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Abstract
Behavioral models are at the core of Fault-
Detection and Isolation (FDI) and Model-Based
Diagnosis (MBD) methods. In some practical ap-
plications, however, building and validating such
models may not always be possible, or only par-
tially validated models can be obtained. In this
paper we present a diagnosis solution when only
a partially validated model is available. The solu-
tion uses a fault-augmented physics-based model
to extract meaningful behavioral features corre-
sponding to the normal and abnormal behavior.
These features together with experimental train-
ing data are used to build a data-driven statisti-
cal model used for classifying the behavior of the
system based on observations. We apply this ap-
proach for a railway switch diagnosis problem.

1 Introduction
Consider the case of developing diagnostic software for a
complex system (for this paper our example is a railway
switch). The task is to determine from operational data
whether the switch is operating correctly or in one of a fixed
number of fault modes. We are given the following very
limiting (but all too common) conditions: (a) very limited
resources to complete the project (a few man months); (b)
limited number of sensors; (c) unavailability of the model
of the system; (d) unavailability of the system itself (would
require an instrumented private rail system); (e) unavailabil-
ity of the parameters of the system components; (f) lim-
ited nominal data; (g) extremely limited fault data (supplied
as time series); (h) highly non-linear multi-physics system
having multiple operating modes. Broadly speaking there
are three approaches to this type of problem: Model-Based
Diagnosis (MBD), Fault Detection and Isolation (FDI) and
Machine Learning (ML). None of these approaches is ade-
quate of this task. MBD and FDI require models and param-
eters which are unavailable. ML approaches will require a
large amount of training data, and most approaches would
require extensive feature engineering. In this paper we will
demonstraint a hybrid approach to this task which was ulti-
mately fully satisfactory for the train company. Many real
world diagnostic tasks have similar limitations and we be-
lieve our approach is one that yields good diagnostic algo-
rithms for many cases.

At a high level our approach is as follows. First we build
by hand an approximate model in Modelica (our switch

model ultimately has 56 continuous time state and more than
2000 time-varying variables). We require this model to con-
tain the key mechanisms which comprise a switch mecha-
nism. Under the limiting conditions, building an accurate
model of the system proved to be impractical and therefore
we used simplified models for the system’s components. For
example, we model the controller as a PID controller while
the actually mechanism surely has a more complex one. The
Modelica model is fault augmented [Minhas et al., 2014]
including parameters which represent the fault amounts for
wear, etc. Second, we develop ML classifiers to detect and
diagnose faults by running the Modelica model repeatedly
with various fault amounts. We mix noise in the simulation
to avoid over-fitting. For the ML classifier to work requires
developing a set of features for the signal. Each time series
is segmented at defined conditions and a set of features is
designed (e.g., mean in segment, max in segment). Mul-
tiple ML techniques can develop a classifier, the best we
found are based on random-forest. Third, we throw away
the model — it was only important to develop the features
and the classifier. We now use the classifiers developed for
the synthetic data on the real data. We were able to detect
faults with a high level of accuracy, but were only partially
successful in identifying the correct fault mode (or nomi-
nal) for the operating system. Independently, we showed
that given enough data for the various fault modes, using
the same set of features, a ML classifier can be designed that
also achieves a high diagnostic accuracy. The latter effort is
not the subject of the paper. Overall, the customer was very
satisfied with the results of the project. Throughout the rest
of the paper we describe in detail the procedure described
above.

1.1 FDI and MBD
In model-based approaches (FDI and MBD), the diagnosis
engine is provided with a model of the system, values of the
parameters of the model and values of some of its inputs
and outputs. Its main goal is to determine from only this
information whether the system is malfunctioning, which
components might be faulty and what additional informa-
tion need to be gathered (if any) to identify the faulty com-
ponents with relative certainty. The distinguishing features
of the MBD [de Kleer et al., 1992] approach are an empha-
sis on general diagnostic reasoning engines that perform a
variety of diagnostic tasks via on-line reasoning, and infer-
ence of a system’s global behavior from the automatic com-
bination of physical components. Hence, MBD models are
compositional - the model of a combination of two systems
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is directly constructed from the models of the constituent
systems. FDI methods can work with both physics-based
and empirical models. The physics-based models are usu-
ally flattened, that is, the components and sub-components
structure is lost into an overall behavioral model. Often,
the faults are seen as separate inputs that need to be com-
puted by the diagnosis engine. The disadvantage of this
approach is that the physical semantics of the faults is ig-
nored. In addition, treating the faults as exogenous inputs
ignores the fact that the abnormal behavior may in fact
depend on the variables of the systems. However, many
FDI techniques were shown to be effective in diagnosing
dynamical systems [Gertler, 1998; Isermann, 1997; 2005;
Patton et al., 2000].

The above discussion emphasizes the need for a model
when using either an FDI or MBD approach. As we will see
later in the paper, there are cases when such a model is very
difficult to obtain and (more importantly) validate, or only
a partial model is available. Naturally, both FDI and MBD
approaches would not fare well in such a scenario. When
no model is available, data-driven methods can be used to
learn the behavior of the system and use this knowledge
to predict the system behavior. Such methods require ex-
perimental data corresponding to the normal and abnormal
behavior for classification purposes; data that is used to ex-
tract features representative for the system’s behavior. The
set of features together with observations of the system (out-
put measurements) are used to learn a data-driven statistical
model that is further used to classify the current observed
behavior. Namely, when new data is available it is fed into
the data-driven model, which in turn will provide a “best
guess” to which class of behavior (normal or abnormal) the
data corresponds to. It is well recognized that in data-driven
approaches, the effectiveness of the classification is highly
dependent on the quality of the features used for learning.

In this paper, we begin to bridge the gap between pure
model-based and data-driven methods with a more hybrid
approach. We propose the use of a partially validated model
to help us determine a set of features that are representa-
tive for the normal and abnormal behavior. In this approach
we build a physics based model of the system, emphasiz-
ing its components and sub-components. Due to the lack
of sufficient technical specifications and measurement data,
only partial validation is achieved. By this we mean that
only a sub-set of the variables of interest match their coun-
terpart in the experimental data. The rest of the variables,
although not completely matching the real data, they do ex-
hibit similar characteristics compared to the real data, e.g.,
same number of maxima, minima, or common regions of
increasing/decreasing values, etc. In other words they are
qualitatively equivalent. The physics-based model is further
extended to include behaviors under different fault operating
modes. In particular, physics-based models for the faults
are included in the nominal model. The fault-augmented
model is then used to generate synthetic simulated normal
and abnormal (including multiple faults) behavior and ex-
tract representative features that are used in a data-driven
approach. Note that although ideally we would like to exe-
cute the feature extraction step automatically, in this paper it
is performed manually as the automatic feature extraction is
a challenging problem in its own. The diagnosis procedure
described above is pictorially presented in Figure 1.

The rest of the paper is organized as follows: in Section

2 we motivate and describe the railway switch diagnosis
problem. Sections 3 and 4 present the physics-based model,
its fault-augmented version and the partial validation of the
system. Section 5 describes the diagnosis solution under a
partially validated physics-based model while Section 6 puts
our solution in the context of exiting work on railway switch
diagnostics.

2 Problem Description
Railway signaling equipment (including switches) generates
approximately 60% of the failure statistics related to traffic
disruptions due to signalling problems. As a consequence
more and more attention is paid to railway safety and op-
timal railway maintenance. As a result of the rapid tech-
nological advances in microelectronics and communication
technologies in the past decades, it has become possible
to add sensing and communication capabilities to railway
equipment such as switches, to detect equipment failure and
therefore to enhance the quality of the railway service. Al-
though these sensing capabilities allow for easy detection of
faults in the electrical components of the equipment, a sig-
nificant number of faults related to the mechanical compo-
nents affect parameters whose monitoring would be difficult
either due to cost or impracticality of sensor placement.

The rail switch assembly considered in this paper is
shown Figure 2. The component responsible for moving the
switch blades is the point machine. The point machine has
two sub-components: a servo-motor (generates rotational
motion) and a gear-cam mechanism (amplifies the torque
generated by the motor and transforms the rotational motion
into a translational motion).

The adjuster transfers the motion from the point machine
to the load (switch blades) through a drive rod. In particular,
by adjusting two bolts, the adjuster controls the time when
the switch blades start moving having as reference the time
when the drive rod commence moving. The switch blades
are supported by a set of rolling bearings to minimize mo-
tion friction. The manufacturer of the point machine en-
dowed the equipment with a series of sensors that can mea-
sure the motor’s angular velocity and torque, and the cam’s
angle and stroke (linear position). These sensors log data
in real time which is ten sent to a central station for anal-
ysis. These sensors were installed by design on the point
machine to monitor its safety. Although the operator of the
railway switch is also interested in the diagnosis of the point
machine, other possible faults are of interest as well. The
faults considered in this paper are as follows: loose lock-pin
fault (at the connection between the drive rod and the point
machine), adjuster bolts misalignment (the bolts move away
from their nominal position), missing bearings and the pres-
ence of an obstacle preventing the completion of the switch
blades motion. Adding new sensors measuring forces ap-
plied to the switch blades or the position of the switch blades
may facilitate immediate detection of such faults. How-
ever, due to the sheer number and possible configurations
of switches in the railway transportation network, this is not
a scalable solution. Therefore, the challenge is to diagnose
the aforementioned faults using only the available measure-
ments.

3 System Modeling
This section presents the fault augmented physics-based
model of railway switch assembly, together with some
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Figure 1: Diagnosis procedure with partially validated model

Figure 2: Diagnosis procedure with partially validated
model

model validation results. Such models provide deeper in-
sight on the behavior of the physical system. Simulated
behavior helps with learning of normal and abnormal be-
havior patterns. The abnormal patterns are especially useful
when not enough experimental data describing the abnormal
behavior is available. The modeling process consists of de-
composing the system into its main components, build phys-
ical models and combining them into an overall model of
the system. We used the Modelica language to construct the
model, which is a non-proprietary, object-oriented, equation
based language to model complex physical systems [Tiller,
2001]. Models for the three main components of the rail-
way switch, the point machine, the adjuster and the switch
blades, are presented in what follows.

3.1 Point machine
The point machine is the component of the railway switch
system that is responsible for moving the switch blades and
locking them in the final position until a new motion action
is initiated. It is composed of two sub-components: servo-
motor and gear-cam mechanism. The electrical motor trans-
forms electrical energy into mechanical energy and gener-

ates a rotational motion. The gear-cam mechanism scales
down the angular velocity of the motor and amplifies the
torque generated by the motor. In addition, it transforms the
rotational motion into a translational motion.

Servomotor
No technical details were provided on this component, such
as type of motor or type of controller. Values for technical
parameters (e.g., armature resistance, motor shaft inertia)
were not available either. This information was not avail-
able to the switch operator either. Therefore, as a result of
a literature review on the type of motors used in railway
switches, a DC-permanent motor was chosen to be the most
likely candidate. The dynamical model for this component
is given by

La
di(t)

dt
= −Rai(t)−Keω(t) + v(t),

J
dω(t)

dt
= Kti(t)−Bω(t)− τ(t),

where v(t) acts as input signal, ω(t) is the angular veloc-
ity at the motor flange that acts as output, τ(t) is the torque
load of the motor and i(t) is the current through the arma-
ture. Generic motor parameters from the literature were also
chosen [Zattoni, 2006]. One question that may arise is if an
empirical model can be estimated. Unfortunately since only
the output ω(t) is available, an empirical model based on
system identification cannot be estimated, since no voltage
measurements are available. No information on the type of
controller was available to us either. As a consequence, we
used a PID controller for the feedback loop. Based on the
observed profile of the motor output we determined that the
controlled variable is the angular velocity ω(t). Indeed, Fig-
ure 3 shows the motor’s angular velocity1 that is maintained
at a constant value by the controller. To compute the pa-
rameters of the PID controller we estimated metrics corre-
sponding to the transient component of the output (angular
velocity), such as rise time and overshoot; metrics that are
formulated in .

1The angular velocity profile shown in the graph is similar but
not exactly the observed one, due to proprietary information re-
strictions.
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Figure 3: Motor angular velocity

The Gear-Cam mechanism
As mentioned earlier, the gear-cam mechanism amplifies the
torque generated by the motor and transforms the rotational
motion into a translational motion. The technical details
provided to us confirmed only the presence of the cam, but
not of the gear. We inferred the presence of the latter, by
comparing the angular velocity of the motor with the cam’s
angular velocity, estimated from the measured cam’s angle.
This allowed us to estimate the ratio between the two veloci-
ties, and therefore estimate the gear ratio. The cam diagram
is shown in Figure 4, where a wheel rotates as a result of
the torque transmitted through the gear and acts on a lever
that pushes the drive rod. Using the geometry of the cam,

Figure 4: Cam schematics

the relation between the rotation motion and the linear mo-
tion (that is, the relation between the angle and the stroke)
is given by

stroke = R× sin(angle),
where R denotes the radius of the cam. In addition, the map
between the applied torque and the generated force is

force =
1

R
× torque× cos(angle).

As both the cam angle and the stroke were included in the
available measurements, we used a least square method to
estimate the radius of the cam.

3.2 Adjuster
The adjuster links the drive rod connected to the point ma-
chine to the switch blades, and hence it is responsible for
transferring the translational motion. There is a delay be-
tween the time instants the drive rod and the switch blades
start moving. This delay is controlled by setting the po-
sitions of two bolts on the drive rod. Tighter bolt setting
means a smaller delay, while looser bolt setting produce a
larger delay. The high level diagram of the adjuster is de-
picted in Figure 5. The most challenging part in construct-

Figure 5: Adjuster diagram

ing the adjuster was modeling the non-sticking contact be-
tween the drive rod and the adjuster extremes. Stiff contact
two bodies is usually modeled using a spring-damper com-
ponent with very large values for the elasticity and damping
constants. However, under this approach once contact takes
place, it is permanent. To solve this challenge, we built a
custom component that models the non-sticking contact.

3.3 Switch blades
The adjuster is connected to two switch blades that are
moved from left to right or right to left, depending on
the traffic needs. We look at a switch blade as a flexi-
ble body and used an approximation method to modeling
beams, namely the lumped parameter approximation. This
method assumes that beam deflection is small and in the lin-
ear regime. The lumped parameter approach approximates
a flexible body as a set of rigid bodies coupled with springs
and dampers. It can be implemented by a chain of alter-
nating bodies and joints. The springs and dampers act on
the bodies or the joints. The spring stiffness and damping
coefficients are functions of the material properties and the
geometry of the flexible elements. Parameters such a rail
length, mass and mass moment of inertia were provided to
us through technical documentation. To model the effect of
the rail moving on rolling bearings, we included a friction
component that accounts for energy loss due to friction. Al-
though the component can model different friction models,
the default models is Coulomb friction.

3.4 Fault augmentation
In this section we describe the modeling artifacts that were
used to include in the behavior of the system the four fault
operating modes: loose lock-pin, misaligned adjuster bolts,
obstacle and missing bearings.

Loose lock-pin
The lock-pin referred in this fault mode connects the point
machine with the drive rod that transfers the motion to the
switch blades. More precisely, it locks the drive rod to the
point machine. When this lock-pin becomes loose due to
wear, it introduces a slackness in the way the motion is
transferred to the switch blades. The lock-pin fault affects
stability the connection point between the drive rod and
the point machine. In time, if not fixed, this can lead to a
complete failure of the pin, and therefore the point-machine
cannot longer act upon the blades. A custom-built compo-
nent whose main characteristic is that it implements a non-
sticking pushing and pulling between two rods was built to
model the effects of this fault. The impact between the two
rods is assumed to be elastic, that is, we use a spring-damper
assembly with large values for their parameters to model the
contact. There are two types of contact: contact of the rods
with the boundaries of the locking mechanism and contact
between the rods. Both these types of contact must exhibit
non-sticking pushing and pulling properties.
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Misaligned adjuster bolts
In this fault mode the bolts of the adjuster deviate from their
nominal position. As a result, the instant at which the drive
rod meets the adjuster (and therefore the instant at which the
the switch rail starts moving) happens either earlier or later.
For example in a left-to-right motion, if the left bolt moves
to the right, the contact happens earlier. The reason is that
since the distance between the two bolts decreases, the left
bolt reaches the adjuster faster. As a result, when the drive
rod reaches its final position, there may be a gap between
the right switch blade and the right stock rail. In contrast, if
the left bolt moves to the left the contact happens later. The
model of the adjuster includes parameters that can set the
positions of the bolts, and therefore the effects of this fault
mode can be modeled without difficulty.

Obstacle
In this fault mode, an obstacle prevents the switch blades
reach their final nominal position, and therefore a gap be-
tween the switch blades and the stock rail appears. The ef-
fect on the motor torque is a sudden increase in value, as the
motor tries to overcome the obstacle. To model this fault
we included a component that implements a hard stop for
the position of the switch blades. This component has two
parameters for setting the left and right limits within motion
of the switch blades is allowed. By changing the values of
these parameters, the presence of an obstacle can be simu-
lated.

Missing bearings
To minimize friction, the rails are supported by a set of
rolling bearings. When they become stuck or lost, the en-
ergy losses due to friction increase. As mentioned in the
section describing the switch blades modeling, a component
was included to account for friction. This component has a
parameter that sets the value for the friction coefficient. By
increasing the value of this parameter, the effect of the miss-
ing bearings fault can be simulated.

4 Model Validation
Motor angular velocity, cam angle and stroke, together with
the motor torque were used in the validation process. To
these measurements, we added the rail position that was
estimated from a set of movies depicting the rail motion,
to which image processing techniques were applied. We
achieved partial validation of the model. The simulated mo-
tor angular velocity, cam angle and stroke closely match
the measured data. The simulated motor torque however
matches in a qualitative sense its measured counterpart. The
main reason is the fact that we had to make assumptions on
the type controller motor and controller, without no way to
validate these assumptions. In addition, the available mea-
surements did not allowe for the estimating the parameters
in the assumed models, as this problem is ill posed. Figure 6
depicts the simulated torque, emphasizing the five operating
zone. In Zone 1, the motor rotates the cam and the drive rod
moves freely. No contact with the switch blades takes place
in this zone, and the (small) energy loss is due to friction in
the mechanical components. Zone 2 corresponds to the case
where the drive rod pushes the two switch blades. The elas-
ticity in the switch blades can be noticed in the toque profile
in this zone. In Zone 3, the switch blades accelerate (as they
drop off the rolling bearings) and again the drive rod moves
freely (note the drop in torque). Zone 4 depicts the case

Figure 6: Motor torque with its five operating zones

where the drive rod catches up again with switch blades an
pushes them to their final position. Finally, in Zone 5 the
switch blades are pushed against the stock rails for a short
period of time, hence the increase in torque. In support of
the validation of these five operating zone, a set of movies
depicting the motion of the switch blades were used. With
respect to the fault operating modes, we managed to gener-
ate similar effects in the simulated data, as the ones observed
in the measured data. Figure 7 shows the effect of the mis-
aligned bolts fault, and in particular the case where the left
bolt moves to the left. The effect is a delay applied on the
time instant the drive rod reaches the switch blades. In ad-
dition, Zone 5 is also affected since due to the decreased
distance, the switch blades are no longer pushed against the
stock rails. In the case of an obstacle, the switch blades (and

Figure 7: Motor torque in the normal and misaligned bolts
fault modes

hence the drive rod) push against an obstacle that does not
allow the completion of the motion. Therefore, the electric
motor develops the maximum allowable torque as seen in
Figure 8. In the case of the missing bearing fault mode, the
motion friction of the switch blades increases, and hence
the torque generated by the motor must accommodate this
increase. We obtained this effect in simulation as shown in
Figure 9. Finally, Figure 10 shows the effects of the lock-
pin fault. The slackness introduced by the looseness of the
pin induces a delay in the rail motion which also affects the
behavior in Zone 5. In terms of the changes in the five op-
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Figure 8: Motor torque in the normal and obstacle fault
modes

Figure 9: Motor torque in the normal and missing bearings
fault modes

Figure 10: Motor torque in the normal and lock-pin fault
modes

erating zones, the simulated behavior showed similar char-
acteristics as in the case of the real data. The understanding
of these behaviors come as a result of building the model,
augmenting the model with fault modes, and analyzing their

effects in simulation. The choice of features described in the
next section was supported by this understanding.

5 Fault Detection and Diagnosis
In the case of a railway switch, our measurements include
the motor torque and motor angular velocity. As the switch
moves from one extreme position to the other, these quan-
tities are measured at a fixed sampling rate. Thus, we
obtain a time series for each of the measurements. Let
{τ(t1), . . . , τ(tN )} denote torque measured at time instants
{t1, . . . , tN}. Likewise, let {ω(t1), . . . , ω(tN )} denote the
angular velocity. For simplicity’s sake, we denote the two
time series of measurements by X . The diagnosis objective
is to determine the underlying condition of the system from
these time series. In other words, the objective is to deter-
mine a classifier f : X → {N,F1, F2, F3, F4, F5}, where
N refers to the class label corresponding to the normal con-
dition and F1, F2, F3 and F4 denote the class labels loose
bolt, tight bolt, loose lock-pin, missing bearings, and obsta-
cle respectively.

We adopt a machine learning approach to constructing the
above mentioned classifier. The two main steps in building
a machine learning classifier are feature selection and clas-
sifier type selection. These two steps are discussed next.

5.1 Feature selection
As seen in Figure 6, the motor torque profile shows five dis-
tinct operating zones. Moreover, we notice from Figures 7,
8, 9 and 10 that a given fault’s impact on the torque pro-
file seems limited to only some of the five zones. With this
observation, our feature selection strategy is as follows.

1. Identify the approximate time instants that define the
boundaries of the five zones. For example, Zone 1 is
defined to be between times 0.8 seconds and 2 seconds,
zone 2 is defined to be between times 2 seconds and 4.1
seconds, and so on.

2. Within each zone, compute a set of measures. An ex-
ample of a measure is the total energy dissipated within
the zone. This is computed as instantaneous power in-
tegrated over the duration of the zone. The instanta-
neous power is the product of instantaneous torque and
angular velocity. Other examples of features include
maximum and minimum torque values within the zone.
The disclosure of the full set of measures used is not
possible at this time for proprietary reasons. The fea-
tures are normalized to have zero mean and unit stan-
dard deviation.

Note that it might be possible to combine one or more zones
into one for feature selection.

5.2 Classifier selection
To map the features to the classes, {N,F1, F2, F3, F4, F5},
we use machine learning. Examples of types of classifiers
commonly used include k− nearest neighbors, support vec-
tor machines, neural networks and decision trees. We chose
Random Forest, an ensemble classifier, because of its ro-
bustness to overfitting. For a more detailed discussion on
the advantages of Random Forest, we refer the reader to
[Breiman, 2001]. In addition, we also developed a binary
classifier for fault detection based on Alternating Decision
Tree (AD Tree). The advantage of AD Tree is that the re-
sults are human interpretable.
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5.3 Results
For each fault type, we introduce varying magnitudes of
fault and simulate the switch model described earlier. The
fault magnitude is parameterized by a factor k which is var-
ied over a pre specified range. A value of k equal to zero
corresponds to normal case. Higher values of k correspond
to the faulty cases. In addition, we also add representative
noise to the measurements. Figure 11 shows some example
torque profiles generated by the simulation.

Figure 11: Simulated torque measurements with added
noise.

The data generated is recorded and used to train and test
the machine learning classifier. We use leave-one-out cross-
validation for training and testing the classifiers. In this ap-
proach, one data sample is used for testing whereas all the
rest of the data is used for training. This is repeated un-
til each data sample has been tested once. Table 1 shows
the confusion matrix for the simulated data described ear-
lier. The (i, j)th entry of the confusion matrix refers to the
percentage of cases where the true class was i but was clas-
sified as j by the classifier. A matrix with 100 along all
the diagonal entries would correspond to a perfect classifier.
In the results shown in Table 1, we observe some misclas-
sification between classes N and F4. Recall that N is the
normal class and F4 is the missing bearing class. On fur-
ther investigation, we determined that the misclassification
occurs between the normal data and data corresponding to
low magnitudes of the missing bearing fault.

Table 1: Fault diagnosis confusion matrix on simulated data

N F1 F2 F3 F4 F5

N 97.2 0 0 2 0.8 0
F1 0 100 0 0 0 0
F2 0 0 99 1 0 0
F3 9 0 4 87 0 0
F4 11 0 0 0 89 0
F5 0 0 0 0 0 100

The binary classification or fault detection result using
AD Tree is shown in Table 2. As in the multi-class classifi-
cation case, the false positives (normal classified as abnor-
mal), and false negatives (abnormal classified as normal) are

primarily due to confusion between missing bearings and
normal. Figure 12 shows part of the fault detection AD
Tree. A pink oval represents a feature node. Depending
on the value of the feature, one of two branches is followed
until a leaf node is reached. Each edge that is traversed re-
sults in a score shown within the blue rectangles. For every
root to leaf traversal, the total score is the sum of the scores
accumulated on each edge. For a given data sample, mul-
tiple root to leaf paths may be traversed. In that case, the
final score is the sum of the scores accumulated over all the
paths. If the final score is negative, the decision is normal;
otherwise the decision is abnormal.

Table 2: Fault detection confusion matrix on simulated data
Normal Abnormal

Normal 94.6 5.4
Abnormal 9.6 90.4

Next, we test the classifiers on real data. A key prepro-
cessing step is to compute a linear transformation that trans-
forms the mean and standard deviation of the features of the
nominal (normal) real data to make them equal to the mean
and standard deviation of the features of the nominal simu-
lated data. The same transformation is then applied on the
real faulty data before testing with the ML classifier. We
emphasize here that to compute the transformation we only
require examples of real data showing normal behavior. We
do not use any real fault data for training the ML classifier.
Table 3 shows the fault detection results on real data. As
can be seen, we achieve a high accuracy of greater than 80
percent. We also tested the multi-class random forest classi-
fier to diagnose the various faults. We were able to diagnose
correctly all missing bearing faults but were unable to cor-
rectly diagnose the other faults.

Table 3: Fault detection confusion matrix on real data
Normal Abnormal

Normal 85.5 14.5
Abnormal 20 80

6 Related Work
A malfunctioning railway switch assembly can have a high
impact on the railway transportation safety, and therefore
the problem of diagnosing such systems has been addressed
in other works. [Zattoni, 2006] proposes a detection sys-
tem based on off-line processing of the armature current
and voltage. The system implements an algorithm that real-
izes a finite impulse response system designed on the basis
of an H2-norm criterion, and allows for detection of incre-
mental faults (e.g., loss of lubrication, increasing obstruc-
tions, etc.). The approach hinges on the availability of a
validated model of the point machine, which was not the
case in our setup. [Zhou et al., 2001; 2002] propose a re-
mote monitoring system for railway point machines. The
system includes a variety of sensors for acquiring trackside
data related to parameters such as, distance, driving force,
voltage, electrical noise, or temperature. The monitoring
system logs data for offline analysis that offers detailed in-
formation on the condition of the system in the form of event
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Figure 12: Part of the fault detection AD Tree

analysis and data trends. Hence unlike in our setup, the fo-
cus is on detection rather than isolation. In addition, due
to scalability constraints, our solution is based on the em-
bedded sensors, no other sensor being added. In [Asada
et al., 2013] classification based fault detection and diag-
nosis algorithm is developed using measurements such as
drive force, electrical current and voltage. In particular, a
classifier based on support vector machines is used. Our
work also uses classification for diagnosis, but considers a
wider verity of classifiers such as Multiclass Random For-
est or Logitboosted Random Forest that were proved to be
more robust [Opitz and Maclin, 1999]. The classification
step in [Asada et al., 2013] depends on a set of features ex-
tracted by applying the discrete wavelet transform on the
active power. This step is oblivious on the operating modes
of the point machine, which we showed to relevant in our
case. Hence, the diagnosis approach in [Asada et al., 2013]
is purely data driven. Since we had no access to current and
voltage measurements this avenue for feature construction
was not available to us. Depending of the type of electri-
cal motors, the current and the voltage could be computed
from the angular velocity and torque, respectively. How-
ever, knowledge of motor parameters is needed. [Asada
et al., 2013] consider two type of faults: underdriving and
overdriving of the drive rod. Overdriving refers to the case
where the switch blades are pushed against the stock rails
due to misalignment, and a higher force then normal ap-
pears between the stock rails and the switch blades. Over-
driving map to misaligned bolts, missing bearings and ob-
stacles in our setup. All these fault modes exhibit higher
forces than normal. Underdriving maps to a particular in-
stance of the misaligned bolts fault (left bolt moves to the
left for example). Therefore, our solution differentiate be-
tween more possible causes of higher forces since we take
advantage of the particular signature these forces have in
each fault corresponding to overdriving. Another pure data-
driven approach for railway point machine monitoring was
proposed in [Oyebande and Renfrew, 2002], where a net
energy analysis technique was used to discriminate between

normal and abnormal behavior. This approach relies on a set
of sensors measurements such as motors, voltage, current or
switch blade positions, not all of them being available in our
case. In addition, the computation of the net energy requires
parameters of the electrical motor (armature resistance and
motor shaft inertia) that again are not available in our setup.
In addition, unlike our diagnosis objective, the focus in on
detecting abnormalities within the point machine.

7 Conclusions
The three main general approaches to developing diagnostic
software (FDI, MBR, and ML) all have severe limitations in
many real-world applications. We believe we will see many
more hybrid approaches to diagnosis that include the best of
these three approaches to build accurate diagnosers.The rail-
way switch is a critical and complex piece of equipment re-
quiring extremely high diagnostic accuracy (the main reason
this project was initiated), and the approach outlined in this
paper was ultimately successful. Ultimately deployment of
this approach will depend on expanding the set of faults de-
tecting and on installation of more sensor rich switches in
railroad infrastructures.
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