
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
Matthew Daigle1 and Anibal Bregon2 and Indranil Roychoudhury3

1NASA Ames Research Center, Moffett Field, CA 94035, USA
e-mail: matthew.j.daigle@nasa.gov

2Department of Computer Science, University of Valladolid, Valladolid, 47011, Spain
e-mail: anibal@infor.uva.es

3Stinger Ghaffarian Technologies Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA
e-mail: indranil.roychoudhury@nasa.gov

Abstract
Nowadays, a large number of practical systems in
aerospace and industrial environments are best rep-
resented as hybrid systems that consist of discrete
modes of behavior, each defined by a set of contin-
uous dynamics. These hybrid dynamics make the
on-line fault diagnosis task very challenging. In
this work, we present a new modeling and diagno-
sis framework for hybrid systems. Models are com-
posed from sets of user-defined components using
a compositional modeling approach. Submodels
for residual generation are then generated for a
given mode, and reconfigured efficiently when the
mode changes. Efficient reconfiguration is estab-
lished by exploiting causality information within
the hybrid system models. The submodels can then
be used for fault diagnosis based on residual gen-
eration and analysis. We demonstrate the efficient
causality reassignment, submodel reconfiguration,
and residual generation for fault diagnosis using
an electrical circuit case study.

1 Introduction
Robust and efficient fault diagnosis plays an important role in
ensuring the safe, correct, and efficient operation of complex
engineering systems. Many engineering systems are modeled
as hybrid systems that have both continuous and discrete-
event dynamics, and for such systems, the complexity of
fault diagnosis methodologies increases significantly. In this
paper, we develop a new modeling framework and structural
model decomposition approach that enable efficient online
fault diagnosis of hybrid systems.

During the last few years, different proposals have been
made for hybrid systems diagnosis, focusing on either hy-
brid modeling, such as hybrid automata [1–3], hybrid state
estimation [4], or a combination of on-line state tracking and
residual evaluation [5]. However, in all these cases, the pro-
posed solutions involve modeling and pre-enumeration of the
set of all possible system-level discrete modes, which grows
exponentially with the number of switching components.
Both steps are computationally very expensive or unfeasible
for hybrid systems with complex interacting subsystems.

One solution to the mode pre-enumeration problem is to
build hybrid system models in a compositional way, where
discrete modes are defined at a local level (e.g., at the com-
ponent level), in which the system-level mode is defined
implicitly by the local component-level modes. Since this

allows the modeler to focus on the discrete behavior only at
the component level, the pre-enumeration of all the system-
level modes can be avoided [6, 7]. Additionally, building
models in a compositional way facilitates reusability and
maintenance, and allows the validation of the components
individually before they are composed to create the global
hybrid system model.

In a system model, the effects of mode changes in individ-
ual components may force other components to reconfigure
their computational structures, or causality, during the sim-
ulation process, which requires developing efficient online
causality reassignment procedures. As an example of this
kind of approach, Hybrid Bond Graphs (HBGs) [8] have
been used by different authors [9, 10], and efficient causality
reassignment has been developed previously for such mod-
els [11]. However, the main limitation of HBGs is that the
set of possible components is restricted (e.g., resistors, ca-
pacitors, 0-junctions, etc.), with each component having to
conform to a certain set of mathematical constraints, and
modelers do not have the liberty to define and use their own
components. Another example is that of [7], which uses a
more general modeling framework, and tackles the causality
reassignment problem from a graph-theoretic perspective.

In this work, we propose a compositional modeling ap-
proach for hybrid systems, where models are made up of
sets of user-defined components. Here, a component is con-
structed by defining a set of discrete modes, with a different
set of mathematical constraints describing the continuous
dynamics in each mode. Then, we borrow ideas for efficient
causality reassignment in HBGs [11], and propose algorithms
for efficient causality assignment in our component-based
models, extending and generalizing those from HBGs. We
then apply structural model-decomposition [12] to compute
minimal submodels for the initial mode of the system. These
submodels are used for fault diagnosis based on residual gen-
eration and analysis. Based on efficient causality reassign-
ment, submodels can be reconfigured upon mode changes
efficiently. Using an electrical circuit as a case study, we
demonstrate efficient causality reassignment and submodel
reconfiguration and show that these submodels can correctly
compute system outputs for residual generation in the pres-
ence of known mode changes.

The paper is organized as follows. Section 2 presents the
modeling approach and introduces the case study. Section 3
presents the overall approach for hybrid systems fault diag-
nosis based on structural model decomposition. Section 4
develops the causality analysis and assignment algorithms.
Section 5 presents the structural model decomposition ap-

Proceedings of the 26th International Workshop on Principles of Diagnosis

201

Sw1 Sw2R1 R2C2C1

L1 L2v(t) i3

i11

v8

Figure 1: Electrical circuit running example.

proach. Section 6 describes efficient causality reassignment.
Section 7 demonstrates the approach for the electrical case
study. Section 8 reviews the related work and current ap-
proaches for hybrid systems fault diagnosis. Finally, Sec-
tion 9 concludes the paper.

2 Compositional Hybrid Systems Modeling
We define hybrid system dynamics in a general composi-
tional way, where the system is made up of a set of com-
ponents. Each component is defined by a set of discrete
modes, with a different set of constraints describing the con-
tinuous dynamics of the component in each mode. Here,
system-level modes are defined implicitly through the com-
position of the component-level modes. Because the number
of system-level modes is exponential in the number of switch-
ing components, we want to avoid generating and reasoning
over the system-level hybrid model, instead working directly
with the component models.

To illustrate our proposal, throughout the paper we will
use a circuit example, shown in Fig. 1. The components of
the circuit are a voltage source, V, two capacitors, C1 and C2,
two inductors, L1 and L2, two resistors, R1 and R2, and two
switches, Sw1 and Sw2, as well as components for series and
parallel connections. Sensors measure the current or voltage
in different locations (i3, v8, and i11, as indicated in Fig. 1).
Because each switch has two modes (on and off), there are
four total modes in the system.

In the following, we present the main details of our hy-
brid system modeling framework, which may be viewed as
an extension of our modeling approach described in [12],
extended with the notion of components, and with hybrid
system dynamics.

2.1 System Modeling
At the basic level, the continuous dynamics of a component
in each mode are modeled using a set of variables and a set
of constraints. A constraint is defined as follows:

Definition 1 (Constraint). A constraint c is a tuple (εc, Vc),
where εc is an equation involving variables Vc.

A component is defined by a set of constraints over a set
of variables. The constraints are partitioned into different
sets, one for each component mode. A component is then
defined as follows:

Definition 2 (Component). A component δ with n discrete
modes is a tuple δ = (Vδ, Cδ), where Vδ is a set of variables
and Cδ is a set of constraints sets, where Cδ is defined as
Cδ = {C1

δ , C
2
δ , . . . , C

n
δ }, with a constraint set, Cmδ , defined

for each mode m = {1, . . . , n}.
The components of the circuit are defined in Table 1 (first

three columns).

Example 1. Consider the component R1 (δ6). It has only
a single mode with a single constraint v5 = i5 ∗ R1 over
variables {v5, i5, R1}.
Example 2. Consider the component Sw2 (δ10). It has two
modes: on and off. In the off mode, it has three constraints
setting each of its currents (i9, i10, i11) to 0. In the on mode,
it has also three constraints, setting the three currents equal
to each other and establishing that the voltages sum up (it
acts like a series connection when in the on mode).

We can define a system model by composing components:

Definition 3 (Model). A modelM = {δ1, δ2, . . . , δd} is a
finite set of d components for d ∈ N.

Example 3. The model of the electrical system is made up
of the components detailed in Table 1, i.e.,M = {δ1, δ2, . . . ,
δ15}. For each component, the variables and constraints are
defined for each component mode (third column).

Note that the set of variables for a model does not change
with the mode, hence we need only a variable set in a com-
ponent and not a set of variable sets as with constraints.
The set of variables for a model, VM, is simply the union
of all the component variable sets, i.e., for d components,
VM = Vδ1 ∪ Vδ2 ∪ . . . ∪ Vδd . The interconnection struc-
ture of the model is captured using shared variables between
components, i.e., we say that two components are connected
if they share a variable, i.e., components δi and δj are con-
nected if Vδi ∩ Vδj 6= ∅. VM consists of five disjoint sets,
namely, the set of state variables, XM; the set of parame-
ters, ΘM; the set of inputs (variables not computed by any
constraint), UM; the set of outputs (variables not used to
compute any other variables), YM; and the set of auxiliary
variables, AM. Parameters, ΘM, include explicit model pa-
rameters that are used in the model constraints (e.g., fault
parameters). Auxiliary variables, AM, are additional vari-
ables that are algebraically related to the state, parameter,
and input variables, and are used to simplify the structure of
the equations.

Example 4. In the circuit model, we have XM =
{i3, v6, i8, v11}, ΘM = {L1, R1, C1, L2, R2, C2}, UM =
{uv}, and YM = {i∗3, i∗11, v

∗
8}. Remaining variables belong

to AM. Here, the ∗ superscript is used to denote a measured
value of a physical variable, e.g., i3 ∈ XM is the current
and i∗3 ∈ YM is the measured current. Since i3 is used to
compute other variables, like i2, it cannot belong to YM and
a separation of the variables is required. Connected com-
ponents are known by shared variables, e.g., R1 and Series
Connection1 are connected because they share i5 and v5.

The model constraints, CM, are a union of the component
constraints over all modes, i.e., CM = Cδ1 ∪ Cδ2 ∪ . . .∪ Cδd ,
where Cδi = C1

δi
∪C2

δi
∪ . . .∪Cnδi for n modes. Constraints

are exclusive to components, that is, a constraint c ∈ CM
belongs to exactly one Cδ for δ ∈M.

To refer to a particular mode of a model we use the con-
cept of a mode vector. A mode vector m specifies the current
mode of each of the components of a model. So, the con-
straints for a mode m are denoted as Cm

M.

Example 5. Consider a model with five components, then
if m = [1, 1, 3, 2, 1], it indicates that components δ1, δ2,
and δ5 use constraints of their mode 1, component δ3 use
constraints of its mode 3, and component δ4 use constraints
of its mode 2.

Proceedings of the 26th International Workshop on Principles of Diagnosis

202

Table 1: Components of the electrical circuit.
Component Mode Constraints A[1 2] A[1 2]

i∗3
A[1 2]

v∗8
A[1 2]

i∗11
A[2 1] A[2 1]

i∗3
A[2 1]

v∗8
A[2 1]

i∗11
δ1: V 1 v1=uv v1 v1 v1 v1 v1
δ2: Sw1 1 i1=0 i1

i2=0 i2 i2 i2 i2
2 i1=i2 i1

v1=v2 v2 v2 v2
δ3: Parallel Connection1 1 v2=v3 v3 v3 v3 v3

v2=v4 v2 v2 v4 v4
i2=i3 + i4 i4 i4 i4 i4 i2

δ4: L1 1 i̇3=v3/L1 i̇3 i̇3 i̇3 i̇3
i3=

∫ t

t0
i̇3 i3 i3 i3 i3

δ5: Series Connection1 1 i4=i5 i5 i5 i5 i5
i4=i6 i6 i6 i6 i6
i4=i7 i7 i7 i7 i4 i4
v4=v5 + v6 + v7 v4 v4 v7 v7

δ6: R1 1 v5=i5 ∗R1 v5 v5 v5 v5
δ7: C1 1 v̇6=i6/C1 v̇6 v̇6 v̇6 v̇6

v6=
∫ t

t0
v̇6 v6 v6 v6 v6

δ8: Parallel Connection2 1 v7=v8 v8 v7 v8 v8 v8
v7=v9 v7 v7 v9
i7=i8 + i9 i9 i9 i9 i7 i7

δ9: L2 1 i̇8=v8/L2 i̇8 i̇8 i̇8 i̇8 i̇8
i8=

∫ t

t0
i̇8 i8 i8 i8 i8 i8

δ10: Sw2 1 i9=0 i9 i9
i10=0 i10
i11=0 i11 i11

2 i9=i10 i10 i10
i9=i11 i11 i11
v9=v10 + v11 v9 v9

δ11: R2 1 v10=i10 ∗R2 v10 v10 v10
δ12: C2 1 v̇11=i11/C1 v̇11 v̇11 v̇11

v11=
∫ t

t0
v̇11 v11 v11 v11

δ13: Current Sensor11 1 i∗11=i11 i∗11 i11 i∗11 i∗11 i∗11
δ14: Voltage Sensor8 1 v∗8=v8 v∗8 v8 v∗8 v8 v∗8 v∗8
δ15: Current Sensor3 1 i∗3=i3 i∗3 i∗3 i3 i3 i∗3 i∗3

For shorthand, we will refer to the modes only of the
components with multiple modes. So, for the circuit, we will
refer only to components δ2 and δ10, and we will have four
possible mode vectors, [1 1], [1 2], [2 1], and [2 2].

The switching behavior of each component can be de-
fined using a finite state machine or a similar type of control
specification. The state transitions may be attributed to con-
trolled or autonomous events. However, for the purposes of
this paper, we view the switching behavior as a black box
where the mode change event is given, and refer the reader
to many of the approaches already proposed in the literature
for modeling the switching behavior [1, 8].

2.2 Causality
Given a constraint c, which belongs to a specific mode of a
specific component, the notion of a causal assignment is used
to specify a possible computational direction, or causality,
for the constraint c. This is done by defining which v ∈ Vc
is the dependent variable in equation εc.
Definition 4 (Causal Assignment). A causal assignment αc
to a constraint c = (εc, Vc) is a tuple αc = (c, voutc), where
voutc ∈ Vc is assigned as the dependent variable in εc. We
use V inc to denote the independent variables in the constraint,
where V inc = Vc − {voutc }.

In general, the set of possible causal assignments for a
constraint c is as big as Vc, because each variable in Vc can

act as voutc . However, in some cases some causal assign-
ments may not be possible, e.g., if we have noninvertible
nonlinear constraints. Also, if we assume integral causality,
then state variables must always be computed via integration,
and so the derivative causality is not allowed. Further, when
placed in the context of a model, additional causalities may
not be applicable, because the causal assignments of other
constraints may limit the potential causal assignments. To de-
note this concept, we use Ac to refer to the set of permissible
causal assignments of a constraint c.

For a given mode, we have the set of (specific) causal
assignments over the entire model in its mode, denoted using
Am. So, some α ∈ Am would refer to the causal assignment
of some constraint in some component of the model in its
correct mode. The consistency of the causal assignments
Am is defined as follows,

Definition 5 (Consistent Causal Assignments). Given a
mode m, we say that a set of causal assignments Am, for
a modelM is consistent if (i) for all v ∈ UM ∪ ΘM, Am

does not contain any α such that α = (c, v), i.e., input or
parameter variables cannot be the dependent variables in
the causal assignment; (ii) for all v ∈ YM, Am does not
contain any α = (c, voutc) where v ∈ V inc , i.e., an output
variable can only be used as the dependent variable; and
(iii) for all v ∈ VM − UM − ΘM, Am contains exactly
one α = (c, v), i.e., every variable that is not an input or

Proceedings of the 26th International Workshop on Principles of Diagnosis

203

parameter is computed by only one (causal) constraint.
With causality information, we can efficiently derive a set

of submodels for residual generation [12].

3 Hybrid Systems Diagnosis Approach
We propose a hybrid systems diagnosis approach based on
structural model decomposition. In this approach, we gener-
ate submodels for the purpose of computing residuals. Resid-
uals can then be used for diagnosis.

For hybrid systems, however, the problem is that these sub-
models may change as the result of a mode change. That is,
we may obtain two different submodels when decomposing
the model in two different modes. There are two approaches
to this problem. One is to find a set of submodels that work
for all modes, and can be easily reconfigured by executing
only local mode changes within the submodels [10]. This
approach requires the least online effort, with some offline
effort in finding these submodels, which exist only in limited
cases. The other approach is to generate submodels for the
current mode, and when a mode change occurs, reconfigure
the submodels to be consistent with the new system mode.
This is the approach we develop in this paper.

In order to execute this type of approach, however, we
must be able to efficiently reconfigure submodels online. In
order to do this, we take advantage of causality in two ways.
First, we perform an offline model analysis to determine
which causalities of the hybrid system model are not per-
missible, i.e., they will never be used in any mode of the
system (determine AM for a model). Second, we use an effi-
cient causality reassignment algorithm, so that the causality
of a hybrid systems model is updated incrementally when
a mode changes (given A for the previous mode, compute
it for the new mode). Since causal changes usually only
propagate in a local area in the model, causality does not
need to be reassigned at the global model level. Together,
these algorithms reduce the number of potential causalities to
search within the model decomposition algorithm and allow
efficient submodel reconfiguration.

4 Causality Assignment
In order to compute minimal submodels for residual genera-
tion, we need a modelMwith a valid causal assignmentAm.
As described in Section 2, causality assignment can only be
defined for a given mode. However, there are some causal
assignments that are independent of the system mode, i.e.,
they are valid for all system modes. We capture this through
the notion of permissible causal assignments, introduced as
AM in Section 2.

Given a model with a number of modes, some constraints
will always have the same causal assignment in all modes,
and we say these constraints are in fixed causality.
Definition 6 (Fixed Causality). A constraint cδ is in fixed
causality if (i) component δ has only a single mode, i.e.,
|Cδ| = 1, and (ii) for cδ in the single C ∈ Cδ, it always has
the same causal assignment in all system modes.

If a constraint is in fixed causality, then |Ac| = 1, i.e.,
there is only one permissible causal assignment. For ex-
ample, if we make the integral causality assumption, then
constraints computing state variables will always be in the
integral causality, and thus they are in fixed causality.

Additionally, when the constraint is viewed in the context
of the model, the concept of fixed causality can be propagated

from one constraint to the related constraints (those sharing
a variable with the fixed causality constraint). This will help
to reduce the number of permissible causal assignments. For
example, if we again assume integral causality, then any
constraint involving a state variable cannot be in a causal
assignment where the state variable is the dependent/output
variable, because the integration constraint is the one that
must compute it. For such a constraint, 1 < |Ac| < |Vc|.

Given a system model and a set of outputs, Algorithm 1
searches over the model constraints to reduce the set of per-
missible causal constraints based on system-level informa-
tion.1 First, it determines which constraints are mode-variant,
i.e, they can appear/disappear from the model depending on
the mode (so belong to components with multiple modes),
and which are mode-invariant, i.e., they are present in all
system modes (so belong to components with a single mode).
It is only the mode-invariant constraints for which causal
assignments can be removed. We then construct a queue
of variables from which to propagate. This queue contains
the inputs and parameters (which must always be indepen-
dent/input variables in constraints), and the outputs (which
must always be dependent/output variables in constraints).
We create a variable set V that refers to the variables that are
resolved, i.e., either they are inputs/parameters or there is a
constraint with a single causal assignment that will compute
the variable. So, V is initially set to include UM and ΘM.
Further, for any mode-invariant constraints that only has a
single causal assignment, the output variable is added to V ,
and all variables of the constraint added to the queue.

The main idea is to analyze the causality restrictions im-
posed by variables in the queue, which will be propagated
throughout the model. While the queue is nonempty, we pop
a variable v off the queue. We then count the number of con-
straints involving v that have no set causal assignment yet,
including constraints that are both mode-variant and mode-
invariant. We then go through all mode-invariant constraints
involving v, and remove causal assignments that will never
be possible. There are three conditions in which this holds:
a causal assignment is not possible in any system mode if (i)
the output variable is already computed by another constraint,
or is an input/parameter (i.e., in V), (ii) any of the input vari-
ables are in the model outputs (i.e., in Y), or (iii) v is not yet
computed by any constraint (i.e., not in V), there is only one
noncausal constraint involving v remaining, and v is not the
output in this causality (in this case, v needs to be computed
by some constraint and there is only one option left, so this
constraint must only be in the causality computing v). These
causal assignments are removed. If only one is left, then
we add the output for that causal assignment to V , and add
the constraint’s variables to the queue. The algorithm stops
when causalities can no longer be removed, i.e., there are
not enough restrictions imposed by the current permissible
causalities to reduce AM further.

Example 6. For the circuit, we assume integral causality, so
all constraints with the state variables are limited to causal
assignments in which the states are computed via integration.
Further, the constraint with uV is also fixed so that uV is the
independent variable. For any specified outputs, AM is also

1For structural model decomposition, some output variables may
become input variables and so the causal assignments permitting
that must be retained. Therefore, the algorithm only reduces the
permissible set of causal assignments for a given set of outputs
Y ⊆ YM.

Proceedings of the 26th International Workshop on Principles of Diagnosis

204

Algorithm 1 AM ← ReduceCausality(M,AM, Y)

1: Cinvariant ← ∅
2: Cvariant ← ∅
3: for all δ ∈ M do
4: if |Cδ| = 1 then
5: Cinvariant ← Cinvariant ∪ C1

δ

6: else

7: Cvariant ← Cvariant ∪

 ⋃

C∈Cδ

C

8: Q← UM ∪ΘM ∪ Y
9: V ← UM ∪ΘM

10: for all c ∈ Cinvariant do
11: if |Ac| = 1 then
12: (c, v)← Ac(1)
13: Q← Q ∪ Vc
14: V ← V ∪ v
15: while |Q| > 0 do
16: v ← pop(Q)
17: nnoncausal ← 0
18: for all c ∈ Cinvariant(v) do
19: if |Ac| > 1 or (|Ac| = 1 and vAc(1) /∈ V) then
20: nnoncausal ← nnoncausal + 1
21: for all c ∈ Cvariant(v) do
22: nnoncausal ← nnoncausal + 1
23: for all c ∈ Cinvariant(v) do
24: if |Ac| > 1 or (|Ac| = 1 and vAc(1) /∈ V) then
25: for all (c′, v′) ∈ Ac do
26: if v′ ∈ V then
27: Ac ← Ac − (c′, v′)
28: if (Vc − {v}) ∩ Y 6= ∅ then
29: Ac ← Ac − (c′, v′)
30: if nnoncausal = 1 and v′ /∈ V and v′ 6= v then
31: Ac ← Ac − (c′, v′)
32: if |Ac| = 1 then
33: (c′, v′)← Ac(1)
34: Q← Q ∪ (Vc′ − V)
35: V ← V ∪ {v′}

reduced so that they can appear only as dependent variables.

With AM defined, we can perform causality assignment
for a given mode, m. Because AM was reduced as much as
possible, causality assignment (and, later, reassignment) will
be more efficient than otherwise. Algorithm 2 describes the
causality assignment process for a model given a mode. Here,
the model is assumed to not have an initial causal assign-
ment. Causal assignment works by propagating causal re-
strictions throughout the model. The process starts at inputs,
which must always be independent variables in constraints;
outputs, which must always be the dependent variables in
constraints; and variables for involved in fixed causality con-
straints. From these variables, we should be able to propagate
throughout the model and compute a valid causal assignment
for the model in the given mode. For the purposes of this
paper, we assume integral causality and that the model pos-
sesses no algebraic loops.2 In this case, there is only one
valid causal assignment (this is a familiar concept within
bond graphs) [13].

Specifically, the algorithm works as follows. Similar to
Algorithm 1, we keep a queue of variables to propagate
causality restrictions, Q, and a set of variables that are com-
puted in the current causality, V . Initially, V is set to U and
Θ, because these variables are not to be computed by any
constraint. Q is set to U , Θ, and Y , since the causality of

2If algebraic loops exist, the algorithm will terminate before all
constraints have been assigned a causality. Extending the algorithm
to handle algebraic loops is similar to that for bond graphs; a con-
straint without a causality assignment is assigned one arbitrarily,
and then effects of this assignment are propagated until nothing
more is forced. This process repeats until all constraints have been
assigned causality.

Algorithm 2 A ← AssignCausality(M,m,A)

1: A ← ∅
2: V ← UM ∪ΘM
3: Q← UM ∪ΘM ∪ YM
4: for all c ∈ CMm do
5: if |Ac| = 1 then
6: (c, v)← Ac(1)
7: Q← Q ∪ v
8: while |Q| > 0 do
9: v ← pop(Q)

10: for all c ∈ CMm (v) do
11: if c /∈ {c : (c, v) ∈ A} then
12: α∗ ← ∅
13: for all α ∈ Ac do
14: if Vc − {vα∗} ∪ V 6= ∅ then
15: α∗ ← α
16: else if αv ∈ Y then
17: α∗ ← α
18: else if vα∗ = v and |CMm (v)|−|{c′ : (c′, v′) ∈ A∧v ∈

vc}| = 1 then
19: α∗ ← α
20: if α∗ 6= ∅ then
21: A ← A∪ {α∗}
22: Q← Q ∪ (Vc − V)
23: V ← V ∪ {vα∗}

constraints is restricted to U and Θ variables being indepen-
dent variables and Y variables being dependent variables.
We add also to Q any variables involved in constraints that
have only one permissible causal assignment, because this
will also restrict other causal assignments. The set of causal
assignments is maintained in A.

The algorithm goes through the queue, inspecting vari-
ables. For a given variable, we obtain all constraints it is
involved in, and for each one that does not yet have a causal
assignment (in A), we go through all permissible causal as-
signments, and determine if the causality is forced into one
particular causal assignment, α∗. If so, we assign that causal-
ity and propagate by adding the involved variables to the
queue. A causal assignment α = (c, v) is forced in one of
three cases: (i) v is in Y , (ii) all variables other than v of the
constraint are already in V , and (iii) v is not yet in V , and
all but one of the constraints involving v have an assigned
causality, in which case no constraint is computing v and
there is only one remaining constraint that must compute v.

Example 7. Consider the mode m = [1 2]. Here, A[1 2]

is given in column 4 of Table 1, denoted by the voutc in the
causal assignment. In this mode, the first switch is off, so
i1 and i2 act as inputs. Given the integral causality assump-
tion, a unique causal assignment to the model exists and is
specified in the column.

Example 8. Consider the mode m = [2 1]. Here, A[2 1]

is given in column 8 of Table 1. In this mode, the second
switch is off, so i9, i10, and i11 act as inputs. Given the
integral causality assumption, a unique causal assignment to
the model exists and is specified in the column. Note that
some causal assignments are in the same as in m = [1 2],
while others are different. In changing from one mode to
another, an efficient causality reassignment should be able
to determine which constraints need to change causality, and
do the work for only that portion of the model.3 Causal
assignments that do not change from mode to mode are in
fixed causality and found by Algorithm 1.

3Note that this particular circuit was carefully chosen so that
causality does propagate across much of the circuit, in order to
demonstrate the causality reassignment algorithm.

Proceedings of the 26th International Workshop on Principles of Diagnosis

205

5 Structural Model Decomposition
For a given causal model in a given mode, we have the
equivalent of a continuous systems model for the purpose of
structural model decomposition, and we can compute mini-
mal submodels using the GenerateSubmodel algorithm
described in our previous work [12]. The algorithm finds
a submodel, which computes a set of local outputs given a
set of local inputs, by searching over the causal model. It
starts at the local inputs, and propagates backwards through
the causal constraints, finding which constraints and vari-
ables must be included in the submodel. When possible,
causal constraints are inverted in order to take advantage of
local inputs. Additional information and the pseudocode are
provided in [12].

In the context of residual generation, we set the local
output set to a single measured value, and the local inputs
to all other measured values and the (known) system inputs.
That is, we exploit the analytical redundancy provided by
the sensors in order to find minimal submodels to compute
estimated values of sensor outputs. In this framework, we
consider one submodel per sensor, each producing estimated
values for that sensor.

Assuming that the set of sensors does not change from
mode to mode, then for a hybrid system we have one sub-
model for each sensor.4 However, since the set of con-
straints changes from mode to mode, the result of the
GenerateSubmodel algorithm will also change. When a
mode changes, we first reassign causality to the model for the
new mode. Then, we generate new updated submodels for
that mode using GenerateSubmodel. In order to reduce
the work performed by this algorithm when a mode changes,
we use an efficient causality reassignment algorithm. That,
coupled with the reduced set AM, significantly reduces the
work of the algorithm compared to a naive approach, where
the submodels are completely regenerated for a new mode.
Additionally, when the system transitions to a new mode,
the causal assignments for the previous mode can be stored,
so that when the system changes to a mode that has already
been visited, it just takes the causal assignments that were
stored previously. Similarly, submodels generated in previ-
ously visited modes can be saved and reused when the mode
reappears.

Example 9. The causal assignments for the submodels in the
different modes are shown in Table 1. For example, consider
the submodel for i∗11 in m = [2 1]. Here, i11 is zero, since
Sw2 is off, and therefore we have just two constraints needed
to compute i∗11. In mode m = [1 2], i∗3 can be computed
using 16 constraints, where v∗8 is used as a local input to the
submodel.

Note that a submodel for an output may have different
states in two different modes (e.g., in moving from m = [2 1]
to m = [1 2], the i∗3 submodel adds state v6). In order to
continue tracking, new states must be initialized. For the pur-
poses of this paper, we assume that in any one system mode,
all states are included in at least one submodel.5 Therefore,

4By assuming that the sensor set does not change, we mean
only that sensors are not added/removed to/from the physical
system upon a mode change. They are still allowed to be con-
nected/disconnected, but still appear in the system model even
when disconnected. For example, if a disconnected sensor outputs
0, then that needs to still be in the model.

5If this is not the case, then a state is not observable in some

Algorithm 3 Am′ ←
ReassignCausality(M,m,Am,A)

1: Am′ ← ∅
2: for all (c, v) ∈ Am do
3: if c ∈ CMm then
4: Am′ ← Am′ ∪ Am

c

5: V ← ∅
6: Q← ∅
7: for all δ ∈ M wheremδ 6= m′δ do
8: Q← Q ∪ Vδ
9: while |Q| > 0 do

10: v ← pop(Q)
11: for all c ∈ CMm (v) do
12: if c /∈ {c : (c, v) ∈ Am′} then
13: α∗ ← ∅
14: for all α ∈ Ac do
15: if Vc − {vα∗} ∪ V 6= ∅ then
16: α∗ ← α
17: else if αv ∈ Y then
18: α∗ ← α
19: else if vα∗ = v and |CMm (v)|−|{c′ : (c′, v′) ∈ A∧v ∈

vc}| = 1 then
20: α∗ ← α
21: if α∗ 6= ∅ then
22: if ∃α ∈ Am′ where vα = v∗α then
23: Am′ ← Am′ − {α∗}
24: Q← Q ∪ (V{α

∗
c} − V)

25: Am′ ← Am′ ∪ {α∗}
26: Q← Q ∪ (Vc − V)
27: V ← V ∪ {vα∗}
28: else if (Vc − V = v then
29: V ← V ∪ {v}
30: Q← Q ∪ {v}

a submodel that gets a state added in a new mode can initial-
ize using the estimated value from another submodel in the
previous mode.

6 Online Causality Reassignment
As we mentioned before, from the initial mode in the system
with a valid set of causal assignments, we compute minimal
submodels. However, when the system transitions to a differ-
ent mode, any submodel containing constraints of a switch-
ing component will no longer be consistent, and must be
recomputed. In order to do this, we need to know the causal
assignments for the new mode. We can reassign causality in
an efficient incremental process to avoid having to reassign
causality to the whole model, as causal changes typically
propagate only to a small local area in the model [11].

Algorithm 3 presents the causality reassignment procedure.
The main ideas are based on the hybrid sequential causality
assignment procedure (HSCAP) developed for hybrid bond
graphs in [11]. In our more general modeling framework,
we find that similar ideas apply. Essentially, we start with a
causal model in a given mode. We then switch to a different
mode, so for the switching components we have a new set of
constraints in the model. We need to find causal assignments
for these constraints. It is likely that some of the necessary
causal assignments will conflict with causal assignments
from the old mode, therefore, we have to resolve the conflict
and propagate the change. The change will propagate only as
far as it needs to in order to obtain a valid causal assignment
for the model in the new mode. Here, propagation stops
along a computational path when a new causal assignment
does not conflict with a previous assignment.

mode. Estimation techniques to handle that situation are outside
the scope of this paper.

Proceedings of the 26th International Workshop on Principles of Diagnosis

206

The algorithm works similarly to Algorithm 2. It maintains
a queue of variables to inspect and a set V of variables
that are known to be computed in the causality for the new
mode (so includes only variables from new assignments
or confirmed assignments made in the new mode). In this
case, we initialize the queue only to variables involved in the
constraints of the switching components. If no components
are switching, the queue will be empty and no work will be
done. The main idea is that the required causal changes from
the variables placed in the queue will, on average, be limited
to a very small area. The causal assignments for the new
mode are initialized to those for the previous mode, for any
constraints that still exist in the new mode. Some of these
may conflict with the new mode and will be removed and
replaced with different assignments.

As in all the other causality algorithms, we go through
the queue and propagate the restrictions we find on causality.
We pop a variable off the queue, and look at all involved
constraints. If the constraint is not causal, then we need
to assign causality. We do the same analysis as before to
find if a causality is forced, but checking things only with
respect to V that includes only variables with confirmed
causal assignments computing it in the new mode. If we find
a constraint that is forced into a particular causal assignment
for the new mode, we make the assignment. If it conflicts
with one already in the set of causal assignments (copied
from the old mode), then we remove the old assignment and
add the new one, adding the involved variables to the queue
so that changes are propagated.

7 Demonstration of Approach
For the circuit example, we consider two modes: one where
Sw1 is on and Sw2 is off (i.e., m = [2 1]), and one where
Sw1 is off and Sw2 is on (i.e., m = [1 2]). We consider
a scenario in which to demonstrate the approach where the
system starts in m = [2 1], switches to m = [1 2] at t = 10 s,
and switches back to m = [2 1] at t = 20 s. Additionally, at
t = 15 s, a fault is injected, specifically, an increase in R1.

Fig. 2 shows the measured and submodel-estimated values
for the sensors. Up through the first mode change, the outputs
are correctly tracked by the submodels. At the first mode
change at 10 s, the submodels reconfigure and track correctly
up to 15 s, when the fault is injected, and a discrepancy
is observed in the i∗3 submodel. Specifically, the current
increases above what is expected. The other submodels in
this mode are independent of the fault, and so continue to
track correctly. When the second mode change occurs, i∗11
can still be tracked correctly, since its estimation remains
independent of the fault. However, we now see a discrepancy
in v∗8 , as the measurement increases above what is expected.
This transient occurs because we switch from a mode in
which the submodel is independent of the fault to one where
it is dependent on the fault. Fault isolation can be performed
by using the information that in m = [1 2], an increase in
R1 would produce an increase in the residual for i∗3, and
in m = [2 1], it would produce an increase also in the v∗8
residual.

8 Related Work
Modeling and diagnosis for hybrid systems have been an im-
portant focus of study for researchers from both the FDI and
DX communities during the last 15 years. In the FDI commu-
nity, several hybrid system diagnosis approaches have been

Time (s)
0 5 10 15 20 25 30

i
∗ 3
(A

)

0

2

4

6

8

10
Measured
Estimated

(a) i∗3.

Time (s)
0 5 10 15 20 25 30

v
∗ 8
(V

)

-8

-6

-4

-2

0

2 Measured
Estimated

(b) v∗8

Time (s)
0 5 10 15 20 25 30

i
∗ 1
1
(A

)

-6

-4

-2

0

2 Measured
Estimated

(c) i∗11

Figure 2: Measured and estimated values with an increase in
R1 at t = 15 s.

developed. In [14], parameterized ARRs are used. However,
the approach is not suitable for systems with high nonlineari-
ties or a large set of modes. A different approach [15], but
uses purely discrete models.

In the DX community, some approaches have used differ-
ent kind of automata to model the complete set of modes and
transitions between them. In those cases, the main research
topic has been hybrid system state estimation, which has has
been done using probabilistic (e.g., some kind of filter [16]
or hybrid automata [4]) or set-theoric approaches [5].

Another solution has been to use an automaton to track the
system mode, and then use a different technique to diagnose
the continuous behavior (for example, using a set of ARRs
for each mode [3], or parameterized ARRs for the complete
set of modes [17]). Nevertheless, one of the main difficulties
regarding state estimation using these techniques is the need
to pre-enumerate the set of possible system-level modes and
mode transitions, which is difficult for complex systems. We
avoid this problem by using a compositional approach.

Regarding hybrid systems modeling, there are several
proposals. For HBGs [8, 18], there are two main ap-
proaches: those that use switching elements with fixed causal-
ity [18–20], and those who use ideal switching elements that
change causality [8]. The advantages of the latter are that the
modeling of hybrid systems is done through a special kind of

Proceedings of the 26th International Workshop on Principles of Diagnosis

207

hybrid component (which avoid the mode pre-enumeration in
the system), and also changes are handled in a very efficient
way [11]. Finally, in [10] the HBGs are used to compute
minimal submodels (Hybrid Possible Conflicts, HPCs) simi-
lar to the minimal submodels presented in this paper. HPCs
can track hybrid systems behavior, efficiently changing on-
line for each mode the PC simulation model, by using block
diagrams as in [11], and performing diagnosis without pre-
enumerating the set of modes in the system. However, HPCs
rely on HBG modeling and do not provide a generalized
framework for hybrid systems.

9 Conclusions
In this work, we have developed a compositional modeling
framework for hybrid systems. Using computational causal-
ity, we developed efficient causality assignment algorithms.
Given this causal information, submodels computed using
structural model decomposition can be computed and recon-
figured efficiently. The approach was demonstrated with a
circuit system. In future work, we will further develop the
hybrid systems diagnosis approach for the single and multi-
ple fault cases, and we will approach the diagnosis task in
a distributed manner. The assumption of one submodel per
sensor can also be dropped, using the extended framework
developed in [21, 22].

Acknowledgments
This work has been funded by the Spanish MINECO
DPI2013-45414-R grant and the NASA SMART-NAS
project in the Airspace Operations and Safety Program of
the Aeronautics Mission Directorate.

References
[1] T. A. Henzinger. The theory of hybrid automata.

Springer, 2000.

[2] T. Rienmüller, M. Bayoudh, M.W. Hofbaur, and
L. Travé-Massuyès. Hybrid Estimation through Syn-
ergic Mode-Set Focusing. In 7th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical
Processes, pages 1480–1485, Barcelona, Spain, 2009.

[3] M. Bayoudh, L. Travé-Massuyès, and X. Olive. Cou-
pling continuous and discrete event system techniques
for hybrid system diagnosability analysis. In 18th Eu-
ropean Conf. on Artificial Intel., pages 219–223, 2008.

[4] M.W. Hofbaur and B.C. Williams. Hybrid estimation
of complex systems. IEEE Trans. on Sys., Man, and
Cyber, Part B: Cyber., 34(5):2178–2191, 2004.

[5] E. Benazera and L. Travé-Massuyès. Set-theoretic es-
timation of hybrid system configurations. Trans. Sys.
Man Cyber. Part B, 39:1277–1291, October 2009.

[6] S. Narasimhan and L. Brownston. HyDE: A General
Framework for Stochastic and Hybrid Model-based
Diagnosis. In Proc. of the 18th Int. WS. on Principles
of Diagnosis, pages 186–193, May 2007.

[7] L. Trave-Massuyes and R. Pons. Causal ordering
for multiple mode systems. In Proceedings of the
Eleventh International Workshop on Qualitative Rea-
soning, pages 203–214, 1997.

[8] P.J. Mosterman and G. Biswas. A comprehensive
methodology for building hybrid models of physical
systems. Artificial Intel., 121(1-2):171 – 209, 2000.

[9] S. Narasimhan and G. Biswas. Model-Based Diagnosis
of Hybrid Systems. IEEE Trans. Syst. Man. Cy. Part A,
37(3):348–361, May 2007.

[10] A. Bregon, C. Alonso, G. Biswas, B. Pulido, and
N. Moya. Hybrid systems fault diagnosis with possi-
ble conflicts. In Proceedings of the 22nd International
Workshop on Principles of Diagnosis, pages 195–202,
Murnau, Germany, October 2011.

[11] I. Roychoudhury, M. Daigle, G. Biswas, and X. Kout-
soukos. Efficient simulation of hybrid systems: A
hybrid bond graph approach. SIMULATION: Trans-
actions of the Society for Modeling and Simulation
International, 87(6):467–498, June 2011.

[12] I. Roychoudhury, M. Daigle, A. Bregon, and B. Pulido.
A structural model decomposition framework for sys-
tems health management. In Proceedings of the 2013
IEEE Aerospace Conference, March 2013.

[13] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg.
Systems Dynamics: Modeling and Simulation of Mecha-
tronic Systems. John Wiley & Sons, Inc., NY, 2000.

[14] V. Cocquempot, T. El Mezyani, and M. Staroswiecki.
Fault detection and isolation for hybrid systems using
structured parity residuals. In 5th Asian Control Con-
ference, volume 2, pages 1204–1212, July 2004.

[15] J. Lunze. Diagnosis of quantised systems by means of
timed discrete-event representations. In Proceedings of
the Third International Workshop on Hybrid Systems:
Computation and Control, HSCC ’00, pages 258–271,
London, UK, 2000. Springer-Verlag.

[16] X. Koutsoukos, J. Kurien, and F. Zhao. Estimation
of distributed hybrid systems using particle filtering
methods. In In Hybrid Systems: Computation and
Control (HSCC 2003). Springer Verlag Lecture Notes
on Computer Science, pages 298–313. Springer, 2003.

[17] M. Bayoudh, L. Travé-Massuyès, and X. Olive. Di-
agnosis of a Class of Non Linear Hybrid Systems by
On-line Instantiation of Parameterized Analytical Re-
dundancy Relations. In 20th International Workshop
on Principles of Diagnosis, pages 283–289, 2009.

[18] W. Borutzky. Representing discontinuities by means of
sinks of fixed causality. In F.E. Cellier and J.J. Granda,
editors, Proc. of the Int. Conf. on Bond Graph Modeling,
pages 65–72, 1995.

[19] M. Delgado and H. Sira-Ramirez. Modeling and simu-
lation of switch regulated dc-to-dc power converters of
the boost type. In IEEE Int. Conf. on Devices, Circuits
and Systems, pages 84–88, December 1995.

[20] P.J. Gawthrop. Hybrid Bond Graphs Using Switched I
and C Components. CSC report 97005, Centre for Sys.
and Control, Faculty of Eng., Glasgow, U.K., 1997.

[21] A. Bregon, M. Daigle, and I. Roychoudhury. An inte-
grated framework for distributed diagnosis of process
and sensor faults. In 2015 IEEE Aerospace Conf., 2015.

[22] M. Daigle, I. Roychoudhury, and A. Bregon.
Diagnosability-based sensor placement through struc-
tural model decomposition. In Second Euro. Conf. of
the PHM Society 2014, pages 33–46, 2014.

Proceedings of the 26th International Workshop on Principles of Diagnosis

208

