. From a di-
agnostics perspective, accuracy must be defined with respect
to the task T . We adopt here the task of computing the most-
likely diagnosis.

Given evidence suggesting that model fidelity for a multi-
mode approach varies depending on the mode, it is impor-
tant to explicitly consider the mean performance of φ over
the entire observation space Y (the space of possible obser-
vations of the system).

In this article we adopt the expected residual approach,
i.e., given a space Y = {Ỹ1, ..., Ỹn} of observations, the ex-
pected residual is the average over the n observations, e.g.,
as given by: R̄ = 1

n

∑n
i=1R(Ỹi,Yφ).

4.2 Model Complexity
At present, there is no commonly-accepted definition of
model complexity, whether the model is used purely for
simulation or if it is used for diagnostics or control. Defin-
ing the complexity of a model is inherently tricky, due to the
number of factors involved.

Less complex models are often preferred either due to
their low computational simulation costs [20], or to min-
imise model over-fitting given observed data [21; 22]. Given
the task of simulating a variable of interest conditioned by
certain future values of input (control) variables, overfitting
can lead to high uncertainty in creating accurate simulations.
Overfitting is especially severe when we have limited ob-
servation variables for generating a model representing the
underlying process dynamics. In contrast, models with low
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parameter dimensionality (i.e. fewer parameters) are con-
sidered less complex and hence are associated with low pre-
diction uncertainty [23].

Several approaches have been used, based on issues like
(a) number of variables [24], (b) model structure [25], (c)
number of free parameters [23], (d) number of parameters
that the data can constrain [26], (e) a notion of model weight
[27], or (f) type and order of equations for a non-linear dy-
namical model [14], where type corresponds to non-linear,
linear, etc.; e.g., order for a non-linear model is such that a
k-th order system has k-th derivates in E .

Factors that contribute to the true cost of a model include:
(a) model-generation; (b) parameter estimation; and (c) sim-
ulation complexity, i.e., the computational expense (in terms
of CPU-time and memory) needed to simulate the model
given a set of initial conditions Rather than try to formu-
late this notion in terms of the number of model variables or
parameters, or a notion of model structural complexity, we
specify model complexity in terms of a measure based on
parameter estimation, and inference complexity, assuming a
construction cost of zero.

A thorough analysis of model complexity will need to
take into consideration the model equation class, since
model complexity is class-specific. For example, for non-
linear dynamical models, complexity is governed by the
type and order of equations [14]. In contrast, for linear dy-
namical models, which have only matrices and variables in
equations (no derivatives), it is the order of the matrices that
determines complexity. In this article, we assume that mod-
els are of appropriate complexity, and hence do not address
Model order reduction techniques [14], which aim to gen-
erate lower-dimensional systems that trade off fidelity for
reduced model complexity.

4.3 Diagnostics Model Selection Task
The model in this model selection problem corresponds to
a system with a single mode. Given a space Φ of possible
models, we can define this model selection task as follows:

φ∗ = argmin
φ∈Φ

g1

(
R(Ỹ ,Yφ)

)
+ g2

(
C(Ỹ , φ)

)
, (7)

adopting the simplifying assumption that our loss function
g is additively decomposable.

4.4 Information-Theoretic Model Complexity
The Information-Theoretic (or Bayesian) model complex-
ity approach, which is based on the model likelihood, mea-
sures whether the increased “complexity" of a model with
more parameters is justified by the data. The Information-
Theoretic approach chooses a model (and a model structure)
from a set of competing models (from the set of correspond-
ing model structures, respectively) such that the value of a
Bayesian criterion is maximized (or prediction uncertainty
in choosing a model structure is minimized).

The Information-Theoretic approach addresses prediction
uncertainty by specifying an appropriate likelihood func-
tion. In other words, it specifies the probability with which
the observed values of a variable of interest are generated
by a model. The marginal likelihood of a model structure,
which represents a class of models capturing the same pro-
cesses (and hence have the same parameter dimensional-
ity), is obtained by integrating over the prior distribution of
model parameters; this measures the prediction uncertainty
of the model structure [28].

Statistical model selection is commonly based on Oc-
cam’s parsimony principle (ca.1320), namely that hypothe-
ses should be kept as simple as possible. In statistical terms,
this is a trade-off between bias (distance between the aver-
age estimate and truth) and variance (spread of the estimates
around the truth).

The idea is that by adding parameters to a model we ob-
tain improvement in fit, but at the expense of making pa-
rameter estimates “worse"’ because we have less data (i.e.,
information) per parameter. In addition, the computations
typically require more time. So the key question is how to
identify how complex a model works best for a given prob-
lem.

If the goal is to compute the likelihood of a given model
φ(x0, θ, ξ,U), then θ and U are nuisance parameters.
These parameters affect the likelihood calculation but are
not what we want to infer. Consequently, these parameters
should be eliminated from the inference. We can remove
nuisance parameters by assigning them prior probabilities
and integrating them out to obtain the marginal probability
of the data given only the model, that is, the model likeli-
hood (also called integrative, marginal, or predictive like-
lihood). In equational form, this looks like: P (Y |φ) =∫
θ

∫
U
P (φ|Y ,θ,U)P (θ,U |φ)dθdU .However, this multi-

dimensional integral can be very difficult to compute, and it
is typically approximated using computationally intensive
techniques like Markov chain Monte Carlo (MCMC).

Rather than try to solve such a computationally challeng-
ing task, we adopt an approximation to the multidimen-
sional integral. In the statistics literature several decompos-
able approximations have been proposed.

Spiegelhalter et al. [26] have proposed a well-known
such decomposable framework, termed the Deviance In-
formation Criterion (DIC), which measures the number of
model parameters that the data can constrain.: DIC =
D + pD, where D is a measure of fit (expected deviance),
and pD is a complexity measure, the effective number of
parameters. The Akaike Information Criterion (AIC) [29;
30] is another well-known measure: AIC = −2L(θ̂) + 2k,

where θ̂ is the Maximum Likelihood Estimate (MLE) of θ
and k is the number of parameters.

To compensate for small sample size n, a variant of AIC,
termed AICc, is typically used:

AICc = −2L(θ̂) + 2k +
2k(k + 1)

(n− k − 1)
(8)

Another computationally more tractable approach is the
Bayesian Information Criterion (BIC) [31]: BIC =

−2L(θ̂) + klogn, where k is the number of estimable pa-
rameters, and n is the sample size (number of observations).
BIC was developed as an approximation to the log marginal
likelihood of a model, and therefore, the difference between
two BIC estimates may be a good approximation to the nat-
ural log of the Bayes factor. Given equal priors for all com-
peting models, choosing the model with the smallest BIC is
equivalent to selecting the model with the maximum poste-
rior probability. BIC assumes that the (parameters’) prior is
the unit information prior (i.e., a multivariate normal prior
with mean at the maximum likelihood estimate and variance
equal to the expected information matrix for one observa-
tion).

Wagenmakers [32] shows that one can convert the BIC
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metric to

BIC = n log
SSE

SStotal
+ k logn,

where SSE is the sum of squares for the error term. In our
experiments, we assume that the non-linear model is the
“correct" model (or the null hypothesis H0), and either the
linear or qualitative models are the competing model (or al-
ternative hypothesis H1). Hence what we do is use BIC to
compare the non-linear to each of the competing models.

Suppose that we obtain the BIC values for the alternative
and the correct models, using the relevant SS terms. When
computing ∆BIC = BIC(H1)−BIC(H0), note that both
the null (H0) and the alternative hypothesis (H1) models
share the same SStotal term (both models attempt to explain
the same collection of scores), although they differ with re-
spect to SSE. The SStotal term common to both BIC values
cancels out in computing ∆BIC , producing

∆BIC = n log
SSE1

SSE0
+ (k1 − k0)logn, (9)

where SSE1 and SSE0 are the sum of squares for the er-
ror terms in the alternative and the null hypothesis models,
respectively.

5 Experimental Design
This section compares three tank benchmark models accord-
ing to various model-selection measures. We adopt as our
“correct" model the non-linear model. We will examine the
fidelity and complexity tradeoffs of two simpler models over
a selection of failure scenarios.

The diagnostic task will be to compute the fault state
of the system, given an injected fault, which is one of
(ξN , ξB , ξP ), denoting nominal blocked and passing valves,
respectively. This translates to different tasks given the dif-
ferent models.

non-linear model estimate the true value of κ1 given p1,
which corresponds to a most-likely failure mode as-
signment of one of (ξN , ξB , ξP ).

linear model estimate the true value of κ1 given p1, which
corresponds to a most-likely failure mode assignment
of one of (ξN , ξB , ξP ).

qualitative model estimate the failure mode assignment of
one of (ξN , ξB , ξP ).

5.1 Alternative Models
This section describes the two alternative models that we
compare to the non-linear model, a linear and a qualitative
model.

Linear Model
We compare the non-linear model with a linearised version.
We can perform this linearised process in a variety of ways
[33]. In this simple tank example, we can perform the lin-
earisation directly through replacement of non-linear and
linear operators, as shown below.

Nominal Model We can linearise the the non-linear
3-tank model by replacing the non-linear sub-function√
hi − hj with the linear sub-function γij(hi − hj), where

γij is a parameter (to be estimated) governing the flow be-
tween tanks i and j. The linear model has 4 parameters,
γ12, γ12, γ23, γ3.

Fault Model The fault model introduces a parameter βi
associated with κi, i.e., we replace κi with κi(1 + βi), i =
1, 2, 3, where −1 ≤ βi ≤ 1

κi
− 1, i = 1, 2, 3. This model

has 7 parameters, adding parameters β1, β2, β3.

Qualitative Model
Nominal Model For the model we replace the non-linear
sub-function

√
hi − hj with the qualitative sub-function

M+(hi − hj), where M+ is the set of reasonable functions
f such that f ′ > 0 on the interior of its domain [34].

The tank-heights are constrained to be non-negative, as
are the parameters κi. As a consequence, we can discretize
the hi to take on values {+, 0}, which means that M+(hi−
hj) can take on values {+, 0,−}. The domain for dh1

dt must
be {+, 0,−}, since the qualitative version of q0, Q is non-
negative (domain of {+, 0}) and each M+(hi − hj) can
take on values {+, 0,−}. We see that this model has no
parameters to estimate.

Fault Model
The qualitative fault model has different M+ functions

for the modes where the valve is passing and blocked. We
derive these functions as follows. From a qualitative per-
spective, the domain of βi is {0,+} for a passing valve, and
{-,0} for a blocked valve. To create a new M+ function for
the cases of passing and blocked valve, we qualitatively ap-
ply these corresponding domains to the standard M+ func-
tion with domain {-,0,+} to obtain fault-based M+ func-
tions : M+

P (hi − hj) denotes the M+ function when the
valve is passing, and M+

B (hi − hj) denotes the M+ func-
tion when the valve is blocked.

5.2 Simulation Results
We have compared the simulation performance of the mod-
els under nominal and faulty conditions, considering faults
to individual valves V1, V2 and V3, as well as double-fault
combinations of the valves. In the following we present
some plots for simulations of faults and fault-isolation for
different model types.

Figure 2 shows the results from a single-fault scenario,
where valve V1 is stuck at 50%) at t = 250, based on the
non-linear model. The plot from this simulation show that
at the time of the fault injection, the water level in tank T1

starts increasing while the water level at tanks T2 and T3

start decreasing due to the lower inflow.

p_1
p_2
p_3

0

50

100

150

200

time	[s]
0 100 200 300 400

Figure 2: Simulation with non-linear model for the scenario
of a fault in valve 1 at t = 250 s

Table 1 shows the simulation error-difference between the
non-linear and linear models, for the nominal case and the
faulty case (where valve 1 is faulted). Given that we mea-
sure the pressure levels for p1, p2 and p3 every second, we
use the difference in these outputs to identify the sum-of-
squared-error (SSE) values for the simulations.
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p1 p2 p3 Total
Nominal 2600.3 316.2 118.1 3034.6
V1-fault 2583.1 347.5 137.2 3067.8

Table 1: Data for SSE values for simulations using Non-
linear and Linear representations, given two scenarios:
nominal and faulty (valve V1 at 50% after 250 s)

Figure 3 shows the results for diagnosing the V1-fault us-
ing the non-linear model. We can see that the diagnostic
accuracy is high, as P (V1) converges to almost 1 with little
time lag.

R_
1

0

0.2

0.4

0.6

0.8

1

time	[s]
100 200 300 400 500

Figure 3: Simulation of fault isolation of fault in valve 1
with non-linear model. The figure depicts the probability of
valve 1 being faulty.

In contrast, Figure 4 shows the diagnostic accuracy and
isolation time with a linear model. First, note that there is
a false-positive identified early in the simulation, and the
model incorrectly identifies both valves 2 and 3 as being
faulty. This linear model thus delivers both poor diagnos-
tic accuracy (classification errors) and poor isolation time
(there is a lag between when the fault occurs and when
the model identifies the fault). After the fault injection at
t = 250 [s], the predictive accuracy improves and the cor-
rect fault becomes the most likely fault.
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Figure 4: Simulation of fault isolation of fault in valve
1 with linear model.The figure depicts the probability of
valves 1, 2 and 3 being faulty.

Figure 5 depicts the diagnostic performance with a mixed
linear/non-linear model (T1 is non-linear, while T2 and T3

are linear). The diagnostic accuracy is almost the same as
that of the non-linear model (cf. Figure 3), except for a
false-positive detection at the beginning of the scenario.

6 Experimental Results
This section describes our experimental results, summaris-
ing the data first and then discussing the implications of the
results.
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Figure 5: Simulation of fault isolation of fault in valve 1
with mixed non-linear/linear model (T1 non-linear and both
T2 and T3 linear). The figure depicts the probability of
valves 1, 2 and 3 being faulty.

6.1 Model Comparisons
We have empirically compared the diagnostics performance
of several multi-tank models. In our first set of experiments,
we ran a simulation over 500 seconds, and induced a fault
(valve V1 at 50%) after 250 s. The model combinations in-
volved a non-linear (NL) model, a model (denoted M) with
tank T1 being linear (and other tanks non-linear), a fully
linear model (denoted L), and a Qualitative model (denoted
Q).

To compare the relative performance of the models, we
compute a measure of diagnostics error (or loss), using the
difference between the true fault (which is known for each
simulation) and the computed fault. We denote the true fault
existing at time t using the pair (ω, t); the computed fault at
time t is denoted using the pair (ω̂, t̂). The inference system
that we use, LNG [35], computes an uncertainty measure
associated with each computed fault, denoted P (ω̂). Hence,
we define a measure of diagnostics error over a time window
[0, T ] using

γD1 =
T∑

t=0

∑

ξ∈Ξ

|P (ω̂t)− ωt|, (10)

where Ξ is the set of failure modes for the model, and ωt
denotes ω at time t.

Our second metric covers the fault latency, i.e., how
quickly the model identifies the true fault (ω, t): γ2 = t− t̂.

Table 2 summarises our results. The first columns com-
pare the number of parameters for the different models, fol-
lowed by comparisons of the error (γ1) and the CPU-time
(γ2). The data show that the error (γ1) does not grow very
much as we increase model size, but it increases as we de-
crease model fidelity from non-linear through to qualitative
models. In contrast, the CPU-time (a) increases as we in-
crease model size, and (b) is proportional to model fidelity,
i.e., it decreases as we decrease model fidelity from non-
linear through to qualitative models.

In a second set of experiments, we focused on multiple
model types for a 3-tank system, with simulations running
over 50s, and we induced a fault (valve V1 at 50%) after 25 s.
The model combinations involved a non-linear (NL) model,
a model with tank 3 linear (and other tanks non-linear), a
model with tanks 2 and 3 linear and tank 1 non-linear, a fully
linear model, and a qualitative model. Table 3 summarises
our results.

The data show that, as model fidelity decreases, the er-
ror γ1 increases significantly and the inference times γ2 de-
crease modestly. If we examine the outputs from AICc, we
see that the best model is the mixed model (T3-linear). BIC
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Tanks 2 3 4
# Parameters NL 7 9 11

M 6 8 10
L 5 7 9
Q 2 3 4

γ1 NL 242 242 242
M 997 1076 1192
L 1236 1288 1342
Q 3859 3994 4261

γ2 NL 10.59 23.7 39.5
M 8.52 17.96 34.6
L 6.11 10.57 32.0
Q 4.64 7.31 26.4

Table 2: Data for 2-, 3-, and 4-tank models using Non-linear
(NL), Mixed (M), Linear (L) and Qualitative (Q) represen-
tations

indicates the qualitative model as the best; it is worth noting
that BIC typically will choose the simplest model.

γ1 γ2 AICc BIC
Non-Linear 0.97 23.7 29.45 43.7
T3-linear 3.12 17.96 26.77 42.9
T2, T3-linear 21.96 13.21 31.12 39.56
Linear 77.43 10.57 35.76 37.55
Qualitative 304.41 9.74 43.01 29.13

Table 3: Data for 3-tank model, using Non-linear, Mixed,
Linear and Qualitative representations, given a fault (valve
V1 at 50%) after 25 s

6.2 Discussion
Our results show that MBD is a complex task with several
conflicting factors.

• The diagnosis error γ1 is inversely proportional to
model fidelity, given a fixed diagnosis task.

• The error γ1 increases with fault cardinality.

• The CPU-time γ2 increases with model size (i.e., num-
ber of tanks).

This article has introduced a framework that can be used
to trade off the different factors governing MBD “accuracy".
We have shown how one can extend a set of information-
theoretic metrics to combine these competing factors in
diagnostics model selection. Further work is necessary
to identify how best to extend the existing information-
theoretic metrics to suit the needs of different diagnostics
applications, as it is likely that the “best" model may be
domain- and task-specific.

It is important to note that we conducted experiments with
un-calibrated models, and we have ignored the cost of cal-
ibration in this article. The literature suggests that linear
models can be calibrated to achieve good performance, al-
though performance inferior to that of calibrated non-linear
models. This class of qualitative models does not possess
calibration factors, so calibration will not improve their per-
formance.

7 Conclusions
This article has presented a framework for evaluating the
competing properties of models, namely fidelity and com-
putational complexity. We have argued that model perfor-
mance needs to be evaluated over a range of future observa-
tions, and hence we need a framework that considers the ex-
pected performance. As such, information-theoretic meth-
ods are well suited.

We have proposed some information-theoretic metrics for
MBD model evaluation, and conducted some preliminary
experiments to show how these metrics may be applied.
This work thus constitutes a start to a full analysis of model
performance. Our intention is to initiate a more formal anal-
ysis of modeling and model evaluation, since there is no
framework in existence for this task. Further, the experi-
ments are only preliminary, and are meant to demonstrate
how a framework can be applied to model comparison and
evaluation.

Significant work remains to be done, on a range of fronts.
In particular, a thorough empirical investigation is needs on
diagnostics modeling. Second, the real-world utility of our
proposed framework needs to be determined. Third, a theo-
retical study of the issues of mode-based parameter estima-
tion and its use for MBD is necessary.
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