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Abstract

Increasing complexity and magnitude of tech-
nical systems demand an accurate fault local-
ization in order to reduce maintenance costs
and system down times. Resting on solid
theoretical foundations, model-based diagno-
sis provides techniques for root cause identi-
fication by reasoning on a description of the
system to be diagnosed. Practical implemen-
tations in industries, however, are sparse due
to the initial modeling effort and the compu-
tational complexity. In this paper, we utilize
a mapping function automating the modeling
process by converting fault information avail-
able in practice into propositional Horn logic
sentences to be used in abductive model-based
diagnosis. Furthermore, the continuing per-
formance improvements of SAT solvers moti-
vated us to investigate a SAT-based approach
to abductive diagnosis. While an empirical
evaluation did not indicate a computational
benefit over an ATMS-based algorithm, the
potential to diagnose more expressive models
than Horn theories encourages future research
in this area.

1 Introduction

Fault identification of technical systems is becoming in-
creasingly difficult due to their rising complexity and
scale. Economic and safety considerations have put ac-
curate diagnosis not only into research focus but has
led to a growing interest in practice as well.
Model-based diagnosis has been presented as a
method to derive root causes for observable anoma-
lies utilizing a description of the system to be diag-
nosed [1, 2]. Reiter [1] proposed a component-oriented
model encompassing the correct system behavior and
structure. Discrepancies, i.e. conflicts, arise when
the observed and expected system performance diverge.
Based on the minimal conflict sets, root causes for the
inconsistencies are obtained by hitting set computation.
Hence, fault diagnosis is a two step process, where first
contradicting assumptions on component health, given
a set of symptoms and the model, are identified. Then
the sets intersecting all conflict sets are computed which
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constitute the diagnoses. At the same time [2] presents
the General Diagnosis Engine (GDE) for multiple fault
identification, drawing on the connection between in-
consistencies and causes as well. Their approach em-
ploys an assumption-based truth maintenance system
(ATMS) to detect conflicts and thereon compute diag-
noses. Over the years much work has concentrated on
model-based diagnosis applications in various domains,
such as space probes [3] or the automotive industry [4].

Besides the consistency-based approach, a second
method emerged within the field of model-based diag-
nosis, which exploits the concept of entailment to infer
explanations for given observables. While related to
the more traditional technique based on consistency,
abductive model-based diagnosis requires a system for-
malization representing faults and their manifestations
[5].

Even though based on a well-defined theory, a
widespread acceptance of model-based diagnosis among
industries has not been accounted for yet. Two main
contributing factors can be identified: the initial model
development and the computational complexity of di-
agnosis [6]. In order to diminish the modeling effort,
[7] formulates a conversion of failure assessments avail-
able in practice into a propositional logic representation
suitable for abductive diagnosis. Failure mode and ef-
fect analysis (FMEA) is an established reliability eval-
uation method utilized in various industrial fields. It
considers possible component faults as well as their im-
plications on the system’s behavior [8]. Whereas there
has been extensive research on the automatic genera-
tion of FMEAs from system models [9], we argue in
favor of the inverse process. As these assessments re-
port on failures and how they reveal themselves in the
artifact’s behavior, they provide knowledge requisite for
abductive reasoning. In this paper, we present a com-
pilation of FMEASs to models which can be used in ab-
ductive diagnosis.

Apart from discovering inconsistencies, an ATMS is
capable of inferring abductive diagnoses. However, it
may face computational challenges and is restricted to
operate on propositional Horn clauses. In the case of
the models we are extracting from the FMEAs, this is
not a limitation so far. Nevertheless, as we anticipate
to exploit more expressive representations, a different
approach is required.

The performance of Boolean satisfiability (SAT)
solvers has improved immensely over the last years and
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several applications of SAT solvers in practice have
proven successful. Furthermore, we are able to encode
a greater variety of models in SAT. Thus, we propose a
SAT-based approach to abductive diagnosis and empir-
ically compare its performance to a procedure depen-
dent on an ATMS.

The remainder of this paper is structured as follows.
After formally providing the theoretical background on
abductive diagnosis as well as relevant definitions in
the context of SAT, we formulate the modeling process
based on FMEAs and give information on the prop-
erties of the obtained system descriptions. In Section
5 we describe our SAT-based approach to abductive
diagnosis and present an algorithm computing expla-
nations for a given abduction problem. An empirical
evaluation comparing our method to an ATMS-based
diagnosis engine follows in Section 6. Subsequently, we
provide some concluding remarks and give an outlook
on future research possibilities.

2 Related Work

Mechanizing logic-based abduction has been an active
research field for several decades with different ap-
proaches for generating explanations emerging, such as
proof tree completion [10] and consequence finding [11].
While the former exploits a refutation proof involving
hypotheses, the latter computes causes as logical conse-
quences of the theory. As resolution is not consequence
finding complete, [12] devised a procedure based on lin-
ear resolution which is sound and complete for conse-
quence finding for propositional as well as first order
logic.

While the number of practical applications in the
context of abductive model-based diagnosis is rather
small, in [13] the authors describe abductive reasoning
in environmental decision support systems.

Most recently [14] present a SAT encoding for
consistency-based diagnosis. The system description
is compiled into a Boolean formula, such that the for-
mula’s satisfying assignments correspond to the solu-
tions of the diagnosis problem. Based on the encoding,
a SAT solver directly computes the diagnoses. In or-
der to improve the solver’s performance, the authors
utilize several preprocessing techniques. An empirical
comparison of their approach to other model-based di-
agnosis algorithms indicates that their SAT encoding
yields performance benefits. Contrasting these results,
[15] propose a translation to Max-SAT which could not
outperform the stochastic model-based diagnosis algo-
rithm SAFARI [16].

In [17] the authors present an algorithm which ties
constraint solving to diagnosis, thus renders the detec-
tion of inconsistencies and subsequent hitting set com-
putation unnecessary. Another direct approach by [18]
computes minimal diagnoses for over-constrained prob-
lems by finding the sets of constraints to be relaxed
in order to restore consistency. For Boolean formu-
las, those relaxations correspond to Minimal Correc-
tion Subsets (MCSes). Their hitting set dual, mini-
mal unsatisfiable subsets (MUSes), constitute the set
of subformulas explaining the unsatisfiability, i.e. refer
to conflicts. While there are several algorithms for ef-
ficiently computing MCSes, most recently [19] develop
three techniques for reducing the number of SAT solver
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calls for existing methods as well as a novel algorithm
for MCSes computation.

As stated by [20] the complexity of abduction sus-
pends of a polynomial-time transformation to SAT.
Thus, in their work the authors present a fixed-
parameter tractable transformation from propositional
abduction to SAT exploiting backdoors and describe
how to use their transformations to enumerate all solu-
tions for a given abduction instance.

3 Preliminaries

This section provides a brief introduction to abduc-
tive model-based diagnosis. In particular, we describe
the propositional Horn clause abduction problem (PH-
CAP) which provides the basis for our research. Note
that throughout the paper we consider the closed-world
assumption. In addition to the background on abduc-
tive model-based diagnosis, we formally define MUSes
and MCSes.

3.1 Abductive Diagnosis

In contrast to the traditional consistency-based ap-
proach, abductive model-based diagnosis depends on a
stronger relation between faults and observable symp-
toms, namely entailment. Hence, whereas consistency-
based diagnosis reasons on the description of the cor-
rect system operation, abductive reasoning requires the
model to capture the behavior in presence of a fault.
By exploiting the notion of entailment and the causal
links between defects and their corresponding effects,
we can reason about explanations for observed anoma-
lies. In general, abductive diagnosis is an NP-hard
problem. However, there are certain subsets of logic,
such as propositional definite Horn theory, which are
tractable [21]. On these grounds we consider the PH-
CAP as defined in [22], which represents the connec-
tions between causes and effects as propositional Horn
sentences. Similar to [22], we define a knowledge base
as a set of Horn clauses over a finite set of propositional
variables.

Definition 1 (Knowledge base (KB)). A knowledge
base (KB) is a tuple (A,Hyp, Th) where A denotes the
set of propositional variables, Hyp C A the set of hy-
potheses, and Th the set of Horn clause sentences over

A.

The set of hypotheses contains the propositions,
which can be assumed to either be true or false and
refer to possible causes. In order to form an abduction
problem, a set of observations has to be considered for
which explanations are to be computed.

Definition 2. (Propositional Horn Clause Abdu-
ction Problem (PHCAP)) Given a knowledge base
(A,Hyp,Th) and a set of observations Obs C A then
the tuple (A,Hyp,Th,Obs) forms a Propositional Horn
Clause Abduction Problem (PHCAP).

Definition 3 (Diagnosis; Solution of a PHCAP).
Given a PHCAP (A,Hyp,Th,0bs). A set A C Hyp is
a solution if and only if A U Th = Obs and A U Th
= L. A solution A is parsimonious or minimal if and
only if no set A" C A is a solution.

A solution to a PHCAP is equivalent to an abduc-
tive diagnosis, as it comprises the set of hypotheses



Proceedings of the 26" International Workshop on Principles of Diagnosis

explaining the observations. Even though Definition 3
does not impose the constraint of minimality on a solu-
tion, in practice only parsimonious explanations are of
interest. Hence, we refer to minimal diagnoses simply
as diagnoses. Notice that finding solutions for a given
PHCAP is NP-complete [22].

As aforementioned an ATMS derives abductive ex-
planations for propositional Horn theories, thus it can
be utilized to find solutions to a PHCAP. Based on
a graph structure where hypotheses, observations, and
contradiction are represented as nodes, the Horn clause
sentences defined in T'h determine the directed edges in
the graph. Each node is assigned a label containing the
set of hypotheses said node can be inferred from. By
updating the labels, the ATMS maintains consistency.

Algorithm abductiveExplanations exploits an
ATMS and returns consistent abductive explanations
for a set of observations [23]. In case the observa-
tion consists of a single effect, the label of the corre-
sponding proposition already contains the abductive
diagnoses. To account for multiple observables, i.e.
Obs = {o01,02,...,0,}, an individual implication is
added, such that o1 A os... A o, — obs, where obs is
a new proposition not yet considered in A. Every set
contained in the label of obs constitutes a solution to
the particular PHCAP.

Algorithm 1 abductiveExplanations [23]

procedure ABDUCTIVEEXPLANATIONS
(A, Hyp, Th, Obs)
Add Th to ATMS
Add (A,cops 0 — 0bs) to ATMS
return the label of obs

end procedure

> obs ¢ A

3.2 Minimal Unsatisfiable Subset and
Minimal Correction Subset

We assume standard definitions for propositional logic
[24]. A propositional formula ¢ in CNF, defined over

a set of Boolean variables X = {z1,x2,...2,}, is a
conjunction of m clauses (C1,Cy,...,Cp,). A clause
C; = (lh,la,...,1lg) is a disjunction of literals, where

each literal [ is either a Boolean variable or its comple-
ment. A truth assignment is a mapping p : X = {0,1}
and a satisfying assignment for ¢ is a truth assignment
u such that ¢ evaluates to 1 under p. Given a formula ¢,
the decision problem SAT consists of deciding whether
there is a satisfying assignment for the formula.

In case ¢ is unsatisfiable there are subsets of ¢, which
are of special interest in the diagnosis context, namely
the MUSes and MCSes. A Minimal Unsatisfiable Sub-
set (MUS) comprises a subset of clauses which cannot
be satisfied simultaneously. Notice that every proper
subset of MUS is satisfiable. A Minimal Correction
Subset (MCS) is the set of clauses which corrects the
unsatisfiable formula, i.e. by removing any MCS the
formula becomes satisfiable.

Given an unsatisfiable formula ¢, an MUS and MCS
are defined as follows [25]:

Definition 4. (Minimal Unsatisfiable Subset
(MUS)) A subset U C ¢ is an MUS if U is unsatisfi-
able and VC; € U,U \ ({C;}) is satisfiable.
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Definition 5. (Minimal Correction Subset
(MCS)) A subset M C ¢ is an MCS if ¢\ M is satis-
fiable and VC; € M, ¢\ (M \ {C;}) is unsatisfiable.

Since an MCS is a set of clauses correcting the un-
satisfiable formula when removed, a single clause of an
MUS is an MCS for this MUS. Note that the hitting
set duality of MUSes and MCSes has been established
[26].

Ezxample.
CNF.

Consider the unsatisfiable formula ¢ in

Cy Co Cs Cy
—_— N
p=(-aV-bVe)A(—eVd)A (¢) AN(—~d)

It is apparent that the combination of clauses Cy, Cs
and Cy results in ¢ being unsatisfiable, hence

MUSes(¢) = {{C3,Cs3,Cy}}.

By hitting set computation we arrive at the following
set of MCSes:

MCSes(¢) = {{Ca},{C5}, {C4}}.

Removing any MCS of ¢ results in the formula being
satisfiable.

It is worth noticing that utilizing subsets of un-
satisfiable formulas has been proposed in regard to
consistency-based diagnosis. In this context, a diagno-
sis is defined as the set of components which assumed
faulty retains the consistency of the system. Thus, a
consistency-based diagnosis corresponds to an MCS.
For instance, [18] presents a direct diagnosis method
computing MCSes for over-constrained systems. In
conflict-directed algorithms, as proposed by Reiter [1],
the minimal conflicts, arising from the deviations of
the modeled to the experienced behavior, equate to the
MUSes. In Section 5 we discuss our abductive diagnosis
approach based on MUSes and MCSes.

4 Modeling Methodology

As mentioned before model-based diagnosis depends on
a formal description of the system to be examined. The
generation of appropriate models, however, is still an
issue preventing a wide industrial adoption, since the
modeling process is time-consuming and typically de-
manding for system engineers.

Therefore, we present a modeling methodology rely-
ing on FMEAs available in practice. An FMEA com-
prises a systematic component-oriented analysis of pos-
sible faults and the way they manifest themselves in
the artifact’s behavior and functionality [8]. This type
of assessment is gaining importance and has become a
mandatory task in certain industries, especially for sys-
tems that require a detailed safety analysis. Due to the
knowledge capturing the causal dependencies between
specific fault modes and symptoms, an FMEA provides
information suitable for abductive reasoning [7].

Definition 6 (FMEA). An FMEA is a set of tuples
(C, M, E) where C € COMP is a component, M €
MODES is a fault mode, and E C PROPS is a set of
effects.

Running Erample. In order to illustrate our mod-
eling process, we use the converter of an industrial
wind turbine as our running example [27]. Table 1
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illustrates a simplified FMEA neglecting all parts af-
filiated with reliability analysis, such as severity rat-
ings. Each row specifies a particular failure mode, (i.e.
Corrosion, Thermo-mechanical fatigue (TMF) or High-
cycle fatigue (HCF)) of a subsystem and determines its
corresponding symptoms, such as P_turbine referring
to a deviation between expected and measured turbine
power output.

[ Component | Fault Mode | Effect ]

Fan Corrosion T_cabinet, P_turbine
Fan TMF T_cabinet, P_turbine

IGBT HCF T_inverter_cabinet,
T_nacelle, P_turbine

Table 1: Excerpt of the FMEA of the converter

Consider the FMEA of the converter in Table 1. We
can map the columns to their corresponding represen-
tations from Definition 6. The entries in the column
Component constitute the elements of COM P, the en-
tries in Fault Mode of MODES and PROPS subsumes
the entries of Fffect.

COMP ={ Fan,IGBT }
MODES = { Corrosion,TMF,HCF }

T_cabinet, P_turbine, }

PROPS = { T_inverter_cabinet, T_nacelle

Through Definition 6 we obtain FM EAconverter =

(Fan, Corrosion, {T_cabinet, P_turbine}),
(Fan, TMF,{T_cabinet, P_turbine}),
(IGBT, HCF,{T_inverter_cabinet, T_nacelle,
P_turbine})

Since the FMEA already represents the relation be-
tween defects and their manifestations the conversion to
a suitable abductive K B is straightforward. It is worth
noting that FMEAs usually consider single faults; thus,
the resulting diagnostic system holds the single fault as-
sumption. Let HC be the set of horn clauses. We define
a mapping function M : 2FMEA s H(C generating a
corresponding propositional Horn clause for each entry
of the FMEA [7].

Definition 7 (Mapping function 91). Given an
FMEA, the function 9 is defined as follows:

U =
teFMEA
where M(C, M, E) =gy {mode(C,M) - ele € E'}.

We utilize the proposition mode(C, M) to denote that
component C experiences fault mode M. Thus, the
set of component-fault mode couples forms the set of
hypotheses.

M(FMEA) =acs

U {mode(C, M)}.

(C,M,E)eFMEA

Hyp =gey

In regard to the running example the following elements
compose the set Hyp:

mode(Fan, Corrosion),
Hyp = { mode(Fan, TMF), }

mode(IGBT, HCF)
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The set of propositional variables A is defined as the
union of all effects stored in the FMEA as well as all
hypotheses, that is the set of component-fault mode
pairs, i.e.:

A =def U

(C,M,E)eFMEA

E U{mode(C,M)}

Continuing our converter example:

T_cabinet, P_turbine,
T_inverter_cabinet, T_nacelle,
A= mode(Fan, Corrosion),
mode(Fan, TMF),
mode(IGBT, HCF)

Applying 9 results in the following set of proposi-
tional Horn clauses representing Th and thus complet-

ing K Bconverter:

mode(Fan, Corrosion) — T_cabinet,
mode(Fan, Corrosion) — P_turbine,
mode(Fan, TMF) — T_cabinet,
mode(Fan, TMF) — P_turbine,
mode(IGBT, HCF) — T_inverter_cabinet,
mode(IGBT, HCF) — T_nacelle,
mode(IGBT, HCF) — P_turbine

Th =

On account of the mapping function 9 and the un-
derlying structure of the FMEAs, the compiled models
feature a certain topology. First, the set of hypotheses
and symptoms are disjoint sets. Second, since there is
a causal link from faults to effects but not vice versa,
the descriptions exhibit a forward and acyclic structure.
Specifically, each implication connects one hypothesis
to one effect, thus are bijunctive clauses. In order to
account for impossible observations, we append addi-
tional implications to K B stating that an effect and its
negation cannot occur simultaneously, i.e. e A —e = L.

The question remains whether the generated models
are suitable for the diagnostic task. Abductive expla-
nations are consistent by definition and complete given
an exhaustive search. Thus, the appropriateness of the
system description is determined by whether a single
fault diagnosis can be obtained given all necessary in-
formation is available.

Definition 8. (One Single Fault Diagnosis
Property (OSFDP)) Given a KB (A, Hyp,Th). KB
Julfills the OSFDP if the following hold:

VYm € Hyp : 30bs C A : {m} is a diagnosis of (A, Hyp,
Th,Obs) and —3m’ € Hyp : m’ # m such that {m’} is
a diagnosis for the same PHCAP.

The property ensures that under the assumption
enough knowledge is available all single fault diagnoses
can be distinguished and subsequently unnecessary re-
placement activities are avoided. To verify whether the
OSFDP holds or not, we compute the set of proposi-
tions (k) implied by each hypothesis h and the theory.
It is not fulfilled if we can record for two or more hy-
potheses the same 6(h). [7] describes a polynomial al-
gorithm testing for the property. Note that the OSFDP
check can be done on side of the FMEA before compil-
ing the model. This is advantageous as the absence of
the property indicates that internal variables or obser-
vations have not been considered in the FMEA.
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Assume the set of hypotheses {hi, ha, ..., h,} share
the same d(h). We cannot distinguish hq,ha,..., A,
from one another and thus all corresponding compo-
nents have to be repaired or replaced in case they are
part of the diagnosis. Therefore, we can treat them
as a unit by replacing hi,ho,...,h, with a new hy-
pothesis h’. Once all indistinguishable hypotheses have
been removed, the K B satisfies the OSFDP. Regarding
the hypotheses, which cannot be differentiated, as one
cause during diagnosis has an effect on the computa-
tional effort as fewer hypotheses are to be considered.

Algorithm distinguishHypotheses replaces all in-
distinguishable causes and ensures that after termi-
nation the given K B satisfies the OSFDP. Evidently,
the algorithm’s complexity is determined by the three
nested loops, hence O(|Hyp|?|A — Hyp|). Since there
is a finite number of hypotheses and effects possibly
included in §(h) the algorithm must terminate.

Algorithm 2 distinguishHypotheses

procedure DISTINGUISHHYPOTHESES (A, Hyp, Th)
V[[Hypl|] < Hyp
for all h; € ¥ do
for all hs € ¥ do
if hy1 # ho then
if 6(h1) = d(h2) and 6(h1) # 0 then
Create new hypothesis B’ > h' ¢ Hyp
Add A’ to ¥
Add b’ to A
for all e € 6(h1) do
Add (W' —e) to Th
Remove (hy — €) from Th
Remove (ha — €) from Th
end for
Remove hi A hs from ¥
Remove hi A hg from A
end if
end if
end for
end for
return KB(A, U, Th)
end procedure

Our running example of the converter does not
fulfill the OSFDP, since mode(Fan,Corrosion) and
mode(Fan, TMF) are not distinguishable. By re-
moving both hypotheses and introducing h'’ =
mode((Fan, Corrosion), (Fan, TMF)) the property is
fulfilled.

Notice that abductive diagnosis is premised on the
assumption that the model is complete; thus, we pre-
sume that all significant fault modes for each con-
tributing part of the system have been contemplated
in the FMEA. Furthermore, we expect on the one hand
that the symptoms described within the FMEA are de-
tectable in order to constitute observations. On the
other hand, the automated mapping demands a consis-
tent effect denotation throughout the analysis.

5 Abductive Diagnosis via SAT

Although an ATMS derives abductive diagnoses, it is
limited to propositional Horn theories and subject to
performance issues. Both problems have been accom-
modated through ATMS extensions and focus strate-
gies. Nevertheless, the advances in the development
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of SAT solvers and their application to a vast number
of different AI problems and industrial domains have
motivated us to consider a SAT-based approach for ab-
ductive diagnosis.

Recall Definition 3 of a diagnosis: A is an abduc-
tive explanation if AUTh |= Obs and AUTh [~ L.
Through logical equivalence we recast the first condi-
tion to AUThU {-0bs} = L, where {=Obs} denotes
the set containing the complement of each observation
in Obs, i.e. Yo € Obs : —o € {=0Obs} [10]. In general, we
can state the relation as follows: given the theory and
assuming the hypotheses to be true whereas stating the
absence of a set of observations, results in an inconsis-
tency due to the fact that the causes entail the effects,
i.e. HypUThU {-0bs} = L. Thus, we draw on this
relationship and reformulate the problem of generating
minimal abductive explanations for a set of observa-
tions to computing minimal unsatisfiable subformulas.

Since MUSes contain several unsatisfiable subsets
irrelevant for the diagnostic task, we define the set
MU Sespyp, which only contains subset minimal MUS
comprising clauses referring to hypotheses:

Definition 9. (MUSespy,) Let MU Ses be the set of
MUSes of HypUThU{—=0bs}, then VM € MUSesgy,, :
3U € MUSes : M = U N Hyp and -3M' €
MUSespy, : M' C M.

Corollary 1. Given a PHCAP(A, Hyp, Th,Obs), let
MUSespy, be the set of interesting MUSes. A set
A C Hyp is a minimal abductive diagnosis if AM €
MUSespyp: A=M and AUTh B~ L.

Proof. We can restate the problem of computing in-
consistencies to finding the set of prime implicates of
ThAHypA{—-0bs}. By definition, the prime implicates
are equivalent to the MUSes of said formula. O

Deriving a minimal abductive explanation corre-
sponds to computing a minimal subset of the hypothe-
ses, which cannot be simultaneously satisfied with the
theory and the negation of observations.

We devised the algorithm satAB, which computes the
set of abductive diagnoses for a given PHCAP based on
MUS enumeration. First, in order to take advantage of
the MUSes, which correspond to the solutions of the
PHCAP, we create an unsatisfiable CNF encoding of
the problem. Since the Th consists of Horn clauses
a conversion into CNF is straightforward. Note that
we are, however, not limited to Horn clause models, as
we can create a CNF representation based on Tseitin
transformation [28]. We refer to the set of clauses as-
sociated with the theory as 7. For each h € Hyp we
create a single clause assuming h to be true. Addition-
ally, we generate a disjunction containing the negated
observations. The resulting unsatisfiable formula is re-
ferred to as ¢. A — Set is the set of diagnoses obtained
from the PHCAP.

The diagnostic task consists in computing the sets of
hypotheses which are responsible for the unsatisfiabil-
ity of ¢, i.e. MUSespyp(¢). Since finding satisfiable
subsets is an NP-hard problem whereas UNSAT resides
in Co-NP, we employ an MCSes enumeration algorithm
on the unsatisfiable formula and then derive the diag-
noses via hitting set computation [25]. As we are only
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C1 : =mode(Fan, Corrosion) V T_cabinet

(
C5 : “mode(Fan, TMF)V T_cabinet
(

C7 : =mode(IGBT, HCF) V P_turbine
Cy : mode(Fan, TMF)
C11 : = P_turbine V =T _cabinet

Cs : =mode(IGBT, HCF) V T_inverter_cabinet

Cs : =mode(Fan, Corrosion) V P_turbine
Cy : =mode(Fan, TMF)\V P_turbine

Cs : "mode(IGBT, HCF) V T_nacelle

Cs : mode(Fan, Corrosion)

Cho : mode(IGBT, HCF)

Figure 1: SAT encoding of the running example

Algorithm 3 satAB

procedure SATAB (A, Hyp, Th, Obs)
MCSes 0
MCSespyp + 0
T <+ CNF(Th) > CNF representation of Th
¢ —TU Hyp U \/OEObs o
MCSes <+ MCSes(¢) > MCS enumeration algorithm
for all m € MCSes do
if m C Hyp and m U Th is consistent then
MCSesuyp < mUMCSesHyp
end if
end for
A — Set <~ MHS(MCSesmyp)
algorithm
return A — Set
end procedure

> Minimal hitting set

interested in the conflicts stemming from the assump-
tions that all hypotheses are true, we select each MCS
only containing clauses referring to explanations. For
this reason, we create the set MCSesgy, such that
Ym € MCSespy, : m C Hyp. This has one prac-
tical rational: it diminishes the number of sets to be
considered by the hitting set algorithm. The corre-
sponding MUSes derived via hitting set computation
of MCSesp,, already constitute the abductive diag-
noses.

Consider again our running example of the converter.
We already obtained the K B via the mapping function
M. Let us assume that the condition monitoring sys-
tem of the wind turbine encountered that the turbine’s
power output is lower than expected (P_turbine) and
that the cabinet temperature exceeds a certain thresh-
old (T_cabinet), i.e. Obs = {P_turbine, T_cabinet}. In
Figure 1 we depict the CNF representation ¢ of the ab-
duction problem. Clauses Cy to C7 refer to T, Cg to
C1o to the set Hyp and clause C; contains the negation
of the set of observations.

Computing the M CSes of ¢ we obtain: MCSes =

{C11},{C1,C3},{C1,Co} ,{C3,Cs},{Co, Cs},
{C4,C7,C5} ,{Cy4, Cho, Ca} ,{C4, C7,Cs}, .
{C4,C10,Cs},{C2,Cy,C7} ,{C2,Cy,Cio}

Extracting the MCSes, which only contain clauses
from Hyp and are consistent with regard to the theory,
results in

MCSBSHyp == {{Cg, Os}}

By computing the hitting set of M CSesp;,, we obtain
the set of MUSes solely referring to explanations, which
is in fact the set of diagnoses:

A — Set = {{Co},{Cs}}.
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Hence the abductive
Ay = {mode(Fan,Corrosion)}
{mode(Fan,TMF)}.

diagnoses are
and Ao =

6 Empirical Evaluation

To determine whether computing abductive diagnoses
via SAT yields any computational advantages in the
case of our models, we conducted an empirical eval-
uation, comparing abductiveExplanations to satAB
on several instances of FMEAs. In case of the former
we employed a Java implementation of an unfocused
ATMS. The algorithm satAB exploits on the one hand
an MCS enumeration procedure and on the other hand
an implementation of a hitting set algorithm. We uti-
lized the MCSLg tool by [19] to compute the MCSes.
MCSy,g is written in C++, employs Minsat 2.2 as the
SAT solver, and provides the possibility to apply sev-
eral MCS enumeration algorithms. We decided for the
CLD approach of MCSrg, which takes advantage of
disjoint unsatisfiable cores and showed the best over-
all performance in a preliminary experimental set-up.
Regarding the hitting set computation, we engaged a
Java implementation of the Binary Hitting Set Tree al-
gorithm [29] which performed well in a comparison of
minimal hitting set algorithms [30]. All the numbers
presented in this section were obtained from a Lenovo
ThinkPad T540p Intel Core i7-4700MQ processor (2.60
GHz) with 8 GB RAM running Ubunutu 14.04 (64-bit).

Several publicly available as well as project internal
FMEAs provide the basis for our evaluation. They
cover various technical systems and subsystems with
different underlying structures. In particular they de-
scribe faults in electrical circuits, a connector system by
Ford (FCS), the Focal Plane Unit (FPU) of the Hetero-
dyne Instrument for the Far Infrared (HIFI) built for
the Herschel Space Observatory, printed circuit boards
(PCB), the Anticoincidence Detector (ACD) mounted
on the Large Area Telescope of the Fermi Gamma-ray
Space Telescope, the Maritim ITStandard (MiTS), and
rectifier, inverter, transformer, backup components, as
well as main bearing of an industrial wind turbine. By
applying the mapping function 91, we generated the
corresponding abductive knowledge bases KB for each
FMEA. Table 2 provides an overview of the FMEAs’
structure and the evaluation results. It is worth noting
that the FMEAs vary in the number of hypotheses, i.e.
component-fault mode couples, the number of effects,
and the number of rules, i.e. the links between faults
and symptoms. Due to Th of an abductive KB com-
prising Horn clauses, a conversion into a CNF represen-
tation, suitable for the MCSyg tool, is straightforward.
We do not address the model compilation times, since
the system description would be compiled offline and
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Figure 2: Cumulative runtimes of abductiveExplana-
tions and satAB for the FMEA instances

the mapping execution consumed less than one second
for the examples we utilized so far.

Table 2 shows that none, except of the model re-
sulting from the transformer’s FMEA, of the original
models satisfy the OSFDP. Therefore, we compiled a
second set of models fulfilling the property by exchang-
ing each set of indistinguishable hypotheses with a new
single hypothesis representing said set. For example,
Algorithm distinguishHyp ensures that the resulting
K B satisfies the OSFDP. In Table 2 the original models
are identified accordingly, and the adapted models are
provided with the label OSFDP. Note that the num-
ber of hypotheses and rules diminishes for the adapted
models.

In the experiments, we computed the abductive ex-
planations for |Obs| from one to the maximum number
of effects possible. The observations were generated
randomly; however, the same set was used for satAB
and abductiveExplanations on the original as well as
adapted model. The results reported in Table 2 have
been obtained from ten trials and both algorithms faced
a 200 seconds runtime limit. Whereas some of the small
runtimes are arguable due to the measurement in the
milliseconds range, Table 2 reveals that satAB (Mean
= 703.73 ms, SD = 8432.07 ms, Median = 0.59 ms,
Skewness = 18.61) does not outperform abductiveEx-
planations (Mean = 3.08 ms, SD = 16.38 ms, Median
= 1 ms, Skewness = 12.68) in general. From the statis-
tical data we can infer that the underlying distribution
of both algorithms is highly right skewed, thus the bulk
of values is located towards the lower runtimes. We can
even observe that for certain instances, the SAT-based
approach performs rather poorly. Amongst these are
the model of an inverter and a rectifier of an industrial
wind turbine. satAB exceeded the given timeout four
times for the former. Notice that in all these cases the
MCSes generation already reached the time threshold.
According to [19] CLD requires |¢| — p + 1 SAT solver
calls, where p refers to the size of the smallest MCS
of ¢. In our case p = 1, as the clause representing the
set of negated observations always constitutes an MCS.
Thus, |¢| SAT solver calls are necessary, where |¢| is de-
termined by |Th|+ |Hyp| + 1, with 1 referring to the
clause containing the observations. Unsurprisingly, the
larger FMEAs are more computationally demanding.
It is worth mentioning that in the majority of cases
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the hitting set computation accounted for a negligible
fraction of the total runtime.

Figure 2 illustrates the cumulative log runtimes for
satAB and abductiveExplanations on the FMEA
models generated. Although abductiveExplanations
performs on average better, the first model requires a
longer computation time for both algorithms. More-
over, the illustration reveals the high computational ef-
fort necessary for satAB to compute the diagnoses for
the model of the inverter. As expected we observe par-
ticularly high runtimes when the set of observations
contains effects corresponding to different hypotheses.
This has a greater impact on satAB than on the ATMS
implementation. For the section from the models FCS
to PCB in Figure 2, however, we can see that the cu-
mulative runtime for abductiveExplanations rises at
a steeper angle. Generally, the data gathered in the
experiment do not suggest a performance benefit of the
SAT-based approach over an ATMS implementation.

7 Conclusion and Future Work

In the course of the paper, we presented a mapping
from failure assessments available to propositional Horn
clause models. The modeling methodology relies on
FMEAs as they comprise information on faults and
their symptoms. Hence, they provide a suitable source
for model compilation. Although in our case an ATMS
can be used to compute abductive diagnoses, it is lim-
ited to propositional Horn theories. We proposed a
SAT-based approach to abductive model-based diagno-
sis which allows us to reason on more expressive repre-
sentations. Our method is based on computing conflict
sets, i.e. MUSes, resulting from a rewritten, unsatisfi-
able system description. Subsets of these unsatisfiable
cores constitute the minimal abductive explanations.
Since the computation of MUSes is computationally de-
manding our proposed algorithm exploits its hitting set
dual, MCSes, in order to derive minimal diagnoses.

We empirically compared an implementation of a di-
agnosis engine employing an ATMS to our SAT-based
algorithm. The results indicate that while for some of
the models, the algorithm performs well, in general we
could not observe a performance advantage. Particular
examples led to even longer computation times than the
ATMS-based implementation. Despite the fact that the
data provided no evidence of a computational benefit in
employing a SAT-based approach, we believe that the
possibility to utilize more expressive models provides
an interesting incentive for future research in this area.

Since the evaluation results, did not indicate a supe-
riority of the SAT-based approach on grounds of MC-
Ses enumeration, we currently investigate direct conflict
generation methods. Additionally, due to the model
structure and the experiment data we are planning on
employing compilation methods [31, 32], in order to
divert some of the computational inefficiency to the
model generation process.
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Model Structure #Diagnoses Runtime [in ms] |
Component #Hyp | #Effects | #Rules | MAX | AVG [ SF | DF TF | Algorithm [ MIN [ MAX | AVG |
Electrical circuit
32 17 52 792 197.15 11 11 66 abductive <1 425 27.87
Original Explanations
satAB <1 181.33 76.05
15 17 35 1 1 1 1 1 abductive <1 8 0.33
OSFDP Explanations
satAB <1 1.91 0.16
FCS
17 17 51 18 2.93 3 6 18 abductive <1 1 0.42
Original Explanations
satAB <1 6.41 1.28
15 17 49 18 2.75 3 6 18 abductive <1 61 2.04
OSFDP Explanations
satAB <1 4.73 0.56
ACD
13 16 41 15 2.89 5 15 15 abductive <1 84 1.38
Original Explanations
satAB <1 2.89 0.35
12 16 39 10 2.04 5 10 10 abductive <1 1 0.29
OSFDP Explanations
satAB <1 2.435 0.28
Main bearing
3 5 20 3 2.54 3 0 0 abductive <1 1 0.16
Original Explanations
satAB <1 1 0.09
2 5 15 2 1.54 2 0 0 abductive <1 1 0.12
OSFDP Explanations
satAB <1 0.61 0.03
HIFI - FPU
17 11 36 63 8.64 3 7 21 abductive <1 86 2.54
Original Explanations
satAB <1 8.33 3
9 11 27 6 1.55 2 2 3 abductive <1 1 0.15
OSFDP Explanations
satAB <1 1 0.09
MiTS 1
18 21 48 24 8.40 3 2 6 abductive <1 94 3.40
Original Explanations
satAB <1 3.02 0.39
13 21 43 1 1 1 1 1 abductive <1 100 1.54
OSFDP Explanations
satAB <1 2.15 0.16
MiTS 2
22 15 48 288 39.98 4 8 18 abductive <1 109 4.49
Original Explanations
satAB <1 15.16 3.43
14 15 37 5 2.02 1 5 2 abductive <1 1 0.33
OSFDP Explanations
satAB <1 1.68 0.20
PCB
10 11 24 2 1.49 2 2 2 abductive <1 1 0.21
Original Explanations
satAB <1 1.49 0.1
9 11 23 1 1 1 1 1 abductive <1 1 0.11
OSFDP Explanations
satAB <1 1 0.1
Inverter
30 38 144 450 23.73 19 5 50 abductive <1 107 6.15
Original Explanations
satAB <1 166593 5007.37
23 38 124 66 5.89 14 3 6 abductive <1 94 1.67
OSFDP Explanations
satAB <1 1110.82 38.23
Rectifier
20 17 93 88 10.83 8 24 32 abductive <1 [§ 1.07
Original Explanations
satAB <1 24236.9 1070.88
14 17 66 22 3.06 5 18 8 abductive <1 1 0.63
OSFDP Explanations
satAB <1 44.74 4.88
Transformer
5 8 22 2 1.06 2 2 1 abductive <1 1 0.16
Original Explanations
satAB <1 1.69 0.06
5 8 22 2 1.06 2 2 1 abductive <1 1 0.13
OSFDP Explanations
satAB <1 1.91 0.08
co%%cc%(nue%ts
25 30 114 252 23.06 8 12 21 abductive <1 138 5.24
Original Explanations
satAB <1 41.98 12.89
19 30 95 48 3.29 7 7 10 abductive <1 4 0.79
OSFDP Explanations
satAB <1 10.06 3.09

Table 2: Features of the FMEAs and experimental results. For each component we conducted the experiment
using an implementation of abductiveExplanations and satAB. The columns SF, DF, TF display the maximum
number of single faults, double faults, and triple faults, respectively.
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