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Abstract—The Unified Modeling Language (UML) has become
a popular implementation vehicle for domain-specific modeling
languages (DSMLs). A UML-based DSML is typically defined by
multiple specification artifacts, i.e. inter-related models, describ-
ing different views on the DSML. These separate, yet inter-related
models are potential sources of specification inconsistencies which
bear a high risk of affecting all subsequent DSML development
phases (e.g., platform integration). In a large-scale literature
review of more than 8,000 publications, we collected evidence
on consistency-rule usage for 84 UML-based DSML designs. In
this paper, we report on the identified patterns of consistency-
rule usage (e.g., rule formalization, rule scopes, and supported
development activities) and specification defects which challenge
the use of consistency rules in DSML specifications.

I. INTRODUCTION

Domain-specific modeling languages (DSMLs) are spe-
cialized modeling languages tailored primarily for graphical
modeling tasks in a particular application domain to support
the model-driven development (MDD) of software systems for
this domain. As a special kind of domain-specific languages
(DSLs), DSMLs provide end users with at least one graphical
or diagrammatic concrete syntax—in contrast to, for example,
textual or form-/table-based DSLs (see, e.g., [1], [2]).

In recent years, developing DSMLs based on the Meta
Object Facility (MOF [3]) and integrated with the Unified
Modeling Language (UML [4]) has become a widely adopted
option (see, e.g., [5], [6]). A UML-based DSML tailors its host
language (i.e. the UML) to the needs of a particular domain
(e.g., by introducing domain-specific model elements or by
restricting the semantics of existing UML elements). These
domain-specific aspects are specified on the level of a DSML’s
language model, which captures all relevant domain abstrac-
tions and specifies the relations between these abstractions
(see, e.g., [7]). To tailor a DSML’s language model, language-
model constraints are employed, for example, specified by
informal textual annotations (e.g., UML comments [4]) or in
a formal language (e.g., OCL [8]).

In the DSML context, consistency rules are devised to
ensure that the different artifacts of a UML-based DSML do
not contradict each other due to conflicting syntax and seman-
tics specifications (see, e.g., [9]–[11]). A DSML specification
covers also the phases of defining the DSML’s concrete syntax,
behavior, and platform integration [7]. The result of such a
DSML specification are multiple interdependent specification
artifacts. For example, DSML-specific constraints—as part

of a DSML’s language model—need to be enforced for all
instance models to ensure compliance with their respective
metamodel (i.e. the DSML’s language model). Furthermore,
the UML provides 14 different model and diagram types to
specify different (structural and behavioral) concerns of a
software system [4]. DSMLs can build on multiple model and
diagram types at the same time, therefore, putting emphasis
on inter-model consistency.

In a recent systematic literature review (SLR), we ex-
tracted design decisions from UML-based DSMLs and col-
lected the corresponding DSML specification artifacts [12].
The review is a data source for two aspects of consistency
rules for UML-based DSML specifications. First, we ex-
tracted data on consistency-rule usage in DSML specifications.
From 84 DSML designs, we retrieved details on employed
consistency-rule formats, DSML language-model formaliza-
tions, consistency-rule scopes, supported software-engineering
activities, the underlying UML model and diagram types,
and supporting software tools. This complements the work
on consistency rules by [10], [11] from the perspective of
DSMLs realized as UML extensions. Second, the review
spotted critical specification defects for UML-based DSMLs.
These defects in the UML formalization of a DSML’s language
model (e.g., incomplete and insufficient specification of UML
profiles, incorrect use of constraint-language expressions) re-
sult in issues for defining consistency rules.

In summary, the key contributions of this paper are the
extraction, analysis, and discussion of consistency-rule usage
in UML-based DSML designs. This complements the work by
Torre et al. ([10], [11]) which focusses on UML in general.
In addition, the paper highlights challenges specific to UML-
based DSMLs when it comes to providing an infrastructure
for defining consistency rules, including recommendations to
avoid commonly observed pitfalls in DSML development. On
top, we provide descriptive findings on (extended) UML usage
(e.g., UML diagram types) adding to the current body of
empirical research on UML (see, e.g., [13], [14]).

The remainder of the paper is structured as follows. Sec-
tion II summarizes important background information with
respect to DSML development, SLR procedure, and specifica-
tion consistency in this context. Results of the data-extraction
process are presented in Section III, limitations of the SLR in
Section IV. Section V puts the extracted data on consistency-
rule usage in DSMLs into perspective and discusses the role
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Fig. 1. Language-model driven DSML development process.

of specification defects in this context. Our study is compared
to related work in Section VI and Section VII concludes the
paper.

II. BACKGROUND

The following three sections recap details of developing
DSMLs (Section II-A), conducting the SLR (Section II-B), and
evaluated UML consistency aspects (Section II-C) important
to interpret the results presented in Section III.

A. DSML Development

DSML development is an exploratory, iterative process. A
process view (such as [7]) treats DSML development as a
complex flow of characteristic development activities (e.g.,
language model definition, constraint specification etc.). We
focus on a language-model driven DSML development activ-
ity which discriminates between the following development
phases [7]: define DSML language model, define DSML
concrete syntax and behavior, and DSML platform integration
(see Fig. 1).

In our work of evaluating consistency rules for UML-based
DSMLs, we target the phase of the domain-specific language
model definition (see Section I and Fig. 1). In this first phase
of a language-model driven DSML development activity, a
core language model and the corresponding language model
constraints for the selected target domain are defined. By
following a domain analysis method, such as domain-driven
design (see, e.g., [15]), domain abstractions are identified and
form the language model of a DSML. This initial language-
model definition may not be UML-compliant (e.g., textual
descriptions, informal models) and need to be turned into
a formal language model. By formal model, we refer to
a realization of the language model using a well-defined
metamodeling language such as the MOF/UML metamodeling
infrastructure. A metamodeling language is itself based on
a well-defined and well-documented language model (i.e.
CMOF for the UML metamodel [3]) and provides at least one

well-defined and well-documented concrete syntax to define
an own language model (e.g., the CMOF diagram syntax to
specify a UML metamodel extension).

Because the language model often cannot (or only insuffi-
ciently) capture all restrictions and/or semantic properties of
the DSML elements, language-model constraints are added.
These language-model constraints prevent the language model
to be formalized incomplete, ambiguous, and/or inconsistent
with other DSML artifacts. As such, language-model con-
straints form the basis for the definition of consistency rules
and are specified, for example, by employing special-purpose
constraint languages (such as the OCL [8]) or unstructured
textual annotations.

After the definition of a DSML’s language model, the
concrete syntax of a DSML is defined (i.e. suitable notation
symbols as well as composition and production rules) which
serves as a DSML’s user interface (see Fig. 1). In parallel, the
behavior of DSML language elements is specified to produce
the behavior intended by the DSML designer. In the last phase,
all artifacts defined for a DSML are integrated into a selected
software platform to produce platform-specific (executable)
models (e.g., by employing model transformations to generate
source code [16]).

B. Systematic Literature Review

We performed a systematic literature review (SLR) to distill
generic design decisions from UML-based DSML design
documents for the different development phases discussed in
the former section. Here, we briefly summarize the process
and the results of the SLR; details are published in [12] and
in [17]. The main goal of the SLR was to identify a maximum
number of high-quality scientific publications which document
design decisions on UML-based DSMLs as primary sources.

The SLR was performed in three steps. First, to provide a
basis for evaluation of the search procedure, we established
a corpus of reference publications as quasi-gold standard
(QGS [18]). In essence, a QGS is a set of hand-picked
publications considered relevant for a specific SLR. In the
end, the constructed QGS corpus consisted of 37 publications
(24 journal and 13 proceedings articles). Based on these
QGS publications, the relevant search engines for the au-
tomated search were identified (SpringerLink, IEEE Xplore,
Scopus, and ACM Digital Library) and a search string for
the automated search was constructed (the query expression
represented 544 unique pairs of search terms).

Second, we performed the actual engine-based publication
search using the search string developed in the previous step
on the four selected search engines. The search execution
yielded 5,778 search hits split into four result sets, one for each
of the search engines. After enforcing the QGS-based capping,
having evaluated the papers based on our selection criteria
and having completed the quality assessment, 73 papers rep-
resenting 1.3% of the original search hits remained. For this
final publication set, we extracted the publication-specific data
(15 metadata items for each paper, including bibliographical
entries, selection decision, and decision-mining entries).



Third, based on the bibliographical records extracted from
the 73 publications selected up to this point, we then per-
formed a backward-snowballing search. Backward snow-
balling is the practice of manually identifying additional
publications for selection from the reference lists (citations)
of a given set of publications [19]. Via the backward snow-
balling search, we reviewed a total of 2,337 references. After
evaluation and quality assessment of the papers, eight were
included into the paper corpus (0.3%). From these additional
publications, we extracted publication-specific data in the same
way as was done for papers retrieved by the main search.

We considered a total of 81 articles as relevant: 73 from
main search plus eight from snowballing. To complete the
paper corpus, we re-considered the QGS publications not
retrieved by the main and the snowballing searches for in-
clusion based on the selection criteria. This way, we classified
two QGS journal articles and one QGS conference article as
relevant. We so arrived at a paper corpus of 84 publications
(the complete list of publications is provided in [20]). The
corpus was composed of 54 conference articles (64%) and 30
journal articles (36%).

C. Consistency in UML-based DSMLs

In this paper, we investigate six aspects of model-level
consistency in UML-based DSML designs in line with [10],
[11].

Language-model formalization: After the identification of
language-model concepts, the corresponding definitions serve
as input for the phase of formalizing the domain constructs into
a MOF/UML-compliant language model (see Section II-A).
As we focus on consistency rules at the level of a DSML’s
language model, we establish how the domain abstractions are
formalized using the MOF and/or the UML. Available options
are UML M1 structural model (e.g., UML class models),
UML profile definition (i.e., extending UML metaclasses with
stereotypes), and UML metamodel extension (i.e., adding new
metaclasses and/or new associations between metaclasses to
the UML metamodel) [20].1

Consistency-rule formats: A DSML’s language model for-
malization is limited by the expressiveness of the MOF/UML
(e.g., part-of relations). Semantic variation points in the
MOF/UML may render a DSML’s language-model specifi-
cation incomplete and/or ambiguous. This risks introducing
inconsistencies across different DSML modeling artifacts ([4],
[20]). Therefore, we assess whether consistency rules are
provided for a DSML to cover such variation points [10]. If
so, we document the choice of rule representation (e.g., OCL
expressions [8]).

Consistency-rule scopes: We record whether consistency
rules target a single model only (e.g., to resolve ambiguities
in the definition of a model) or whether the rules relate multi-
ple models. For inter-model scenarios, horizontal consistency
refers to consistency between different, but complementing

1We only discuss formalization options actually observed for DSMLs in our
SLR study (see Section III). A complete list of language-model formalization
options is documented in [20].

models at the same level of abstraction (e.g., between different
platform-independent models). Vertical consistency refers to
consistency between models at different levels of abstrac-
tion (e.g., between platform-independent and platform-specific
models). Evolution consistency refers to consistency between
different versions of the same model (e.g., between an input
and an output model of a model transformation [10]).

Software-engineering activities: Model-level consistency
rules are employed in support of different software-
engineering activities. Observed activities are refinement
(“semantics-preserving changes applied to a model, to reduce
non-determinism” [11]), verification (“determine whether the
products of a given development phase satisfy the conditions
imposed at the start of that phase” [11]), checking constraints
(“of models according to consistency rules and producing a list
of violations” [11]), transformation (“describe the application
of mapping rules on one model to create a new model” [11]),
and heuristics (rules that are written as plain text “for solving a
UML consistency problem without the exhaustive application
of an algorithm” [11]).2

Model and diagram types: We document which of the 14
structural and behavioral UML model and diagram types [4]
are actually tailored by the DSMLs. These are, therefore,
the model and diagram types for which consistency rules are
defined for various rule scopes ([10], [11]).

Tool support: We evaluate whether consistency rules (in
a given representation) can be automatically processed and
validated. In addition, we provide an inventory of supporting
software tools for rule processing and validation (e.g., con-
straints evaluators [10]).

III. EXTRACTED DATA ON DSML CONSISTENCY

This section presents the data on the six consistency aspects
in the corpus of 84 DSML designs collected via the SLR
([12], [17]). For data extraction, we studied the corresponding
publications as the primary design documents for cues on each
of the six consistency criteria. 52 out of 84 DSML designs
(62%) explicitly specified consistency rules at the level of
the DSML’s language model. For 32 DSML designs (38%),
we did not find any documentation hints of consistency-rule
definitions.

Table I shows the frequency of UML-based language-model
formalization options identified for the 52 DSML designs. The
majority of DSMLs (84%) employ UML profiles to formalize
their language model. Only one DSML defines its UML-based
language model via an M1 structural model. The language
model of four DSMLs is specified by using a combination of
a UML profile and a UML metamodel extension.

To quantify the specification size of these 52 DSML de-
signs, we evaluated the size of their core language-models.
Depending on the different, underlying UML language-model
formalization options, the specification size was established
differently. For 47 DSMLs defining their language models

2Again, our analysis is limited to activities observed in our SLR (see
Section III). The complete list of relevant software-engineering activities is
available from [11].



TABLE I
UML-BASED LANGUAGE-MODEL FORMALIZATION OPTIONS.

Language-model formalization Frequency

UML profile definition 47 (84%)
UML metamodel extension 8 (14%)
UML M1 structural model 1 (2%)

Total 56 (100%)

TABLE II
EMPLOYED FORMATS TO SPECIFY CONSISTENCY RULES.

Consistency-rule format Frequency

Unstructured text 36 (50%)
OCL 33 (46%)
Mathematical expressions 2 (3%)
ATL 1 (1%)

Total 72 (100%)

using UML profiles, we counted the stereotype definitions
and the corresponding, distinct base UML metaclasses. In this
group, we find a median of 14±9.63 stereotype definitions per
DSML. A typical profile extends a median of 5±3 distinct
base metaclasses per DSML. For the eight DSMLs using a
UML metamodel extension, we collected the number of newly
introduced UML metaclasses. A typical DSML adds a median
of 19.5±11.9 UML metaclasses. For one DSML defining its
language model using a UML structural model at level M1,
we were unable to count the number of UML classes due to
its incomplete design documentation.

The 52 DSML designs containing consistency rules adopted
four different rule formats (see Table II). 33 DSMLs (63%) use
one (either unstructured text, OCL, or mathematical expres-
sions), 18 DSMLs (35%) use two (both, unstructured text and
OCL), and one DSML three different formats (unstructured
text, OCL, and ATL [21]) to specify consistency rules. There
are nearly equal shares of DSMLs adopting unstructured
(informal) text (50%) and (formal) OCL expressions (46%).
Mathematical and transformation-language expressions (e.g.,
in ATL) are rarely used with three DSMLs only.

The majority of 52 DSMLs (79%) apply consistency rules
for the scope of a single model (see Table III). Inter-model
consistency rules for a horizontal scope (i.e., at the same
abstraction level) were found for seven DSMLs (12%). A
minority of three DSMLs define consistency rules spanning
different abstraction levels (vertical consistency). Consistency
rules between different versions of a language model (evo-
lution consistency) were reported for two DSMLs only. In
five DSMLs, consistency rules had mixed scopes: single
model/vertical consistency (2 DSMLs), single model/evolution
consistency (2), and horizontal/vertical consistency (1).

As for software-engineering activities supported by the
consistency rules, almost equal shares of DSMLs relate to
three activities of heuristics (32%), verification (32%), and

3We report the variance in terms of the median absolute deviation from the
median using the ± notation along with the median value.

TABLE III
IDENTIFIED SCOPES OF CONSISTENCY RULES.

Consistency-rule scope Frequency

Single model consistency 45 (79%)
Horizontal consistency 7 (12%)
Vertical consistency 3 (5%)
Evolution consistency 2 (4%)

Total 57 (100%)

TABLE IV
RELATING CONSISTENCY RULES TO SOFTWARE-ENGINEERING

ACTIVITIES.

Software-engineering activity Frequency

Heuristics 36 (32%)
Verification 35 (32%)
Constraint checking 33 (30%)
Transformation 4 (4%)
Refinement 3 (3%)

Total 111 (100%)

constraint checking (30%; see Table IV). In turn, rules rarely
target model transformation and refinement activities with
only four and three cases, respectively. In 17 DSMLs (33%),
rules are employed for one software-engineering activity only
(15x heuristics, 2x verification). Mixed usage is reported for
16 DSMLs (31%) with two supported activities (14x veri-
fication/constraint checking, 1x heuristics/transformation, 1x
heuristics/refinement), and for 15 DSMLs (29%) with three ac-
tivities (heuristics/verification/constraint checking). More than
three supported activities are limited to a minority share of
four DSMLs.

One DSML is unspecific about the UML model and diagram
types it is tailoring and is therefore omitted in Table V. For the
remaining 51 DSMLs, class diagrams are ranked first with a
35% share, followed by activity (12%), and component as well
as package diagrams (each 11%). No DSML tailored commu-
nication, profile and timing diagrams. Given that each of the
51 DSMLs can build on multiple model and diagram types, a
total of 95 tailored UML diagram types were identified. 65
(68%) are structural and 30 (32%) are behavioral diagram
types. Typically, a DSML tailors more than one UML diagram
type. There exists 28 unique combinations of different diagram
types tailored by the DSMLs. Most DSMLs build on either
class diagrams only (8 DSMLs, 16%) or class diagrams in
combination with package diagrams (8). Five DSMLs adopt
activity diagrams only and three DSMLs combine class and
object diagrams. All other combinations of diagram types are
employed by at most two DSMLs each; and are omitted for
brevity.

Software tools for processing and enforcing consistency
rules are shown in Table VI. In total, we identified relevant
tool support for 22 out of 52 DSML designs (42%; 16 unique
tools). The majority of DSMLs (58%) did not document any
tool usage. Five DSMLs (23%) use the OCL project of the
Eclipse Model Development Tools (MDT) and three DSMLs



TABLE V
TAILORED UML DIAGRAM TYPES. AN ASTERISK (*) DENOTES A

STRUCTURAL, ALL OTHERS ARE BEHAVIORAL DIAGRAM TYPES [4].

UML diagram type Frequency

Class* 33 (35%)
Activity 11 (12%)
Component* 10 (11%)
Package* 10 (11%)
State machine 7 (7%)
Composite structure* 6 (6%)
Use case 6 (6%)
Sequence 5 (5%)
Object* 4 (4%)
Deployment* 2 (2%)
Interaction overview 1 (1%)
Communication 0 (0%)
Profile* 0 (0%)
Timing 0 (0%)

Total 95 (100%)

TABLE VI
EMPLOYED TOOLS TO VALIDATE CONSISTENCY RULES.

Tool Frequency

OCL project of the Eclipse Model Development Tools
(MDT)

5 (23%)

IBM Rational Software Architect 3 (14%)
CompSize 1 (5%)
Eclipse Atlas Transformation Language (ATL) 1 (5%)
Eclipse EMF Compare 1 (5%)
EIS plug-in 1 (5%)
Gentleware Poseidon for UML 1 (5%)
ITEM ToolKit 1 (5%)
Kent Modeling Framework (KMF) 1 (5%)
LTSA 1 (5%)
No Magic MagicDraw 1 (5%)
Oclarity 1 (5%)
Octopus 1 (5%)
Telelogic Tau (G2) 1 (5%)
TOPCASED 1 (5%)
WebRatio 1 (5%)

Total 22 (100%)

(14%) IBM’s Rational Software Architect (RSA) to validate
consistency rules.4 The remaining 14 software tools are each
deployed in a single DSML project only.

IV. SLR LIMITATIONS

SLRs have the general problem of finding a representative
set of relevant primary studies. We closely followed estab-
lished guidelines on designing and conducting SLRs avail-
able from research on evidence-based software engineering
to avoid any pitfalls ([18], [19], [23]). However, we may
risk having missed further relevant primary studies on UML-
based DSMLs. For example, by extracting data from our
paper corpus, we did not find empirical evidence for every
consistency-rule format proposed by related work, such as,

4We separately report the Eclipse MDT/OCL project and IBM’s RSA
because RSA bundles a couple of the MDT/OCL plugins deviating these
in unknown ways from the official Eclipse OCL plugins [22].

code annotations or constraining model-to-text transforma-
tions [20]. Nevertheless, we addressed this threat right from
the beginning, by building our review procedure around the
principle of continuous search validation and search refinement
driven by a QGS as a recommended practice [18].

We intentionally limited our SLR exclusively to DSMLs
embedded into UML 2.x [4], thereby excluding DSMLs based
on former UML versions and other metamodeling infras-
tructures (e.g., Kermeta or MetaGME). We only considered
consistency rules specified on the level of UML-based DSML
language models; i.e. we restricted data extraction to the
DSML development phases of formalizing a UML-compliant
language-model and defining accompanying language-model
constraints (see Section II-A). Therefore, on the one hand,
we excluded rules applied on non-UML artifacts (e.g., non-
UML platform-specific models generated during the platform
integration phase). On the other hand, we also excluded
consistency rules relating to other UML models besides a
DSML’s language model (e.g., UML M1 behavioral models
as part of a DSML’s behavior specification). Furthermore, we
excluded exemplary as well as application-specific consistency
rules found in DSML reports (e.g., as part of a case study
exemplifying the application of a DSML).

We exclusively report on tools used to enforce consistency
rules on DSML language models. We do not consider tool
support for other phases in DSML development, such as,
language-model editors, generators for concrete-syntax editors,
model-execution engines, model-transformation engines, or
orchestration engines.

V. DISCUSSION

First, we elaborate on the relevance of the extracted data
presented in Section III. Against this background, we reiterate
over frequently reoccurring specification defects in UML-
based DSML language models, as revealed by [12], [17].

A. Interpretation of Review Data

Language-model formalization: The preponderance of UML
profiles might partly be explained as they are the native
UML extension mechanism [4], their application is known to
modelers, and plenty of supporting tools exists (e.g., language-
model and concrete-syntax editors). UML profiles provide
for packaging and for scoping intra-model consistency rules
(i.e., OCL expressions) as part of a DSML’s language-model
formalization. To this date, portability of such OCL consis-
tency rules between different evalution engines remains limited
due to the OCL/UML language specifications leaving critical
details to language and tool implementers (e.g., navigation
semantics between extension and extended model elements;
see [24] for an overview).

Another critical issue pertaining to (esp. formally speci-
fied) consistency rules in multi-level and shallow-instantiation-
based metamodeling environments such as MOF/UML is their
confinement to direct instantiations (e.g., M1) of model ele-
ments (e.g., M2). Consider as an example a DSML language
model defined at level M2 which must enforce consistency



rules at level M0, i.e. the occurrence (instance) level of
DSML models. This requirement is documented for DSMLs
in the business-process modeling domain in which consistency
conditions are stipulated for the scope of business-process in-
stances (see, e.g., [25], [26]). To date, there are certain conven-
tions (e.g., escaping to informal rule definitions [20]), imple-
mentation idioms (e.g., prototypical concept pattern [27]), and
alternatives to metamodeling based on shallow instantiation
(e.g., potency and deep instantiation [28]) to work around or
to address this limitation. However, no comprehensive solution
has yet become available in the family of MOF/UML/OCL
languages as a DSML development infrastructure.

We found that a language model can been realized by
multiple formalizations (e.g., a combination of a UML profile
and a UML metamodel extension as observed four times).
This bears a double risk. On the one hand, consistency rules
must be defined for the scope of two different artifacts,
metamodel and profile packages, causing ambiguity in rule
specification and possible rule conflicts. On the other hand,
such a mixed DSML language model can potentially be used in
different configurations (e.g., different profile and metamodel
compositions). As an extreme, when integrating two or more
DSMLs which are realized as (otherwise independent) UML
extensions, reconciling the original consistency rules becomes
a challenge [20].

Consistency-rule formats: We observed a comparatively
high frequency of unstructured text and OCL expressions
employed in combination (in 37% of the DSMLs). This
is partly explained by the reporting needs of a scientific
publication, requiring a certain level of elaboration on oth-
erwise formal constraint expressions. Another driver might be
that consistency rules expressed in some constraint-expression
language must be complemented with textual explanations
when applied beyond the context of a single model. To express
consistency conditions between two or more models (hori-
zontally and vertically), missing any direct and/or navigable
inter-model links, alternative approaches (e.g., constructs in
model-transformation languages, non-standard constructs in
constraint-expression languages such as in the Epsilon Vali-
dation Language, EVL [29]) must be evaluated for adoption
on a case-by-case basis. In doubt, complementary textual
explanations (as we found in this study) are a viable option.

Similarly, in the context of evolution consistency, one
DSML [30] specified consistency rules in a combination of
OCL expressions evaluated in ATL-based model transforma-
tions (ATL can be used to define constraints on models [21]).
The authors of [30] present an approach for model execution
by a series of model transformation steps (exemplified by an
evolving state machine diagram). In this case, OCL expres-
sions are still employed to ensure the consistency of a single
model. However, with the combination of ATL transforma-
tions and, thus, different model versions on which the OCL
expressions are evaluated against step-by-step, the consistent
evolution of a model is ensured.

Consistency-rule scopes: Intra-model consistency rules for
DSML language models are the most frequent rule scope iden-

tified by our SLR. As for inter-model consistency, consistency
was ensured by using (at least) unstructured textual artifacts.
For example, in [31] textual rules are defined for horizontal
consistency between composite structure and activity models
in support of a heuristic activity. Vertical consistency was
always observed in combination with a refinement activity.
In [32], an abstract user-interface (UI) class model is refined
into a UI deployment model. Consistency rules integrated with
model transformations for evolution support have already been
given as an example above [30].

Software-engineering activities: According to our defini-
tions, we classified consistency rules formulated as unstruc-
tured texts as related to the software-engineering activity
“heuristics” and OCL expressions as related to the constraint-
checking activity (see Section II-C). This data-extraction
convention explains the closely aligned figures reported for
these consistency-rule formats and the corresponding software-
engineering activities. Furthermore, we classified constraint
checking as a verification technique (i.e. as part of the ver-
ification activity).

We did not find any evidence for the management, val-
idation, and maintenance software-engineering activities as
defined in [11]. The reason for their absence may be that
these are not primary activities in the process of designing
a research-driven DSML (see Section II-A). Managing con-
sistency, evaluating the satisfaction of user requirements, or
maintaining interdependencies between platform-independent
models and platform-specific implementations may not be of
high priority when developing scientific UML-based DSMLs
(and, thus, are postponed).

Model and diagram types: In this study, we put emphasis on
consistency rules formulated at the level of a DSML’s language
model (M2 level). These rules are enforced on instance models
of a DSML (M1 level). A DSML’s language model was
frequently found formulated as a UML profile (in 84% of
the DSMLs). Overall, multiple combinations of tailored dia-
gram types could be observed (28 unique combinations). This
combinatorial variety indicates the domain-specific application
requirements matched by the diagram types adopted by each
DSML found by our SLR.

Tool support: All of the 16 software tools found support the
automatic evaluation of consistency rules. Because of diver-
sified tool usage, we could not identify repeated occurrences
except for the Eclipse MDT/OCL project (5 times, 23%) and
IBM’s RSA (3 times, 14%). Nevertheless, the small number
of tooling support found (no consistency-enforcing tool was
mentioned in 58% of the DSMLs) does not necessarily indicate
that in these cases consistency rules are evaluated manually.
In particular, we found OCL expressions being documented
for 33 out of 52 DSMLs (63%), which can in principle be
automatically evaluated.

B. DSML Specification Defects

Our SLR exposed six defect kinds in DSML specifications
for 31 reviewed design documents ([12], [17]). As an extreme
case of a DSML specification defect, metamodel and/or profile



definitions were found entirely missing (e.g., in [33]). Rather,
we found that stereotypes are often applied in UML instance
models without a proper profile definition ([12], [17]). In such
cases, any kind of consistency rule lacks the foundation of
a valid interpretation. However, there are also less obvious
sources of challenges.

Such defects often reveal misconceptions about UML exten-
sion techniques. In addition, they pose particular challenges to
formulating consistency rules and prevent consistency rules,
if any, to serve their intended purpose. In this section, we
reiterate over relevant defects related to consistency rules on
DSML language models defined using the UML.

Defects in metamodel definition: The DSML’s language
model definition does not reference a corresponding meta-
model specification, therefore, essential details about the se-
mantics of DSML-specific metaclasses and their relationships
are omitted ([12], [17]). In at least five DSML designs,
we found an underspecification of metamodel elements. For
example, newly introduced metaclasses did not inherit from
well-defined base metaclasses (e.g., in the case of a UML
metamodel extension, from metaclasses of the UML specifi-
cation [4]). In such cases, any consistency rule defined for the
scope of the underspecified metamodel elements remains am-
biguous. This is because it is potentially redundant, restating
consistency conditions already available for base metaclasses;
or it is potentially conflicting with the latter.

Missing mappings between language model and pro-
file: A frequently observed problem is that a MOF-based
or modeling-language independent metamodel is implicitly
aligned to a corresponding UML profile. Nevertheless, in at
least seven cases, the mapping between metamodel and profile
was not documented explicitly ([12], [17]). The lack of explicit
documented correspondences lets the reader assume a 1:1
mapping between, for example, non-UML-compliant elements
of an initial language-model definition and equally named
stereotypes of a UML profile formalization.

Such an implicit mapping, often only based on simple name
matching between metamodel and profile, raises the issue of
porting any consistency rules from one to the other, which
is often not straight forward. A possible approach is to define
such mappings between (non-UML-compliant) metamodel and
UML profile definitions explicitly. For example, elements of
a MOF-based metamodel can be mapped to stereotypes of a
UML profile in the form of model-to-model transformations
expressed in ATL to ensure their consistency (see, e.g., [20]).
This would allow for rendering intended semantics UML-
compliant or, if not possible (e.g., semantics of UML stereo-
types would contradict the UML specification), providing
an explicit trace back to the semantics of the originating
metamodel elements. This way, there would also be clear hints
how to interpret any consistency rules defined for one artifact
(metamodel) in the context of the other (profile).

Defects in profile definition: We identified 21 cases where
the definition of a UML profile does not adhere to the
UML specification ([12], [17]). Semantic defects encountered
included stereotypes inheriting from non-stereotype classes,

multiplicity declarations on stereotype extensions, composite
aggregation between stereotypes, or inheritance cycles be-
tween stereotypes ([12], [17]). These defects introduce seman-
tic variation points (e.g., the possibility of multiple behaviors),
which carry over to the interpretation of consistency rules
defined over these elements.

Vendor- and tool-specific extensions: In at least three cases
([12], [17]), language models are defined using vendor-specific
extensions to OMG specifications that are built into a particular
modeling tool (e.g., undefined visibility properties [34]). On
the one hand, this raises the issue of defining non-portable
consistency rules. On the other hand, to provide consistency
between these proprietary additions and elements of the UML
metamodel, we recommend specifying their precise semantics
in the same way as was done in the UML specification (see,
e.g., semantics sub-clauses in [4]).

Defects in constraint-language expressions: We encountered
numerous syntactic and semantic defects, including logical
errors, calling undefined functions, missing keywords, unbal-
anced parentheses, and misspelled metamodel elements ([12],
[17]). It is obvious that consistency can only be ensured and
automatic evaluation can only be provided if formal rules (e.g.,
OCL expressions) are defect-free. Therefore, increasing the
documentation quality of constraint-language expressions is
key. Documentation guidelines which require authors to check
syntax and semantics of OCL expressions with dedicated
tools is a starting point. Table VI provides a non-exhaustive
overview of available tools.

VI. RELATED WORK

Our data extraction criteria are closely aligned to the
ones presented in [10], [11], in which the authors present
a systematic mapping study identifying consistency rules for
UML diagrams. The main difference to the approach of
Torre et al. is that we focus on domain-specific language
models extending the UML, instead of general-purpose UML
diagrams. Therefore, our work can be seen as complementary.
However, a key difference is that we do not strive for providing
an exhaustive collection of concrete consistency rules for UML
diagrams in the sense of [10], [11]. Most of the consistency
rules for DSMLs are inherently specific to one application
domain and to one design of a corresponding language model.
As this prevents their general applicability (e.g., to the UML
metamodel in general), we did not compile a catalog of
consistency rules.

When comparing the collected data with the original work
in [10], [11], we can confirm the predominance of consistency
rules defined as unstructured text and as OCL expressions,
both targeting a single model and multiple models at the same
abstraction level (horizontal consistency), for the reviewed
DSMLs. Verification and constraint checking are also fre-
quently employed, although we rank heuristics activities first
unlike in [10], [11]. This may be due to our data-extraction
process, in which we classified each text-based consistency
rule as related to the heuristics software-engineering activity
as specified by the definition in Section II-C.



Regarding UML model and diagram types, a majority of
empirical studies report UML classes as the most exhibited
one (see, e.g., [13], [14]). At the same time, we cannot
confirm the previously reported high frequency of sequence
and state machine diagrams. Similarily, in the review by [10],
[11] the otherwise reported frequent adoption of activity,
component, and package diagram types is not confirmed.
A further confirmatory finding to recent empirical studies
(see, e.g., [11]) is the large amount of unique combinations
of different diagram types (28). There is also an important
overlap regarding supporting tools (Eclipse-based projects,
No Magic MagicDraw etc.), but the small tool-specific study
population at our side prevents drawing robust conclusions.

VII. CONCLUSION

In this paper, we analyzed consistency aspects extracted
from 84 UML-based DSML designs collected via a SLR [12].
We exclusively focused on consistency rules defined on the
level of a DSML’s language model. For the evaluation of UML
consistency aspects, we adopted criteria from close related
work ([10], [11]). By interpreting extracted consistency-related
data, we discussed frequently identified defects in UML-based
DSML language models. Results of our study show that a
UML-based DSML language model is predominantly formal-
ized via profile definitions which tailor mostly class, activity,
component, and package diagrams. Textual descriptions and
the OCL are most frequently used in combination to define
consistency rules on a single model for verification purposes.
In the majority of cases, the DSML reports do not document
any tool support for enforcing these rules. Results of our study
partly confirm findings from as well as add to the observations
by related work.
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