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Abstract

In this paper, we propose a box particle filter-
ing algorithm for state estimation in nonlinear
systems whose model assumes two types of un-
certainties: stochastic noise in the measurements
and bounded errors affecting the system dynam-
ics.These assumptions respond to situations fre-
quently encountered in practice. The proposed
method includes a new way to weight the box
particles as well as a new resampling procedure
based on repartitioning the box enclosing the up-
dated state. The proposed box particle filtering
algorithm is applied in a fault detection schema
illustrated by a sensor network target tracking ex-
ample.

1 Introduction
For various engineering applications, system state estima-
tion plays a crucial role. Kalman filtering (KF) has been
widely used in the case of stochastic linear systems. The
Extended Kalman Filter (EKF) and Unscented Kalman Fil-
ter (UKF) are KF’s extensions for nonlinear systems. These
methods assume unimodal, Gaussian distributions. On the
other hand, Particle Filtering (PF) is a sequential Monte
Carlo Bayesian estimator which can be used in the case
of non-Gaussian noise distributions. Particles are punctual
states associated with weights whose likelihoods are defined
by a statistical model of the observation error. The efficiency
and accuracy of PF depend on the number of particles used
in the estimation and propagation at each iteration. If the
number of required particles is too large, a real implementa-
tion is unsuitable and this is the main drawback of PF. Sev-
eral methods have been proposed to overcome these short-
comings, mainly based on variants of the resampling stage
or different ways to weight the particles ([1]).

Recently, a new approach based onbox particles was pro-
posed by[2; 3]. The Box Particle Filter handles box states
and bounded errors. It uses interval analysis in the state up-
date stage and constraint satisfaction techniques to perform
measurement update. The set of box particles is interpreted
as a mixture of uniform pdf’s[4]. Using box particles has
been shown to control quite efficiently the number of re-
quired particles, hence reducing the computational cost and
providing good results in several experiments.

In this paper, we take into account the box particle fil-
tering ideas but consider that measurements are tainted by

stochastic noise instead of bounded noise. The errors af-
fecting the system dynamics are kept bounded because this
type uncertainty really corresponds to many practical situa-
tions, for example tolerances on parameter values. Combin-
ing these two types of uncertainties following the seminal
ideas of[5] and [6] within a particle filter schema is the
main issue driving the paper. This issue is different from the
one addressed in[7] in which the focus is put on Bernouilli
filters able to deal with data association uncertainty. The
proposed method includes a new way to weight the box par-
ticles as well as a new resampling procedure based on repar-
titioning the box enclosing the updated state.

The paper is organized as follows. Section 2 describes
the problem formulation. A summary of the Bayesian fil-
tering is presented and the box-particle approach is intro-
duced. The main steps of this approach are developed in
section 3. Section 4 and 5 are devoted to the repartitioning
of the boxes and the computation of the weight of the box
particles in order to control the number of boxes. In section
6 the box particle filter is used for state estimation and fault
detection; the results obtained with the proposed method for
a target tracking in a sensor network are presented in sec-
tion 7. Conclusion and future work are overviewed in the
last section.

2 Problem formulation
We consider nonlinear dynamic systems represented by dis-
crete time state-space models relating the statex(k) to the
measured variablesy(k)

x(k + 1) = f(x(k),u(k),v(k)) (1)

y(k) = h(x(k)) + e(k), k = 0, 1, . . . (2)

wheref : Rnx × Rnu × Rnv → Rnx andh : Rnx → Rny

are nonlinear functions,u(k) ∈ Rnu is the system input,
y(k) ∈ Rny is the system output,x(k) ∈ Rnx is the state-
space vector,e(k) ∈ Rny is a stochastic additive error that
includes the measurement noise and discretization error and
is specified by its known pdfpe. v(k) ∈ Rnx is the process
noise.

In this work the process noise is assumed bounded
|vi(k)| ≤ σi with i = 1, . . . , nx, i.e pv ∼ U([V ]), where
[V ] = [−σ1, σ1]× · · · × [−σnx , σnx ].

2.1 Bayesian filtering
Given a vector of available measurements at instantk:
Y(k) = {y(i), i = 1, ..., k}, Y(0) = y(0), the Bayesian
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solution to compute the posterior distributionp(x(k)|Y(k))
of the state vector at instantk + 1, given past observations
Y(k) is given by (Gustafsson 2002):

p(x(k + 1)|Y(k)) =∫

Rnx

p(x(k + 1)|x(k))p(x(k)|Y(k))dx(k)
(3)

where the posterior distributionp(x(k)|Y(k)) can be
computed by

p(x(k)|Y(k)) =
1

α(k)
p(y(k)|x(k))p(x(k)|Y(k − 1))

(4)
whereα(k) is a normalization constant,p(y(k)|x(k)) is

the likelihood function that can be computed from (2) as:

p(y(k)|x(k)) = pe(y(k) − h(x(k)) (5)

andp(x(k)|Y(k − 1)) is the prior distribution.
Equations (5), (4) and (3) can be computed recursively

given the initial value ofp(x(k)|Y(k − 1)) for k = 0 de-
noted asp(x(0)) that represents the prior knowledge about
the initial state.

2.2 Objective
Considering the assumptions of our problem, we adopt a
particle filtering schema which is well-known for solving
numerically complex dynamic estimation problems involv-
ing nonlinearities. However, we propose to use box particles
and to base our method on the interval framework. Box par-
ticle filters have been demonstrated efficient, in particular to
reduce the number of particles that must be considered to
reach a reasonable level of approximation[2].

Let’s consider the current state estimateX (k) as a set, de-
noted by{X (k)}, that is approximated byNk disjoint boxes

[x(k)]i i = 1, · · · , Nk (6)

where [x(k)]i = [x(k)i,x(k)i], with x(k)i,x(k)i ∈
Rnx . The width of every box is smaller or equal to a given
accuracy for every component, i.e

xj(k)i − xj(k)
i ≤ δj i = 1, · · · , Nk, j = 1, . . . , nx

(7)
whereδj is the predetermined minimum accuracy for every
componentj.

Moreover, every box[x(k)]i is given a prior probability
denoted as

P ([x(k)]i|Y(k − 1)) i = 1, · · · , Nk (8)

with
Nk∑

i=1

P ([x(k)]i|Y(k − 1)) ≥ γ (9)

whereγ ∈ [0, 1] is a confidence threshold.
Then, given a new output measurementy(k), the problem

that we consider in this paper is:

• to compute the state estimateX (k + 1),

• to decide about the numberNk+1 of disjoint boxes of
the approximation ofX (k + 1), each with accuracy
smaller or equal toδj ,

• to provide the prior probabilities associated to the par-
ticles of the new state estimation set

P ([x(k + 1)]i|Y(k)) i = 1, · · · , Nk+1 (10)

3 Interval Bayesian formulation
This section deals with the evaluation of the Bayesian so-
lution of the state estimation problem considering bounded
state boxes (6).

3.1 Measurement update
Whereas each particle is defined as a box by (6), the mea-
surement is tainted with stochastic uncertainty defined by
the pdfpe. The weightw(k)i associated to a box particle is
updated by the posterior probabilityP ([x(k)]i|Y(k)):

w(k)i =
1

Λ(k)
P ([x(k)]i|Y(k − 1))pe(y(k) − h([x(k)]i)

=
1

Λ(k)
P ([x(k)]i|Y(k − 1))

∫

x(k)∈[x(k)]i
pe(y(k)− h(x(k))) dx(k)

(11)
i = 1, . . . , Nk

where the normalization constantΛ(k) is given by

Λ(k) =

Nk∑

i=1

P ([x(k)]i|Y(k − 1))

∫

x(k)∈[x(k)]i
pe(y(k)− h(x(k))) dx(k)

(12)

then

Nk∑

i=1

w(k)i = 1 (13)

The deduction of the measurement update equation (11)
from the particle filtering update equation (4) is detailed in
the Appendix fornx = 1, without the loss of generality. The
principle of the proof is that the point particles are grouped
into particle groups inside boxes, then the posterior proba-
bility of a box can be approximated by the sum of posterior
probabilities of the point particles when the number of these
particles tends to infinity.

3.2 State update
This step is similar to the state update state as in[2] and[3].
Hence, we have:

p(x(k+1)|Y(k)) ≈
Nk∑

i=1

w(k)iU[f ]([x(k)]i,u(k),[v(k)]) (14)

The interval boxes[x(k + 1)|x(k)]i are computed from
(1) using interval analysis as follows,

[x(k + 1)|x(k)]i ≈ [f ]([x(k)]i,u(k), [v(k)]) (15)

The update interval boxes inherit the weightsw(k)i of
their mother boxes[x(k)]i i = 1, . . . , Nk.

4 Resampling
Once the updated boxes[x(k + 1)|x(k)]i and their associ-
ated weightsw(k)i have been computed, the objective is to
compute a new set of disjoint boxes. This corresponds to
the resampling step of the conventional particle filter.
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4.1 Repartitioning
We assume that the new boxes are of the same size, that they
cover the whole space defined by the union of the updated
boxes[x(k+1)|x(k)]i i = 1, . . . , Nk, and that their weight
is proportional to the weight of the former boxes.

For this purpose, a support box setZ is computed as the
minimum box such that

Z ⊇
Nk⋃

i=1

[x(k + 1)|x(k)]i. (16)

Z is partitioned intoM disjoint boxes of the same size

[z]i i = 1, · · · ,M (17)

where[z]i = [zi, zi], zi, zi ∈ Rnx , and

zij − zij = εj i = 1, · · · ,M j = 1, . . . , nx. (18)

The box component widths are computed as

εj =
Zj −Zj

mj
j = 1, . . . , nx (19)

wheremj is the number of intervals along dimensionj
computed as

mj = ⌈
Zj −Zj

δj
⌉ j = 1, . . . , nx (20)

where⌈.⌉ indicates the ceiling function andδj the mini-
mum accuracy for every state componentj defined in Sec-
tion 2.2. In this way, we guarantee that

εj ≤ δj j = 1, . . . , nx (21)

Finally, the numberM of boxes of the uniform grid par-
tition is given by

M =

nx∏

j=1

mj (22)

Once the new boxes[z]i have been computed, the weight
of the new boxeswi

z can be computed as

wi
z =

Nk∑

j=1

(∏nx

l=1 |[xl(k + 1)|x(k)]j ⋂[zl]
i|∏nx

l=1 |[xl(k + 1)|x(k)]j | w(k)j
)

(23)

i = 1, . . . ,M

where[vl]i refers to thel-th component of the vector[v]i

and the interval widthxl − xl is denoted by|[xl]| for more
compactness. The new weights fulfill

M∑

i=1

wi
z =

Nk∑

i=1

w(k)i = 1 (24)

The new weightswi
z in (4.1) can be computed efficiently

using Algorithm 1. This algorithm searches the number
Ninter of boxes ofZ that intersect every[x(k + 1)|x(k)]j .
Then, the weightw(k)j is distributed proportionally to
the volume of the intersection between the updated boxes
[x(k + 1)|x(k)]j and each of theNinter boxes ofZ that
have a non-empty intersection.

Algorithm 1 Weights of the new boxes.

Algorithm Weights-new-boxes (Z, [x(k + 1)|x(k)]1,
. . . , [x(k + 1)|x(k)]Nk , w(k)1, . . . w(k)Nk )
wi

z ← 0 i = 1, . . . ,M
for j = 1, . . . , Nk do
[Ninter,Vinter ] = intersec([x(k + 1)|x(k)]j ,Z)
for h = 1, . . . , Ninter do
i = Vinter(h)

wi
z = wi

z +
∏nx

l=1 |[xl(k+1)|x(k)]j ⋂
[zl]

i|∏nx
l=1 |[xl(k+1)|x(k)]j | w(k)j

end for
end for
Return (w1

z , . . . , w
M
z )

endAlgorithm

4.2 Controlling the number of boxes

Once the new disjoint boxes and their associated weights
have been computed, the associated weights can be used
to select the set of boxes that are worth pushing forward
through the next iteration. This is performed by selecting
the boxes with highest weights and discarding the others. In
order to fulfill the confidence threshold criterium (9) pro-
posed in Section 2.2, Algorithm 2 is proposed. The setWz

of weightswi
z associated to the boxes[z]i is defined as

Wz = {w1
z , . . . , w

M
z }. (25)

Given a desired confidence thresholdγ, theM disjoint
boxes[z]i that compose the uniform grid partition ofZ and
vectorWz with the associated weights, Algorithm 2 deter-
mines the minimum numberNk+1 of boxes[z]i with highest
weightswi

z that fulfill

Nk+1∑

i=1

wi
z ≥ γ (26)

The new state estimateX (k + 1) is approximated by this
set ofNk+1 boxes and their prior probability by

P ([x(k + 1)]i|Y(k)) ≈W i
k+1 i = 1, . . . , Nk+1. (27)

whereW i
k+1 are theNk+1 highest weights ofWz associated

with the disjoint boxes[x(k + 1)]i, i = 1, · · · , Nk+1, that
approximateX (k+1). W i

k+1 can be referred as thea priori
weights.

Algorithm 2 State update at stepk + 1 with confidence
thresholdγ.

Algorithm State-update([z]1, . . . , [z]M ,Wz ,γ)
γc ← 0, {X (k+1)} ← {∅},Wk+1 ← {∅}, Nk+1 ← 0
while γc < γ do

[value, pos] = max(Wz)
addbox(X (k + 1), [z]pos)
addelement(Wk+1, value)
γc = γc + value
Wz(pos)← 0
Nk+1 ← Nk+1 + 1

endwhile
Return (X (k + 1),Wk+1, Nk+1)

endAlgorithm

Proceedings of the 26th International Workshop on Principles of Diagnosis

69



This algorithm generates a set of state boxes{X (k + 1)}
a list of weightsW i

k+1, a cumulative weight variableγc,
and a cardinality variableNk+1. At the beginning of the
algorithm, the state boxes and weight list are initialized as
empty sets and cumulative weight and cardinality variable
are initialized to zero. The loop "while" operates as a sort-
ing, eliminating the boxes with smallest weights so that the
cumulative sum of the boxes with largest weights is greater
or equal to the thresholdγ. If the state space is not bounded,
the threshold0 < γ < 1 does not guarantee a bounded num-
ber of boxes in a worst-case scenario in which the measure-
ments do not emphasize some particles against others. In
this case, a maximum number of particlesNmax should be
imposed.

5 State estimation and fault detection
5.1 State estimation
Once the set ofNk+1 disjoint boxes[x(k + 1)]i, i =
1, · · · , Nk+1, that approximateX (k + 1) and their asso-
ciateda priori weightsW i

k+1 have been computed, their
measurement updated weightsw(k + 1)i are obtained us-
ing (11). Then, according to[2], the state at instantk + 1 is
approximated by

x̂(k + 1) =

Nk+1∑

i=1

w(k + 1)ixi
0(k + 1) (28)

wherexi
0(k+1) is the center of the particle box[x(k+1)]i.

Algorithm 3 summarizes the whole state estimation pro-
cedure.

Algorithm 3 State estimation
Algorithm State estimation

Initialize X (0), N0 and P ([x(k)]i|Y(k −
1))k=0,i=1...N0

for k = 1, . . . , end do
Obtain Input/Output data{u(k),y(k)}
Measurement update

computeΛ(k) using Eq. (12)
computew(k)i using Eq.(11)i = 1 . . .N0

State estimation
computêx(k) using (28)

State update
compute[x(k+1)|x(k)]i i = 1 . . .N0 using (15)
computeZ that fulfils (16)
compute disjoint boxes[z]i i = 1, · · · ,M of (17)
compute weightswi

z using Algorithm 1
compute new state estimation using Algorithm 2
Nk+1 disjoint boxes that approximateX (k+1)
Prior probabilities given by weightsWk+1

end for
endAlgorithm

5.2 Fault detection
In our framework, fault detection can be formulated as de-
tecting inconsistencies based on the state estimation. To do
so, we propose the two following indicators:

• Abrupt changes in the state estimation provided by (28)
from instantk−1 to instantk, i.e. abnormal high values
of

√
(x̂(k)− x̂(k − 1))(x̂(k)− x̂(k − 1))T

• Abnormal low sum of the unnormalized posterior prob-
ability of all the particles at instantk, which means
that all the particles have been penalized by the cur-
rent measurements. This abnormality can be checked
by thresholdingΛ(k) defined in (12).

If enough representative fault free data are available, the
indicators defined above can be determined by means of
thresholds computed with these data. For example, the
threshold that defines the abnormal abrupt change in state
estimation can be computed as

∆x̂max = β1 max
i=2,··· ,L

√
(x̂(i)− x̂(i− 1)) (x̂(i)− x̂(i− 1))T

(29)
whereL is the length of the fault free scenario andβ1 > 1
a tuning parameter. Then the fault detection test consists in
checking at each instantk if

√
(x̂(k)− x̂(k − 1)) (x̂(k)− x̂(k − 1))

T
> ∆x̂max

(30)
In a similar way, thresholdΛmin that defines the min-

imum expected unnormalized posterior probability can be
computed as

Λmin = β2 min
i=2,··· ,L

(Λ(i)) (31)

whereΛ(i) is determined using (12) and0 < β2 < 1 is a
tuning parameter. Then the fault detection test consists in
checking at each instantk if

Λ(k) < Λmin (32)

6 Application example
In this section a target tracking in a sensor network exam-
ple presented in[8] is used to illustrated the state estima-
tion method presented above. The problem consists of three
sensors and one target moving in the horizontal plane. Each
sensor can measure distance to the target, and by combining
these a position fix can be computed. Fig. 1 depicts a sce-
nario with a trajectory and a certain combination of sensor
locations (S1, S2 andS3).
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Figure 1: Target true trajectory and sensor positions in the
bounded horizontal plane

The behaviour of the system can be described by the fol-
lowing discrete time state-space model:
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(
x1(k + 1)
x2(k + 1)

)
=

(
x1(k)
x2(k)

)
+ Ts

(
v1(k)
v2(k)

)
(33)




y1(k)
y2(k)
y3(k)


 =




√
(x1(k)− S1,1)

2 + (x2(k)− S1,2)
2

√
(x1(k)− S2,1)

2 + (x2(k)− S2,2)
2

√
(x1(k)− S3,1)

2 + (x2(k)− S3,2)
2




+




e1(k)
e2(k)
e3(k)




(34)

wherex1(k) andx2(k) are the object coordinates bounded
by −1 ≤ x1(k) ≤ 3 and−1 ≤ x2(k) ≤ 4 ∀k ≥ 0.
Ts = 0.5s is the sampling time,v1(k) andv2(k) are the
speed components of the target that are unknown but con-
sidered bounded by the maximum speedσv = 0.4m/s
(|v1(k)| ≤ σv and|v2(k)| ≤ σv). y1(k), y2(k) andy3(k)
are the distances measured by the sensors.Si,j denotes
the componentj of the location of sensori. e1(k), e2(k)
ande3(k) are the the stochastic measurement additive er-
rorspei ∼ N(0, σi) with σ1 = σ2 = σ3 =

√
0.05m.

Fig. 2 shows the evolution of the real sensor distances
and measurements in the target trajectory scenario depicted
in Fig. 1.
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Figure 2: Real and measured distances from the target to the
sensors

In order to apply the state estimation methodology pre-
sented above, a minimum accuracyδ1 = δ2 = δ = 0.2m
has been selected for both components. No a priori infor-
mation has been used in the initial state. Then, a uniform
grid of disjoint boxes with the same weights and component
widths ε1 = ε2 = δ that covers all the bounded coordi-
nates−1 ≤ x1 ≤ 3 and−1 ≤ x2 ≤ 4 has been chosen as
initial stateX (0). Posterior probabilities of the boxes have
been approximated by weightsw(k)i computed using the
new sensor distances measurements in (4.1). State update
has been computed considering speed bounds in (33). The
new boxes have been rearranged considering the minimum
accuracyδ and their associated weights have been computed
using (4.1). Finally, Algorithm 2 with thresholdγ = 1 has
been applied to reduce the number of boxes.

Figs. 3 and 4 depict the box weights and their contours
using measurementy1(1) (up) and all the measurements at
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Figure 3: Box weights using measurementy1(k) (up) and
measurements(y1(k), y2(k), y3(k))T (down)
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Figure 4: Box weight contours using measurementy1(k)
(up) and measurements(y1(k), y2(k), y3(k))T (down)

instantk = 1 (y1(1), y2(1) andy3(1)) (down). Fig. 5 de-
picts the box weights and their contours using the measure-
ments at hand at instantk = 2.

The real trajectory and the one estimated using (28) are
shown in Fig. 6.

Finally, different additive sensor faults have been simu-
lated and satisfactory results of the fault detection tests(30)
and (32) have been obtained for faults bigger than0.5m us-
ing thresholds∆x̂max andΛmin computed with (29) and
(31)withL = 3200, β1 = 1.1 andβ2 = 0.9.

Fig. 7 shows the real trajectory and the one estimated us-
ing (28) when an additive fault of+0.5m affects sensorS1

at timek = 22. The behaviour of fault detection tests (30)
and (32) is depicted in Fig. 8. As seen in this figure, both
thresholds are violated at time instantk = 22 and therefore
the fault is detected at this time instant.
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Figure 6: Trajectories

7 Conclusion and perspectives

A Box particle algorithm has been proposed for estimation
and fault detection in the case of nonlinear systems with
stochatic and bounded uncertainties. Using this method in
the case of a target tracking sensor networks illustrates its
feasibility. It has been shown how the measurement up-
date state for the box particle is derived from the particle
case. However convergence and stability of this filter have to
be proved. Resampling unfortunatly drops information and
waives guaranteed results that characterize interval analysis
based solutions. However without resampling the particle
filter suffers from sample depletion. This is the reason why
resampling is a critical issue in particle filtering (Gustafsson
2002). This approach has to be compared to other PF vari-
ants which reduce the number of particles[2] and further
investigations concerning resampling are required, in par-
ticular if we want to take better benefit of the interval based
approach.
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Figure 7: Trajectories in fault scenario
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A Demonstration of Measurement update:
"From particles to boxes"

A.1 Particle filtering

Consider the particles{x(k)j}Nj=1 uniformly distributed in

x(k)j ∈ [x(k), x(k)] ∀j = 1, . . . , N wherex(k), x(k) ∈
R. Then according to[1] the relative posterior probability
for each particle is approximated by

P (x(k)j|Y(k)) ≈ 1

c(k)
P (x(k)j|Y(k − 1))pe(y(k)− h(x(k)j))

(35)
with

c(k) =

N∑

j=1

P (x(k)j |Y(k)) (36)
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A.2 Grouping particles
If we group theN particles inNg groups of∆N elements

{x(k)j}Nj=1 =

Ng⋃

i=1

{x(k)l}i∆N
l=1+(i−1)∆N (37)

with Ng = N
∆N

If we select the groups of points in such a way that

{x(k)l}i∆N
l=1+(i−1)∆N ∈ [x(k)]i ∀i = 1, . . . , Ng (38)

where

[x(k)]i = [x(k) + (i− 1)∆L, x(k) + i∆L] (39)

with

∆L =
x(k)− x(k)

Ng
(40)

If the number of particlesN →∞ and therefore∆N →
∞

P ([x(k)]i|Y(k)) ≈
i∆N∑

j=1+(i−1)∆N

P (x(k)j |Y(k)) (41)

according to (35)

P ([x(k)]i|Y(k)) ≈
∑i∆N

j=1+(i−1)∆N P (x(k)j |Y(k − 1))pe(y(k)− h(x(k)j))
∑Ng

l=1

∑l∆N
j=1+(l−1)∆N P (x(k)j|Y(k − 1))pe(y(k)− h(x(k)j))

(42)

If we consider the particles in the same groupi have the
same prior probabilities, then:

p(x(k)j |Y(k − 1)) =

P ([x(k)]i|Y(k − 1))

∆N
∀j = 1 + (i− 1)∆N, . . . , i∆N

(43)

and (42) leads to

P ([x(k)]i|Y(k)) ≈
P ([x(k)]i|Y(k − 1))

∑i∆N
j=1+(i−1)∆N pe(y(k)− h(x(k)j))

∑Ng

l=1(P ([x(k)]l|Y(k − 1))
∑l∆N

j=1+(l−1)∆N pe(y(k)− h(x(k)j)))

(44)

If theN particles are uniformly distributed in the interval
[x(k), x(k)], i.e

x(k)j − x(k)j−1 = ∆x(k) ∀j = 2, . . . , N (45)

where

∆x(k) =
x(k)− x(k)

N
=

∆L

∆N
(46)

Then

i∆N∑

j=1+(i−1)∆N

pe(y(k)− h(x(k)j))∆x(k) ≈

∫ (i∆N)∆x(k)

(1+(i−1)∆N)∆x(k)

pe(y(k)− h(x(k)))dx(k) ≈
∫

x(k)∈[x(k)]i
pe(y(k)− h(x(k)))dx(k)

(47)

Finally, multiplying the numerator and denominator of
equation (44) by∆x, we obtain the particle box measure-
ment update equation

P ([x(k)]i|Y(k)) ≈
P ([x(k)]i|Y(k − 1))

∫
x(k)∈[x(k)]i

pe(y(k)− h(x(k)))dx(k)
∑Ng

l=1(P ([x(k)]l|Y(k − 1))
∫
x(k)∈[x(k)]l

pe(y(k)− h(x(k)))dx(k))

(48)
that corresponds to the equation (11) with

Λ(k) =

Ng∑

l=1

(P ([x(k)]l|Y(k − 1))

∫

x(k)∈[x(k)]l
pe(y(k)− h(x(k)))dx(k))

(49)
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