
Analytic Dependency Loops in
Architectural Models of Cyber-Physical Systems

Ivan Ruchkin, Bradley Schmerl, David Garlan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{iruchkin, schmerl, garlan}@cs.cmu.edu

Abstract—Rigorous engineering of safety-critical Cyber-
Physical Systems (CPS) requires integration of heterogeneous
modeling methods from different disciplines. It is often necessary
to view this integration from the perspective of analyses –
algorithms that read and change models. Although such analytic
integration supports formal contract-based verification of model
evolution, it suffers from the limitation of analytic dependency
loops. Dependency loops between analyses cannot be resolved
based on existing contract-based verification. This paper makes
a step towards using rich architectural descriptions to resolve
circular analytic dependencies. We characterize the dependency
loop problem and discuss three algorithmic approaches to resolv-
ing such loops: analysis iteration, constraint solving, and genetic
search. These approaches take advantage of information in multi-
view architectures to resolve analytic dependency loops.

Keywords—Analytical models, Component architectures, Em-
bedded software, Systems engineering and theory

I. INTRODUCTION

Cyber-physical systems (CPS), such as self-driving cars
and autonomous drones, often operate in critical contexts
and therefore require rigorous up-front engineering methods.
The model-driven engineering (MDE) community has been
developing formal approaches to designing and verifying sys-
tems to provide guarantees on performance, safety, and other
critical qualities [1] [2]. For example, recent research on
collision avoidance proposes various analysis and verification
techniques to guarantee an absence of collisions [3] [4] [5].

One important aspect of CPS design is using heterogeneous
types of analysis to evaluate and evolve designs. For example,
reliability analysis can evolve a design so that its elements have
sufficient redundancy [6]; scheduling analysis can allocate
computational elements to processors [7]. In reality, there
are many analyses that are applied to CPS designs and one
particularly challenging aspect is how to integrate, or order
and properly apply, these analyses. Such analytic integration
can be done by verifying logical conditions in order to control
changes made to models [8]. In particular, prior work showed
that verification based on analysis contracts can prevent errors
caused by stale or missing information by determining which
analyses must be redone, and in which order. The analytic
perspective is convenient when model evolution patterns are
simpler than patterns for model structure and behavior.

One of the problems that arises during analytic integration
are analysis dependency loops – circular dependencies among
several analyses that make it impossible to order these analyses

in a sound way. Such loops may happen when analyses from
different domains are developed independently but operate
on the same design aspects, such as sensor infrastructure.
For example, reliability analysis may change the number of
sensors based on failure probabilities, and trust analysis may
adjust the number of sensors to mitigate against malicious
attacks on sensors. How can we conduct these analyses and be
sure that we have sufficient sensors? Such dependency loops
cannot be overcome with previous work using analysis contract
specifications [9] and render the methodology inapplicable.

One way to resolve analysis dependency loops is to bring in
a more detailed model of the system and analyses, making the
dependency description better understood. In previous work
we have advocated for the use of component-based (i.e.,
architectural) models to separate engineering into independent
components and to assemble the components together [4] [10].
In this paper we take the first step to combining architectural
and analytic approaches to CPS design. We take advantage
of rich architectural models – multi-view descriptions and
component types – to provide several approaches to resolving
analytic dependency loops. Specifically, this paper makes the
following contributions:

• A characterization of the problem of analytic dependency
loops.

• Three algorithmic approaches to resolve dependency
loops automatically, and a qualitative analysis of their
applicability, strengths, and weaknesses.

Specifically, we examine analysis iteration, constraint solv-
ing, and genetic search as potential approaches to resolve
dependencies, showing the cases in which each approach may
best apply. Iteration and search rely on multi-view mappings to
produce valid architectural models, and constraint solving uses
a library of architectural types to set up constraint problems
on architectural models.

The paper is organized as follows. The next section reviews
the related work on CPS modeling and analysis. We then
describe and exemplify the problem of circular analysis depen-
dencies in Sec. III. In Sec. IV we propose three approaches
to resolve such dependencies and discuss the approaches’
qualities. We wrap up the paper by describing future research
directions in Sec. V.

II. RELATED WORK

Recently several research efforts in architectural modeling
have achieved substantial progress in MDE. Results include



composability and provability using component interfaces
and contracts [11] [12] [13], rich simulation using multiple
computational models [14], platform-based verification and
reuse [15] [16], graph-based mapping and consistency between
cyber and physical models [17], and semantic validation using
logical metamodeling [18] [19]. These methods do not enable
reasoning about how designs are modified throughout the
engineering lifecycle. At best, there are tools like DESERT
[20] for exploring the design space, but these do not support
consistent evolution of a set of models. As a result, the
integration of heterogeneous CPS models has to be maintained
manually, which is tedious and error-prone.

The problem of dependency loops has been considered
in many contexts. For example, dataflow systems that consist
of concurrent actors may deadlock due to dependency loops
among actors [21]. The authors develop a specification ap-
proach called causality interfaces for actors that helps resolve
the loops. However, whether the causality interface approach
can be applied to model-based analyses remains an open
research question. Another approach is using game-theoretic
models to synthesize proof of contract causality [9]. This
method relies on detailed game models that may be difficult
to obtain for heterogeneous domains where analyses often
originate.

Existing research on analyses [22] [8] and change-driven
transformations [23] applies formal reasoning at the level of
analysis algorithms, which is distinct from architectural mod-
els. One aspect of this reasoning is identifying dependencies
between analyses and ordering their execution to respect these
dependencies. So far this body of work has only considered
tree-shaped analysis graphs that do not have cycles [8]. The
developed tools, e.g., ACTIVE [24], would not be applicable
for circularly dependent analyses, which are more likely to be
discovered as more domains are incorporated into the frame-
work of analysis contracts. Our work identifies the potential
ways to deal with such circularities.

Several dependency management methods address inter-
actions in different parts of system design. For example,
Qamar has developed a cross-domain dependency management
approach that keeps track of dependent model variables in
their designs across disciplinary and instrumental boundaries
[25]. Another example is a multi-view architecture description
language with dependency links to ensure consistency among
views [26]. Such approaches focus on discovery and repre-
sentation of dependencies and do not deal with algorithmic
cycles directly. Our work therefore can be seen as a next step
in automation of change and dependency management.

III. ANALYTIC DEPENDENCY LOOPS

In this section we describe the problem of analytic de-
pendency loops in detail. First we present a car model to
ground the discussion and describe two example analyses
from the reliability and security domains. Then we formalize
several foundational concepts that help us characterize analytic
dependency loops.

A. System Example

To illustrate circular dependencies between analyses, let
us consider the internal digital system of a self-driving car.

Fig. 1. Architecture of the braking subsystem of a self-driving vehicle.

Inspired by recent advances in the automotive industry [27],
the car is designed to perform fully autonomous driving that
includes acceleration, lane control and change, platooning, and
braking to avoid collision. To inform its decisions, the car
collects information about the environment through its sensors:
sonar, lidar [28], speedometer, and wireless car-to-car (C2C)
communication. Controllers make actuation decisions using
algorithms executed in threads running on electronic control
units (ECUs), and send these decisions to physical actuators
such as steering, acceleration, and braking.

In this example, we focus on the braking subsystem,
because it performs the safety-critical function of avoiding
collision with various static and dynamic obstacles on the road.
In Fig. 1 we show an example architecture of the braking
subsystem. Sensors collect data about the position of the
car, its speed, and the locations of obstacles. The controllers
periodically make a decision about the timing and strength of
braking, sending their commands to several braking actuators
in the front and back of the car. Since braking control and
actuation are critical functions, there is a reserve controller
and redundant brakes for the case of nominal components
malfunctioning. Throughout this section we will build a formal
multi-view model of this architecture in order to precisely
express the conditions leading to dependency loops.

One of the major quality attributes of the braking subsys-
tem is safety, which itself depends on system security and reli-
ability. Security needs to be considered because it may violate
safety if a malicious attacker compromises sensors (S). For
instance, the braking system could be compromised internally
through the CAN network of the car [29] or externally [30]
by executing deception attacks on sensors [31]. Different types
and placements of sensors (Place) 1 have varying capacity
to be compromised by attacks, which determines their level
of trustworthiness (Trust)2 [32]. Sensors that output genuine
data, or have a mechanism to determine genuine data, are
considered trustworthy for modeling purposes. We extend this
notion to controllers as well. According to [31], there exists a
data decoding algorithm that is guaranteed to deliver genuine
data when at least half of the sensors are trustworthy. We

1In the running example we consider car sensors placed internally, such as
speedometer, and externally, such as car-to-car communication.

2For simplicity, we assume that Trust is binary – whether a sensor’s output
can be trusted.



model security concerns in the trustworthiness view Vtrust (see
the left half of Fig. 2) that contains components Ctrust that
may be compromised by a malicious attacker – sensors and
controllers – and a bus connector CNtrust with data read and
write operations.

Reliability of the system should be considered because
safety is affected when components randomly fail (e.g., due
to manufacturing defects). The reliability view Vfmea (see
the right half of Fig. 2) contains physical components Cfmea

that may fail – sensor devices, threads, electronic control
units (ECUs) – and physical network connectors and buses
CNfmea. View Vfmea focuses on such concerns as compo-
nent probabilities of failure Pfail, failure propagation among
individual components, and failure effects. For instance, if
the speedometer fails in Fig. 1, the controller will not have
an accurate measurement of speed. However, this can be
overcome by inferring the approximate speed from values
delivered by a position sensor such as GPS. If, on the other
hand, both lidar and C2C fail, there is no way for the controller
to obtain the locations of obstacles, which is likely to result
in a critical failure. Thus, different configurations of system
failure (also known as failure modes [6]) may have different
likelihoods of effects on the system.

The views Vtrust and Vfmea are related to each other
through view-to-view mappings of components: RV

V ⊂ C ∪
CN×C∪CN. Component c1 ∈ Cfmea is considered mapped
to c2 ∈ Ctrust when (c1, c2) ∈ RV

V , and analogously for con-
nectors. Some components such as ECUs in Vfmea do not have
a counterpart in Vtrust, so the views are not full abstractions
of each other as they are required to be in some approaches
(e.g., structural consistency [33]). However, in our example, it
is important that sensors and controllers are mapped to each
other in both views: every sensor and controller considered for
trust needs to be considered for failure, and vice versa. Hence
we will use the following condition of consistency:

∀c1 ∈ Strust ∪ Rtrust

∃c2 ∈ Sfmea ∪ Rfmea · (c1, c2) ∈ RV
V (1)

∧
∀c2 ∈ Sfmea ∪ Rfmea

∃c1 ∈ Strust ∪ Rtrust · (c1, c2) ∈ RV
V (2)

where

Strust ∪ Rtrust ⊂ Ctrust ∧ Sfmea ∪ Rfmea ⊂ Cfmea.

The views and relations constitute a full architectural
model M of the system: M ≡ (Vtrust,Vfmea,R

V
V ). Outside the

formal boundaries of M we define component and connector
types T to reuse common aspects of components. Types specify
relevant properties such as Trust and Pfail, and formally are
domains of these functions. For example, a component type
could describe a lidar device from a particular supplier and
its characteristics. Formally, types are assigned to components
and connectors with a typing function T : C∪CN→ {T} that
maps an architectural element to a subset of types. This way
we can specify and reuse types separately from systems.

B. Analyses and Contracts

Architectural views undergo continual change as engineers
search for a design that satisfies the requirements. Often design
exploration and refinement relies upon algorithms and tools,
which read and change models. We call such tools analyses
[22] [8]. Many analyses originate in different domains and
make implicit interdependent assumptions about each other.
For example, real-time scheduling assumes that there is suffi-
cient electrical power for every processor at all times. At the
same time, battery design process requires that computations
do not consume more power than the battery can reasonably
provide. Such analytic assumptions need to be explicitly con-
sidered and reconciled. Let us consider two analyses from the
fields of sensor security and system reliability respectively:

• Trustworthiness Analysis. Atrust [34] modifies the system
to ensure that in case of a malicious attack on sensors the
system can still function within acceptable error margins.
This is achieved by considering a particular attacker
profile and determining the necessary number of sensors
of each kind. Atrust operates over Vtrust.

• Failure Modes and Effects Analysis (FMEA). Afmea [35]
determines failure modes and their probabilities. We con-
sider a version of FMEA that redesigns the system so that
it does not have critical failure modes (i.e., those where
the system is unsafe) with likelihood more than some
threshold αfail. Afmea operates over Vfmea.

In previous work [36], we considered Atrust and Afmea

to be integrated without dependency cycles. However, this is
not a realistic solution: as more analyses are considered, cyclic
dependencies are increasingly likely to occur, and cannot be
avoided without significantly changing the analyses. Therefore,
in this paper we consider Atrust and Afmea to be separate
but dependent on each other (as we elaborate later), thus
introducing a cyclic dependency that needs to be addressed.

Formally, analysis A is a function that has system designs
as its domain and codomain: A : M → M. Many analyses
including Atrust and Afmea operate only on their specific view
V, in which case we can restrict an analysis to this view: A :
V → V. In this case executing, or applying, an analysis A to
a system model M requires two steps:

1) Obtaining A(M) and making it the new system under
design.

2) Restoring consistency among views in M.

In our example each analysis modifies its own view, which
means in step 2 the changes need to be propagated to the other
view. This can be done using mapping RV

V following existing
approaches like change propagation [37] or model synchro-
nization [38]. Although re-establishing view consistency is an
important part of analysis the workflow, we do not concentrate
on it in this paper.

An important assumption of our work is the idempotence
property A(A(V)) = A(V). Both analyses that we consider
in this paper are idempotent because they directly address a
particular quality attribute, and do not modify the system if
the attribute is already satisfied. We rely on idempotence in
Sec. IV to resolve dependency cycles. Applicability of the
discussed resolution techniques to non-idempotent analyses
will be considered in the future work.



Fig. 2. A multi-view model M of the braking system: Vtrust, Vfmea, and RV
V .

Following [8], for each A we define analysis contracts as
tuples of inputs I , outputs O, assumptions A, and guarantees
G: CA ≡ (I,O,A,G). For simplicity we will write A.I
meaning CA.I . Therefore we have the following contracts3:

Ctrust.I = {S,Place, . . . }
Ctrust.O = {S,Trust}
Ctrust.A = . . .

Ctrust.G = “system is trustworthy” 4

Cfmea.I = {S,Pfail, αfail}
Cfmea.O = {S, . . . }
Cfmea.A = . . .

Cfmea.G = “system is reliable” 5

(3)

We limit our discussion in the rest of the paper to Atrust

and Afmea. However, in a typical engineering context there
may be dozens of analyses from heterogeneous domains that
have dependencies. For example, control analysis may deter-
mine whether a control algorithm satisfies control requirements
such as rise time and percent overshoot [39]. Schedulability
analyses such as binpacking and frequency scaling [22] de-
termine the capacity behind the control algorithm to compute
outputs in time, but at the same time depend upon the quantity
of control computation and communication.

3Some inputs, outputs, and assumptions are omitted because they do not
contribute to the discussion of dependency loops. Full contracts can be found
in [36].

4System trustworthiness may have several different operationalizations [32].
For example, we could assume that the system is trustworthy when at least
half of its sensors are trustworthy [31]. A particular operationalization of
trustworthiness is outside of this paper’s scope.

5Analogously, the interpretation of reliability may differ from system to
system. We reason about reliability as a whole without binding ourselves to
a particular definition.

According to Eqs. 3 both Atrust and Afmea modify the set
of system’s sensors S, meaning that these two analyses have a
circular dependency on each other. This makes it impossible
to find a valid sequence of their execution based on just their
contracts. Therefore we need to study the nature of analytic
dependency loops closer.

C. Dependency Loops

To characterize the dependency loops precisely, let us
introduce several formal definitions for analyses, dependencies,
and dependency loops between analyses. First, two analyses
are dependent if inputs of one have commonalities with outputs
of the other.

Definition 1: Analysis Ai is dependent on analysis Aj ,
denoted d(Ai,Aj), if Ai.I ∩ Aj .O 6= ∅.

Second, a dependency loop is a chain of analysis de-
pendencies where the last element depends on the first one.
The smallest dependency loop is a pair of mutually dependent
analyses.

Definition 2: Analyses A1 . . .An form a dependency loop,
denoted Loop(A1 . . .An), if:

d(A1,A2) ∧ · · · ∧ d(An−1,An) ∧ d(An,A1)

Eqs. 3 indicate that Loop(Afmea,Atrust). A dependency
loop makes it impossible to use the graph-based ordering
algorithm [8] to find a sound sequence of analyses because
analysis contracts do not have sufficient specification to resolve
the dependency. Therefore we explore other ways to resolve
loops. Our ultimate goal is to “skip” the loop and find a design
that would theoretically satisfy the loop. Such a design, when
fed into each of the analyses, would not change. This situation
resembles the fixed point concept from numeric analysis [40],
hence we adapt definitions from that field.



Definition 3: A system model or view M is a fixpoint of
an analysis set AN , denoted M ∈ FP(AN ), if ∀A ∈ AN ·
A(M) = M.

From Def. 3 it follows that a fixpoint M satisfies the
guarantees of all analyses in AN . This is a necessary, but
not sufficient, condition: a model may satisfy all guarantees
of an analyses, but not be a fixpoint because the analysis
may still modify the model (e.g., to optimize it further). We
define models that satisfy all guarantees of an analysis as
its candidate fixpoints. Also, a fixpoint may not satisfy some
assumptions because analyses may exclude their fixpoints from
the applicability set since no further changes are possible or
needed.

Now consider a set of analyses AN and a system model M.
Below are several mutually exclusive cases for fixpoints. These
cases support two goals. First, they will help us qualitatively
evaluate techniques for dependency loop resolution, which we
present in the next section. Second, knowing the case of a
particular loop narrows down the available techniques, thus
streamlining the resolution of this loop.

C1 Strong convergence: a fixpoint exists and is reachable by
any sequence of analyses. This may happen when there
are two analyses and their changes to the system do not
practically overlap.

C2 Weak convergence: a fixpoint exists and is reachable by
some sequence of analyses. This is more likely to be the
case when there are several analyses and they interact
differently depending on their order of execution.

C3 Weak divergence: a fixpoint exists but is not reachable by
any sequence of analyses. E.g., there is a stable alternation
between two designs with two analyses.

C4 Divergence: a fixpoint does not exist, but at least one
candidate fixpoint exists.

C5 Strong divergence: no candidate fixpoints exist: no model
satisfies a conjunction of guarantees of all analyses.

Now that the problem of analytic dependency loops is
formally defined, we proceed to the methods of its resolution.

IV. RESOLUTION OF DEPENDENCY LOOPS

The goal of dependency loop resolution is, given a system
M and a set of circularly dependent analyses Loop(AN ), to
find such analysis A′ that would produce a fixpoint of AN :

A′(M) ∈ FP(AN ).

This problem has two sub-parts: finding a fixpoint and
verifying that a given model is a fixpoint. For the former,
we are not looking for a mathematically optimal solution or
a specific fixpoint because system design is often done via
satisficing [41] rather than optimizing. Many aspects of design
are poorly quantifiable: supplier availability and negotiation,
diverse qualities of the system, component compatibility, and
so on. Therefore we prefer an acceptable suboptimal design to
an exhaustive search of a design space that is often unbounded
or too large. For the latter part however, we do require an
accurate approach, otherwise analysis results may be unsound
and potentially lead to design errors.

TABLE I. CONVERGENCE, EXAMPLE OF C1 AND C2.

Sensors Gtrust Gfmea

A 3 7
B 7 7

AB 3 7
ABB 7 3

AABB 3 3

Fig. 3. Example workflow of analyses for convergence.

For further discussion consider the application of Afmea

and Atrust in several specific contexts. Assume that two types
of sensors are given: A and B. A is trustworthy but unreliable,
and B is reliable but untrustworthy – these characteristics
are specified in the sensors’ architectural types. The specific
calculations of aggregates do not concern us at this moment,
and we abstract reliability and trustworthiness as boolean
properties.

First let us consider the convergence situation. Tab. I shows
the evaluation of a sensor configuration for the convergence
situation. Each line represents a configuration of the system in
terms of sensors. AABB is the desired fixpoint configuration
that is both trustworthy and reliable. As Fig. 3 indicates, the
alternating analyses converge on the fixpoint.

Similarly, Tab. II and III represent divergence with and
without a fixpoint respectively. Fig. 4 shows an alternation
situation where ABB is not trustworthy and AAB is not
reliable, and analyses keep alternating between designs without
converging on an existing but unreachable fixpoint AABB.

TABLE II. DIVERGENCE, EXAMPLE OF C3 AND C4.

Sensors Gtrust Gfmea

AB 3 7
ABB 7 3
AAB 3 7

AABB 3 3

Fig. 4. Example workflow of analyses for divergence. See legend in Fig. 3.

To achieve practical dependency resolution we consider
three methods: analysis iteration, constraint solving, and ge-
netic search.

Analysis Iteration. This method iteratively searches for a
fixpoint by applying analyses to the model in some sequence,
similarly to a method of numeric computation of functional



TABLE III. STRONG DIVERGENCE, EXAMPLE OF C5.

Sensors Gtrust Gfmea

A 3 7
B 7 7

AB 3 7
ABB 7 3
AAB 3 7

AABB 3 7
ABBB 7 3
AAAB 3 7

Fig. 5. Example workflow of analyses for strong divergence.
See legend in Fig. 3.

fixpoints [40]. In our case, however, the order of analysis
iteration is an open question. One option is to select random
sequences of analyses, which would find a fixpoint in C1 and
could find one in C2. A more sophisticated approach is to con-
struct a contract-guided sequence: only analyses with satisfied
assumptions are applied; from those, analyses with unsatisfied
guarantees are given a priority. Selection may be random or
lexicographical. Another to enhance analysis iteration is to
define a partial order on each view, and apply analyses that
move the views towards the goal. Analysis iteration can also
be used as an accurate fixpoint verification method for C1,
C2, C3 and candidate verification for C4 in accordance with
Def. 3.

An advantage of analysis iteration is that it is simple and
does not require extra specification. In particular, for Tab. I and
Fig. 3 iteration would converge on the AABB model given a
starting point of A or B. For larger models however iteration is
computationally expensive6, may not converge, and its success
may depend heavily on the starting model: there are cases
when iteration converges when started from one model but not
from another. Therefore, we suggest two other approaches.

Constraint solving. This method searches for a fixpoint
by constructing a constraint satisfaction problem and feeding
it to a solver. We can use Satisfiability Modulo Theories
(SMT) [42] as an example of a constraint solving approach.
To set up a constraint problem, one needs to translate relevant
architectural types from the model (denoted SMT (M)) and
analysis guarantees into problem constraints using an existing
theory (e.g., integers or reals). The set of sensors under
search would become an underspecified part of the satisfaction
problem, so that a solver can find its valuation that satisfies

6For practical application of analysis iteration it is crucial that the consis-
tency propagation algorithm is efficient since it is run after every iteration.

constraints. For instance, constraint solving would find AABB
in Tab. II/Fig. 4, but analysis iteration would not find a path
to it. Constraint solving would also demonstrate absence of
a fixpoint in Tab. III/Fig. 5, although it would only explore
within the given bounds.

Constraint solving can be successfully used to find a
fixpoint in C1, C2, C3, find candidate fixpoints and demon-
strate absence of fixpoints in C4, and demonstrate absence of
candidate fixpoints in C5 – as long as a constraint problem
can be constructed and a (candidate) fixpoint lies within the
constraints. The possibility of constructing a constraint satis-
faction problem depends on the particular solving framework.
For instance, SMT does not yet have theories for calculating
real numbers. Unfortunately, constraint solving cannot verify
fixpoints because it does not directly execute analyses; never-
theless, it can verify candidate fixpoints. For instance, in the
case of SMT if SMT (M)∧¬G1∧· · ·∧¬Gn is UNSAT then the
M is a candidate fixpoint, at least within the checking bounds.
We can overcome the checking bound limitation with the next
cycle resolution approach.

Genetic search. This method executes for a system model
M obtaining A1(M) . . .An(M) and deriving hybrids among
the architectures, in a way similar to crossover in genetic
algorithms [43]. For two analyses Afmea and Atrust the set
of candidates is Afmea(M)⊕ Atrust(M) ∪ ∀i ⊆ Afmea(M) ∩
Atrust(M), where ⊕ is an exclusive OR over sets. Genetic
search may find fixpoints in C1, C2, C3, and C4. Genetic
search may be particularly useful in cases where the fixpoint
is outside the bounds of constraint solving but can be reached
by a mutation. For instance, if AABB were outside of the
constraint checking bounds in Tab. II/Fig. 4, genetic search
would still have a chance to find this model.

A special case of genetic search for the case of two
models crossover – merging models – can be useful in cases
where constraint solving is not: crossover may find a candidate
that does not satisfy some guarantees or constraints. Such
candidates may provide insights to engineers that would lead
to relaxing inappropriate constraints or finding important sub-
spaces of the design space. Merging would rely on view-
to-view mappings to achieve consistency in the produced
architectural models. We expect merging to be practically
limited to sets of components because merging connectors may
lead to combinatorial explosion due to non-determinism of
where connectors attach. Another drawback of genetic search
is that it cannot perform fixpoint verification, and therefore
it should be paired with another method like iteration. Thus,
non-determinism of genetic search is both its strength and
weakness.

All three methods and their expected applicability are
summarized in Tab. IV. The constraint solving column assumes
that a constraint problem can be formulated in one of the
existing theories. This table indicates that no single method can
capture all possible dependency cases, and their combination
is necessary to provide a robust solution to this engineering
problem. We have shown that even for two analyses, Atrust

and Afmea, the circular case may be different, which would
lead to different approaches being fruitful.

This section explored solutions for the relatively simple
example of two mutually dependent analyses, Atrust and



TABLE IV. SUMMARY OF APPLICABILITY
FOR LOOP RESOLUTION METHODS.

Case Analysis Iteration Constraint Solving Genetic Search
Find C1 3 3 3

Verify C1 3 7 7
Find C2 7 3 3

Verify C2 3 7 7
Find C3 7 3 3

Verify C3 3 7 7
Find C4 7 3 3

Verify C4 3 3 7
Detect C5 7 3 7

Afmea. In a more complex case many analyses depend on each
other and make interrelated and often vague assumptions. One
may use other ways to deal with this complexity. For example,
one may think of re-writing several analyses as one monolithic
multi-analysis with algorithms encapsulated. This approach has
a benefit of being simple and more controllable (e.g., additional
optimization can be applied during consolidation), however
it is more fragile because the constituent analyses cannot
be reused individually or combined in a different fashion.
Instead, our contract-based approach emphasizes more general
modular composition, formal verification, and scalability for
larger numbers of analyses.

V. FUTURE WORK AND CONCLUSION

This paper explored the challenging problem of resolving
analysis dependencies. As we showed, these dependencies
often cannot be resolved using contract specification and needs
extra description, such as architectural types and mappings. We
sketched and exemplified three approaches to cycle resolution:
iterative execution, constraint solving, and genetic algorithms.
We expect these descriptions and approaches be applicable
to other domains and analyses (e.g., cost-benefit analysis of
architecture) in our future work.

An important future work direction is implementing and
integrating dependency resolution algorithms into our architec-
tural and analytic framework [24]. The tools would need access
to architectural styles and analysis descriptions to perform the
intended functions. A major step is a design of a general
API so that dependency resolution can be extended with
new techniques. An implementation of dependency resolution
would also be helpful to demonstrate practical feasibility of
our cycle resolution techniques. This implementation can be
further enhanced in several ways. One is concurrent execution
of different techniques and aggregation of their results. An-
other way to enhance loop resolution is to combine it with
optimization and search for optimal fixpoints.

We envision our work to be more general and systematic
than ad hoc analysis integration, so empirical validation is
essential. We have previously formalized a number of scientific
and engineering domains: real-time CPU scheduling, electrical
and thermal analysis of batteries [8], reliability, sensor security,
and secure control [36]. To demonstrate the generality and
effectiveness of the described cycle resolution techniques we
will revisit these domains to discover circular dependencies,
which we previously designed away. Beyond that, we plan
to look for realistic CPS projects to investigate the effect on
analytic cycles on larger system designs.

An even deeper level of integration between the analytic
and architectural approaches would involve using system in-

variants during analysis execution. Currently, satisfaction of
system invariants is a concern orthogonal to analytic exe-
cution. One way to use invariants is to discharge analytic
assumptions with them, instead of verifying the assumptions
directly. Similarly, one can use analytic guarantees to discharge
system invariants after running an analysis. We hope that
this would lead to a significant reduction of verification time
and effort. We expect that bringing analyses and architecture
closer together would lead to a cohesive and versatile toolbox
of domain integration tools that can be applied in various
engineering contexts, such as aerospace, automotive, energy,
and medical CPS.

ACKNOWLEDGMENTS

The authors would like to thank Ashwini Rao, Dionisio De
Niz, and Sagar Chaki for their work on the initial vision of the
system example and analyses in [36], and Nicholas Rouquette
for a motivating discussion of circular dependencies in model-
based engineering.

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. This work was also supported in part by
the National Science Foundation under Grant CNS-0834701,
and the National Security Agency.

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in Proceed-
ings of the 11th Symposium on Object Oriented Real-Time Distributed
Computing. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 363–369.

[2] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
The next computing revolution,” in 2010 47th ACM/IEEE Design
Automation Conference (DAC), 2010, pp. 731–736.

[3] S. Mitsch, K. Ghorbal, and A. Platzer, “On Provably Safe Obstacle
Avoidance for Autonomous Robotic Ground Vehicles,” in Proc. of
Robotics: Science and Systems, 2013.

[4] I. Ruchkin, B. Schmerl, and D. Garlan, “Architectural Abstractions
for Hybrid Programs,” in Proceedings of the 18th International ACM
SIGSOFT Symposium on Component-Based Software Engineering, ser.
CBSE ’15. New York, NY, USA: ACM, 2015, pp. 65–74.

[5] D. Phan, J. Yang, D. Ratasich, R. Grosu, S. A. Smolka, and S. D. Stoller,
“Collision Avoidance for Mobile Robots with Limited Sensing in
Unknown Environments,” in Proc. of the 15th International Conference
on Runtime Verification, 2015.

[6] D. H. Stamatis and H. Schneider., Failure Mode and Effect Analysis:
FMEA from Theory to Execution, 2nd ed. Milwaukee, Wisc: Amer
Society for Quality, Jun. 2003.

[7] M. Klein, A Practitioner’s Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Springer, 1993.

[8] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan, “Contract-based
Integration of Cyber-physical Analyses,” in Proceedings of the 14th
International Conference on Embedded Software, ser. EMSOFT ’14.
New York, NY, USA: ACM, 2014, pp. 23:1–23:10.

[9] M. Bartoletti, T. Cimoli, P. Di Giamberardino, and R. Zunino, “Vicious
circles in contracts and in logic,” Science of Computer Programming,
vol. 109, pp. 61–95, Oct. 2015.

[10] A. Rajhans, A. Bhave, I. Ruchkin, B. Krogh, D. Garlan, A. Platzer,
and B. Schmerl, “Supporting Heterogeneity in Cyber-Physical Systems
Architectures,” IEEE Transactions on Automatic Control, vol. 59,
no. 12, pp. 3178–3193, Dec. 2014.

[11] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems*,”
European Journal of Control, vol. 18, no. 3, pp. 217–238, 2012.



[12] P. Derler, E. A. Lee, S. Tripakis, and M. Torngren, “Cyber-physical
System Design Contracts,” in Proceedings of the ACM/IEEE 4th Inter-
national Conference on Cyber-Physical Systems, ser. ICCPS ’13. New
York, NY, USA: ACM, 2013, pp. 109–118.

[13] P. Nuzzo, H. Xu, N. Ozay, J. Finn, A. Sangiovanni-Vincentelli, R. Mur-
ray, A. Donze, and S. Seshia, “A Contract-Based Methodology for
Aircraft Electric Power System Design,” IEEE Access, vol. 2, pp. 1–25,
2014.

[14] S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee, “A Modular Formal
Semantics for Ptolemy,” Mathematical Structures in Computer Science.
Accepted for publication, 2012.

[15] V. Subramonian and C. Gill, “Towards Integrated Model-Driven Ver-
ification and Empirical Validation of Reusable Software Frameworks
for Automotive Systems,” in Model-Driven Development of Reliable
Automotive Services. Springer Berlin Heidelberg, 2008, pp. 118–132.

[16] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “metroII: A Design Environ-
ment for Cyber-physical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 12, no. 1s, pp. 49:1–49:31, 2013.

[17] A. Bhave, “Multi-View Consistency in Architectures for Cyber-Physical
Systems,” Ph.D. dissertation, Carnegie Mellon University, Dec. 2011.

[18] G. Simko, D. Lindecker, T. Levendovszky, S. Neema, and J. Szti-
panovits, “Specification of Cyber-Physical Components with Formal
Semantics Integration and Composition,” in Model-Driven Engineering
Languages and Systems. Springer Berlin Heidelberg, Jan. 2013, pp.
471–487.

[19] Sandeep Neema, Ted Bapty, and Janos Sztipanovits, “Multi-Model
Language Suite for Cyber-Physical Systems,” Institute for Software
Integrated Systems, Vanderbilt University, Tech. Rep., 2013.

[20] J. Sztipanovits, G. Karsai, S. Neema, and T. Bapty, “The Model-
Integrated Computing Tool Suite,” in Model-Based Engineering of
Embedded Real-Time Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Jan. 2010, no. 6100, pp. 369–376.

[21] Y. Zhou and E. A. Lee, “A Causality Interface for Deadlock Analysis in
Dataflow,” in Proceedings of the 6th ACM &Amp; IEEE International
Conference on Embedded Software, ser. EMSOFT ’06. New York,
NY, USA: ACM, 2006, pp. 44–52.

[22] M.-Y. Nam, D. de Niz, L. Wrage, and L. Sha, “Resource allocation
contracts for open analytic runtime models,” in Proc. of the 9th
International Conference on Embedded Software, ser. EMSOFT ’11.
New York, NY, USA: ACM, 2011, pp. 13–22.

[23] G. Bergmann, I. Roth, G. Varro, and D. Varro, “Change-driven model
transformations,” Software & Systems Modeling, vol. 11, no. 3, pp. 431–
461, Mar. 2011.

[24] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan, “ACTIVE: A Tool for
Integrating Analysis Contracts,” in 5th Analytic Virtual Integration of
Cyber-Physical Systems Workshop, Rome, Italy, Dec. 2014.

[25] A. Qamar, “Model and Dependency Management in Mechatronic De-
sign,” Ph.D. dissertation, KTH Sweden, Stockholm, Sweden, 2013.

[26] A. Radjenovic and R. Paige, “The Role of Dependency Links in En-
suring Architectural View Consistency,” in Seventh Working IEEE/IFIP
Conference on Software Architecture, 2008. WICSA 2008, Feb. 2008,
pp. 199 –208.

[27] Paul Gao, Russel Hensley, and Andreas Zielke, “A road map to the
future for the auto industry,” McKinsey Quarterly, Oct. 2014.

[28] A. Iliaifar, “LIDAR, lasers, and logic: Anatomy of an autonomous
vehicle,” 2013. [Online]. Available: http://www.digitaltrends.com/cars

[29] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in 2010
IEEE Symposium on Security and Privacy (SP), May 2010, pp. 447–
462.

[30] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
Experimental Analyses of Automotive Attack Surfaces,” in Proc. of the
20th USENIX Conference on Security, Berkeley, CA, USA, 2011, pp.
6–22.

[31] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure Estimation and Control
for Cyber-Physical Systems Under Adversarial Attacks,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014.

[32] F. G. Marmol and G. M. Perez, “Towards pre-standardization of trust
and reputation models for distributed and heterogeneous systems,”
Computer Standards & Interfaces, vol. 32, no. 4, pp. 185–196, Jun.
2010.

[33] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl, “View Consistency
in Architectures for Cyber-Physical Systems,” in 2011 IEEE/ACM
International Conference on Cyber-Physical Systems (ICCPS), Apr.
2011, pp. 151 –160.

[34] L.-A. Tang, X. Yu, S. Kim, Q. Gu, J. Han, A. Leung, and T. La Porta,
“Trustworthiness analysis of sensor data in cyber-physical systems,”
Journal of Computer and System Sciences, vol. 79, no. 3, pp. 383–401,
May 2013.

[35] M. Hecht, A. Lam, and C. Vogl, “A Tool Set for Integrated Software
and Hardware Dependability Analysis Using the Architecture Analysis
and Design Language (AADL) and Error Model Annex,” in 16th In-
ternational Conference on Engineering of Complex Computer Systems,
2011, pp. 361–366.

[36] I. Ruchkin, A. Rao, D. De Niz, S. Chaki, and D. Garlan, “Eliminating
Inter-Domain Vulnerabilities in Cyber-Physical Systems: An Analysis
Contracts Approach,” in Proc. of the First ACM Workshop on Cyber-
Physical Systems Security & Privacy (CPS-SPC), Denver, Colorado,
2015.

[37] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio,
“A model-driven approach to automate the propagation of changes
among Architecture Description Languages,” Software & Systems Mod-
eling, vol. 11, no. 1, pp. 29–53, Jul. 2012.

[38] Z. Diskin, “Algebraic Models for Bidirectional Model Synchronization,”
in Model Driven Engineering Languages and Systems, ser. Lecture
Notes in Computer Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl,
and M. Vlter, Eds. Springer Berlin Heidelberg, 2008, no. 5301, pp.
21–36.

[39] D. W. S. Clair, Controller Tuning and Control Loop Performance,
2nd ed. Newark: Straight-Line Control Co., Jan. 1990.

[40] D. Borwein and J. Borwein, “Fixed point iterations for real functions,”
Journal of Mathematical Analysis and Applications, vol. 157, no. 1, pp.
112–126, May 1991.

[41] H. Simon, “Rational choice and the structure of the environment,”
Psychological Review, vol. 63, no. 2, pp. 129–138, 1956.

[42] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
Modulo Theories: From an Abstract DavisPutnamLogemannLoveland
Procedure to DPLL(T),” J. ACM, vol. 53, no. 6, pp. 937–977, Nov.
2006.

[43] J. Holland, “Genetic Algorithms and the Optimal Allocation of Trials,”
SIAM Journal on Computing, vol. 2, no. 2, pp. 88–105, Jun. 1973.


