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Abstract
The goal of this work is to bridge the gap between
business decision making and real-time factory
data. Beyond real-time data collection, we aim to
provide analysis capability to obtain insights from
the data and converting the learnings into action-
able recommendations. We focus on analyzing
device health conditions and propose a data fusion
method that combines sensor data with limited di-
agnostic signals with the device’s operating con-
text. We propose a segmentation algorithm that
provides a temporal representation of the device’s
operation context, which is combined with sensor
data to facilitate device health estimation. Sensor
data is decomposed into features by time-domain
and frequency-domain analysis. Principal com-
ponent analysis (PCA) is used to project the high-
dimensional feature space into a low-dimensional
space followed by a linear discriminant analysis
(LDA) to search the optimal separation among
different device health conditions. Our industrial
experimental results show that by combining de-
vice operating context with sensor data, our pro-
posed segmentation and PCA-LDA approach can
accurately identify various device imbalance con-
ditions even for limited sensor data which could
not be used to diagnose imbalance on its own.

1 Introduction
The growing Internet of Things is predicted to connect 30
billion devices by 2020 [1]. This will bring in tremendous
amounts of data and drive the innovations needed to realize
the vision of Industry 4.0—cyber-physical systems moni-
toring physical processes, and communicating and cooper-
ating with each other and with humans in real time. One of
the key challenges to be addressed is how to analyze large
amounts of data to provide useful and actionable informa-
tion for businesses intelligence and decision making. In par-
ticular, to prevent unexpected downtime and its significant
impact on overall equipment effectiveness (OEE) and total
cost of ownership (TCO) in many industries. Continuous
monitoring of equipment and early detection of incipient
faults can support optimal maintenance strategies, prevent
downtime, increase productivity, and reduce costs.

A significant number of anomaly detection and diagno-
sis methods have been proposed for machine fault detection
and machine health condition estimation. Chandola et al. [2]

discusses various categories of anomaly detection technolo-
gies and their assumptions as well as their computational
complexity. Several approaches such as statistical meth-
ods [3], neural network methods [4] and reliability meth-
ods [5], have been applied to detect anomalies for various
types of equipment. The philosophies and techniques of
monitoring and predicting machine health with the goal of
improving reliability and reducing unscheduled downtime
of rotary machines are presented by Lee et al. [6].

Many of these methods focus on analyzing, combining,
and modeling sensor data (e.g. vibration, current, acous-
tics signal) to detect machine faults. One issue that remains
mostly unaddressed in these methods is that they rarely con-
sider the varying operating context of the machine. In many
cases, false alarms are generated due to a change in machine
operation (e.g. rotational speed) rather than a change in ma-
chine condition. A major challenge in addressing this issue
is that most machine controllers are built with proprietary
communication protocols, which leads to a barrier in ob-
taining control parameters to understand the context under
which the machine is operating. Recently, the MTConnect
open protocol [7] was developed to connect various legacy
machines independent of the controller providers. MTCon-
nect provides an unprecedented opportunity to monitor ma-
chine operating context in real-time. In this paper, we lever-
age MTConnect to diagnose machine health condition by
combining sensor data with operating context information.
Additionally, we investigate whether it is possible to diag-
nose machine health condition using less sensor data when
it is combined with context information.

Prior work [8] has demonstrated that vibration data could
be used for diagnosing machine imbalance fault conditions.
Our study focuses on extending prior work by exploring var-
ious types of sensor and control data for diagnosing the im-
balance of the machine tools.

Our contribution includes the following extensions:

• Combining control and sensor signals to improve ac-
curacy.

• Utilizing a different set of sensor data such as temper-
ature, power, flow, and lubricant/coolant pH.

Our hypothesis is that these advancements to prior work
will aid in improving the diagnosis capability as well as re-
ducing the cost of machine diagnostics by utilizing cheaper
sensors.
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2 Experimental Data
The data under study has been collected from experiments
utilizing a machine tool monitoring system implemented on
a horizontal machining center manufactured by Milltronic
with Fanuc 0i-MC control. We have two main sources of
data: (i) data from additional sensors installed on the ma-
chine, and (ii) data from the machine tool controller. This
data has been collected using National Instrument equip-
ment and software (LabVIEW).

The external sensors used for data collection include:
• power sensor that measures power using Hall effect,
• accelerometers that capture machine tool motion in 6

degrees of freedom,
• thermocouples that measure temperatures at 10 loca-

tions on the machine tool,
• pH sensor for detecting the pH level of the metalwork-

ing fluid, and
• flow rate sensor to measure metalworking fluid pump

flow.
The second category consists of data collected from the

controller. This data includes drive loads, absolute and rel-
ative positions, servo delays, and feed rate. The complete
list of the components of the control data is listed in Pavel
et al.[8].

Data has been collected in two sessions, one in 2009 and
the other in 2010. Although the basic control signals are
similar, they are offset by constant values (see Figure 1).
Since the positional offset could cause a difference in the
motion dynamics, we have treated them as separate data sets
for this study.

3 Technical Approach

For each extension to prior work listed in Section1, we
have performed two main steps for creating appropriate di-
agnostics:
• Feature Extraction & Synthesis
• Model Selection

3.1 Feature Extraction & Synthesis
There are various approaches for condensing time series in-
formation into data mining features. Prior work has utilized
transfer functions to map control signals to vibrational sen-
sor data [8]. The diagnosis step is then reduced to compar-
ing the features of transfer function-predicted vibration data
and the sensor-derived vibration data. This approach makes
sense when the control signal directly impacts the output
variables of the machine. For motion control of machine
tools, the estimated transfer function should be similar to
the transfer function of the implemented control (like PI or
PID). Typical vibration data features would include average,
standard deviation, and maximum FFT values [9].

However, we would like to diagnose the state of machine
using not only accelerometers, but also other sensors, such
as temperature sensors. Since temperatures at various lo-
cations are not part of active control loops, there may not
exist well defined transfer functions that can map control
signals to temperature sensor data very accurately. In such
cases where conventional features extracted from tempera-
ture signals are not correlated with the fault (imbalance) to a

sufficient degree. Additionally, if the associated sensors are
too expensive to install, then data fusion may be applied.

There are three data fusion approaches typically used in
machinery diagnostics [10; 11]—data-level fusion, feature-
level fusion, and decision-level fusion. Data-level fusion
involves combining sensor data before feature extraction,
such that features contain information gathered from mul-
tiple sensors. Feature-level fusion involves generating fea-
tures from each sensor separately, then fusing this set of
features generated from all of the sensors coherently for di-
agnostics. Finally, decision-level fusion creates diagnostics
from each sensor separately, then aggregates these diagnos-
tics into a single diagnostic output.

The choice of the three types of data fusion methods is
often application specific. In our application, we found that
temperature sensor data cannot resolve imbalance condi-
tions by itself and control signal data is too coarse-grained
to aid in classifying imbalance conditions using the stan-
dard data-fusion techniques. Note that we did not focus on
spindle acceleration data, which could diagnose imbalance
on its own (see Subsection 4.1) since that would require
retrofitting existing machine tools with new expensive sen-
sors and data acquisition hardware. Ideally we would like
to use the readily accessible control signals and data from
inexpensive temperature sensors to diagnose imbalance. To
achieve this goal, we proposed a different type of data fusion
approach. We used the control signal to provide the contex-
tual information for temperature sensor data. The control
signal is used for the segmentation of sensor data, but does
not directly map into feature vectors (see Subsection 4.2).

3.2 Model Selection
Since the data sets are statistically small and dimensional-
ity of the data is increased by feature synthesis, the models
to be used for imbalance classification need to be carefully
chosen to avoid over-fitting. The high-dimensional data
needs to be projected to a much smaller sub-space to prevent
over-fitting1 To accomplish this, the main techniques used
in this study are Principal Component Analysis (PCA) [12]
and Linear Discriminant Analysis (LDA) [13]. These tech-
niques are based on linear coordinate transformation, which
makes them more likely to under-fit and less likely to over-
fit [14].

4 Results
We have explored three types of imbalance diagnostics to
investigate the hypothesis posed in Section 1:

• Sensor based Diagnostics

• Control based Temporal Segmentation followed by
Sensor based Diagnostics

4.1 Sensor based Diagnostics
In this case, each sensor signal was analyzed separately to
determine if any of the sensor signals contains enough diag-
nostic information to detect imbalance on its own. By plot-
ting the time series data we find that spindle acceleration
sensors (which captures vibration) show higher oscillation

1Note that complexity of model is positively correlated with
likelihood of over-fitting. Thus, creating a classifier that takes
high-dimensional input will have higher degree of fredoom (i.e.
higher complexity) compare to low-dimensional inputs, which re-
sults in higher likelihood of over-fitting.
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(a) Absolute X position (b) Absolute Y position

(c) Absolute Z position (d) Spindle Motor Speed

Figure 1: Primary Control Signals
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amplitudes (see Figure 2) with increasing imbalance. Since
imbalance actually impacts moment of inertia of the spindle,
this change in acceleration is expected.

We also considered measuring imbalance through tem-
perature. From the energy flow perspective, additional ac-
celeration caused by imbalance should result in higher en-
ergy consumption from the power source and higher energy
dissipation to thermal inertias due to friction, which should
result in temperature increase in parts of the machine tool.
However, the time series data, from each of the tempera-
ture sensors, did not show distinguishing features similar to
the acceleration sensors. An example of temperature sensor
time series data is shown in Figure 3.

Figure 3: Sample Temperature Sensor Data (Fluid Temper-
ature): blue and red traces indicate nominal and faulty con-
ditions respectively

For this sensor data analysis, the features extracted are (i)
average, (ii) standard deviation, (iii) maximum amplitude
of FFT, and (iv) frequency for maximum amplitude of FFT.
These four features are inspected visually to determine if
imbalance could be classified by a simple linear classifier.
The spindle acceleration (X, Y, and Z) feature (maximum
amplitude of FFT) showed easily visible characteristics that
can distinguish between degrees of imbalance. See Figure 4
for an example of visual classification based on X-axis ac-
celeration data. Other sensor signals like power, pH, flow,
and temperature did not exhibit such classification capabil-
ity.

4.2 Control-based Segmentation followed by
Sensor-based Diagnostics

The second diagnostic approach that we explored combines
both sensor and control data in a coherent manner. The
first step in this approach is to utilize the control signal to
provide temporal segmentation, i.e., assuming quasi-steady
state, the goal is to find the time intervals in which the fol-
lowing conditions are satisfied: (i) all experiments display
same values for the primary control signal (actual spindle
speed) , and (ii) all the control signals are constant over
the same period. Note that, to investigate the dynamic re-
sponse, rather than quasi steady state response, the control
signals should be consistent across the experiments so that
responses are compared under the same set of control in-
puts. Figure 5 (a) shows the result of this temporal seg-
mentation scheme. For each of the control signals, we have

computed the standard deviation at the each time step and
identified the periods with standard deviation below a set
threshold to find the consistent time intervals (shown as col-
ored segments along the time axis in Figure 5 (b)). Then
we find the intersection of the sets of consistent time inter-
vals over all the control signals to determine the aggregate
time intervals over which the control signals are statistically
consistent (shown as black segments along the time axis in
Figure 5 (c)).

These temporal segments are then mapped to sensor data
to facilitate diagnostics. For each of 16 temporal segments,
we computed features including (i) average, (ii) standard de-
viation, (iii) maximum FFT value, and (iv) FFT frequency
at maximum amplitude. This step produces a 64 dimen-
sional feature space to diagnose machine imbalance. As
mentioned before, to avoid the overfitting we focus on linear
transformation based approaches. We implemented Princi-
pal Component Analysis (PCA) to reduce the dimensional-
ity from 64 to 4 (postulating that there should be 4 unique
dimensions given the 4 uncorrelated features that we have
selected). The PCA step is followed by Linear Discrimi-
nant Analysis to find the optimal coordinate transformation
that provides maximum separation between classes. Result
of this PCA-LDA analysis is shown in Figure 6 for Fluid
Temperature sensor data. Another temperature sensor lo-
cated at Spindle Motor also exhibits similar diagnostic ca-
pability after application of control based temporal segmen-
tation. This demonstrates that control data can be used to
provide context to sensor data in a way that helps diagnose
machine imbalance. Thus, temperature sensor which had
inferior diagnostic performance without context data, could
classify imbalance perfectly when it is combined with addi-
tional context from control signal.

5 Conclusion and Discussion
This work explores various types of sensor and control data
for diagnosing the imbalance of the machine tools. Our
proposed approaches utilize sensor data that has not been
used before for this purpose. This includes temperature,
power, flow, and lubricant/coolant pH. In addition, our pro-
posed techniques combine control and sensor signals to im-
prove accuracy. Namely, by combining context information
gained from the control signal, temperature sensor was able
to classify machine imbalance conditions with much higher
accuracy than using itself alone.

For future work, we will explore diagnostics based on
control signal alone. Given that relying on sensor data typ-
ically requires adding sensors to existing machine tools, it
would be ideal if we could diagnose imbalance of the ma-
chine from control signals that are usually recorded (i.e. no
additional hardware required). The expectation is that if a
machine tool uses feedback controls, then the control signal
should be impacted by any change in the operational char-
acteristics (in this case the imbalance of the machine tools).
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(a) Spindle X Acceleration: 2009 Data (b) Spindle X Acceleration: 2010 Data

(c) Spindle Z Acceleration: 2009 Data (d) Spindle Z Acceleration: 2010 Data

Figure 2: Spindle Acceleration Data for different imbalance level

(a) Spindle X Acceleration for 2009 Data (b) Spindle X Acceleration for 2010 Data

Figure 4: Visual Classification using Spindle X Acceleration Sensor
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(a) Raw Spindle Speed Control (b) Spindle Speed Control with Consistent Time Segment

(c) Aggregating Control Signals

Figure 5: Time Series Segmentation

(a) Group 1 (b) Group 2

Figure 6: PCA-LDA Result using Fluid Temperature
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