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Abstract. Document Image Analysis is the branch of Document Pro-
cessing in charge of extracting high-level information from the purely
pictorial appearance of the document. In between single-column docu-
ments, in which no reading order ambiguity is present, and fully par-
titioned documents, in which each layout component is self-contained
and hence can be read independently of all the others, there are tricky
cases in which (some of) the layout components in a document page are
related to each other, in that they contain different portions of a single
discourse (e.g., newspapers). In these cases, automatic procedures for the
acquisition of the document content might be ineffective, inapplicable, or
lead to inconsistent results. This paper proposes an automatic strategy
for identifying the correct reading order of a document page’s compo-
nents based on abstract argumentation. The technique is unsupervised,
and works on any kind of document based only on general assumptions
about how humans behave when reading documents. Experimental re-
sults show that it is very effective, also compared to previous solutions
that have been proposed in the literature.

1 Introduction

While today most documents are generated, stored and exchanged in a digi-
tal format, the typing convention of classical paper documents are still in use.
Moreover, large amounts of legacy documents are digitized and stored in various
kinds of repositories. To be automatically handled and managed, the content of
these documents needs to be extracted and properly organized, and the huge
amount of material makes this activity manually unfeasible. Hence, the need
for automatic pre-processing techniques that carry out this task. The overall
process a digital document typically includes three phases: Layout Analysis,
Document Image Understanding and Document Understanding. Layout Analy-
sis consists in the perceptual organization process that aims at identifying the
single blocks of a document and at detecting geometrical relations among them
(Layout Structure); then, extracting semantic information from this structure is
the task of Document Image Understanding, that yields the Document Logical
Structure. Finally, Document Understanding is in charge of extracting useful in-
formation from the document content. In particular, Document Image Analysis



(DIA) [15], that encompasses the first two phases, is the branch of Automatic
Document Processing that aims at extracting high-level information from the
low-level representation of a document.

The textual content of the single logical components of a document can be
read after Document Image Understanding is carried out, and provided to Docu-
ment Understanding. While such an extraction often does not pose any problem,
because the aim is just displaying each component separately or because most
documents involve a linear flow of text, in other cases the document layout is
quite complex, requiring suitable strategies to determine the correct reading or-
der of these components. Since the various articles are composed in the page
in several unpredictable combinations, and have different size and number of
components, a simple top-down, left-to-right reading order of the pages would
be ineffective, returning a text flow that interleaves components from different
unrelated articles. Hence, subsequent Document Understanding steps would be
inapplicable, or would return nonsense results. So, Reading Order Detection in
a document is a hot problem and new approaches are needed to tackle difficult
cases, in order to provide general a flexible solutions to this problem.

This paper proposes the use of an abstract argumentation framework to
solve this problem. Specifically, the proposed approach uses a representation
of the problem that is totally general and applicable to any kind of document.
Advantages of this solution include the fact that it does not need any (supervised
or unsupervised) learning, and hence is directly applicable to any document page
and complies with an incremental extension of the document base. The technique
has been implemented and embedded in the DIA step of DoMInUS, a system
for document processing and management that provides the Layout Analysis
pre-processing techniques required to obtain the representation to be fed to the
argumentation reasoner. The next section discusses related work on this topic.
Then, Section 3 recalls the architecture and the main components of DoMInUS
that carry out the Layout Analysis task and Section 4 summarizes the main
concepts of a formal argumentation framework. Section 5 describes the solution
and experimental results showing its effectiveness. Finally, Section 6 concludes
the paper and outlines future work directions.

2 Related Work

The reading order detection problem consists in finding a sequence of the objects
in a document’s page that reflects the human reading order. Multiple approaches
to this problem have been proposed in the literature. Some are based on layout
information only, others exploit the content of objects, with or without using a
priori knowledge about the particular document class.

Many works are based on the well-known XY-cuts segmentation algorithm [16]
(see next section for details). Ishitani [13] proposes to exploit the hierarchy of
blocks generated by the XY-cuts algorithm (called the ‘XY-tree’) to induce the
reading order among the final blocks. However, exploiting XY-cuts to determine
reading order often causes problems. Indeed, XY-cuts cannot deal with blocks



organized in L-like shapes, and it needs to know the minimum required width
of the horizontal/vertical stripes for the cutting strategy. Overall, XY-cuts ap-
proaches are simple and require only visual information. However, due to their
cut strategies, they perform reasonably well only on documents with simple lay-
outs (e.g., Manhattan layouts). This is a serious limitation of these approaches.

Knowledge-based approaches use rules to identify a reading order in the
pages. Typically the rules provided to the system encode general criteria con-
cerning reading order, and are manually written by experts. In [5] geometric
and linguistic information is used to determine a reading order. The key idea
is to compare all possible pairs of text lines, introducing whenever appropriate
suitable constraints on their reading order, derived from their geometric arrange-
ment or of their linguistic content. In [18] tab-stops detection is used to deduce
the columns of the page, then this information is exploited to detect blocks and
determine the reading order. Three types of blocks are used to formulate five
ordering rules that determine the reading order of the page.

Differently from previous approaches, Aiello et al. [3] use Natural Language
Processing (NLP) techniques to improve reading order detection. For each page,
rectangular components (document-objects) are extracted (for non-rectangular
shapes the bounding box is considered) and described with geometrical and
content-based features. To detect the reading order, they define a partial order
relation, called BeforeInReading, on pairs of document-objects.

A more sophisticated approach that uses only visual information to reading
order is provided in [14]. They formulate the reading order problem as a learning
problem where the goal is to find a First-Order Logic (FOL) theory that is
complete and consistent with respect to all training examples. Initially, they
use a knowledge-based document image processing system (WISDOM++) to
extract the logical structure of the page and identify the membership class of
the document. Then, they use an Inductive Logic Programming system (ATRE)
to learn concepts describing the reading order chains of a single document page.

It is worth noting that a common assumption, made by many approaches,
concerns the uniqueness of reading order for each page. Indeed, this assumption
is clearly wrong for the pages of newspapers or magazines, where many mutually
independent articles are present in each page and can be read in any order. To
the best of our knowledge, only [14] and [12] explicitly address the problem with
the identification of multiple reading chains.

3 DoMInUS

Extending previous research presented in [9] DoMInUS (DOcument Management
INtelligent Universal System) [8, 10] is a document processing and management
system characterized by the intensive exploitation of intelligent techniques in
each step of document processing from acquisition to indexing, from categoriza-
tion to storing and retrieval. Since it is general and flexible, it can be embedded
as a document management engine into many different Digital Library systems.
Based on the ODA/ODIF standard, any document can be progressively parti-



tioned into a hierarchy of abstract representations, called its layout structure.
Here we describe an approach implemented for discovering a full layout hierarchy
in digital documents based primarily on layout information. DoMInUS embeds
several techniques that allow it to extract the high-level geometrical structure of
a document, both for born-digital documents and for digitized documents, both
for Manhattan and for non-Manhattan cases:

– XY-cuts, used for digitized documents, but modifiable to work on born-
digital documents as well, useful for Manhattan layout;

– Run-Length Smoothing Algorithm (RLSA), used for digitized documents
only, useful for Manhattan layout;

– Run-Length Smoothing with OR (RLSO) [11], in its two versions for digitized
and born-digital documents, useful for non-Manhattan layout;

– Background Structure Analysis, used for born-digital documents only, useful
for Manhattan layout, but adaptable for non-Manhattan layout.

For digitized documents, the input to such techniques is the raster image for
each page after pre-processing aimed at noise removal, dewarping and deskew-
ing. For born-digital documents, in PostScript (PS) [1] or PDF [2] formats, the
input to such techniques is a vectorial description of each document page in
terms of blocks, each of which may be (a fragment of) a text line, a graphical
(horizontal/vertical) line, a closed area filled with one color or a raster image.
In both cases, the output is a set of frames, defined as collections of basic blocks
or pixels completely surrounded by white space that should correspond to logi-
cal components that may be associated to a well-defined role in the document.
The horizontal/vertical size and position in the page, and type of content, of
the frames is reported, and used to infer various kinds of higher-level spatial
relationships among frames (expressing horizontal/vertical adjacency and hor-
izontal/vertical alignment) [17, 7]. Figure 1 shows a digital document and the
corresponding output of the proposed algorithm, with the discovered frames
highlighted.

4 Formal Argumentation Basics

Everyday, people must make decisions about conflicting information. For exam-
ple, when a judge has to decide whether a person is guilty or not, he must base his
decision on contradictory information. Indeed, the claims of the involved persons
are typically contradictory. Making decisions in these situations is not trivial.
The usual strategy consists in proving the inconsistency of some assertions and
then finding a consistent way to link the remaining information. This is the task
of argumentation, an inferential strategy that provides a general approach to
model defeasible and non-monotonic reasoning. Over the last years, it has be-
come an influential subfield of Artificial Intelligence, with applications ranging
from legal reasoning, to dialogues and persuasion, to medicine, to eGovernment.

A foundational work for the abstract argumentation theory was proposed by
Dung [6]. According to his setting, an abstract argument system or Argumen-
tation Framework (AF for short) is a pair 〈A,R〉 consisting of a set A, whose
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Fig. 1. Layout structure extracted by DoMInUS on a sample document

elements are called arguments, and a binary relation R ⊆ A × A, called attack
relation. Given two arguments α, β ∈ A, the relation αRβ represents an attack
from α against β. In general, arguments α and β are in conflict if argument
α refutes argument β or if α is attacking premises supporting β. This setting
can be represented as a directed graph, with each node representing an argu-
ment and each edge representing an attack. Given such a graph, the objective is
determining which subset(s) of its nodes can be justified.

A basic requirement in this setting is the concept of admissibility. A set S ⊆ A
of arguments is admissible if it is conflict-free (i.e., @α, β ∈ S s.t. αRβ), and ac-
ceptable (i.e., ∀β ∈ A : βRα⇒ ∃γ ∈ S s.t. γRβ). For example, if {A,B,C,D,E}
is included in a set of arguments and the attacks are defined as shown in Figure 2,
then the subset S = {B,D} (double circles in the figure) is admissible because
it defends all its arguments (i.e., it is acceptable) and there not exists any attack
between its arguments (i.e., it is conflict-free). As observed in [4], in an AF one
is usually interested in the justification state of the arguments. The justification
state in an AF can be determined according to suitable semantics, that specify
how to derive from an AF a set of extensions that intuitively represents a set of
arguments which are collectively justified.

Definition 1 (semantics). Let AF = 〈A,R〉 be an Argumentation Framework,
S ⊆ A be a conflict-free set of arguments and F : 2A → 2A be defined as
F (S) = {a | a is defended by S}. Then,

– S is a Complete Extension iff S = F (S);
– S is a Grounded Extension iff S is the minimal Complete Extension (w.r.t.

set inclusion);
– S is a Preferred Extension iff S is the maximal Complete Extension (w.r.t.

set inclusion);
– S is a Stable Extension iff S is a Complete Extension that attacks every

argument in A \ S;



Fig. 2. Graph representation of an AF. Double circles represent an acceptable set

Each semantics involves a different degrees of skepticism that can be used to eval-
uate the arguments. So, a partial order relation can be established among seman-
tics. Among the semantics in Definition 1, the most skeptical is the Grounded
Extension, while the most credulous the Preferred Extension. Preferred and
Ground Extensions are also Complete. Considering again the example in Fig-
ure 2, we have that {∅, {A}, {B,D}} are Complete Extensions, {{A}, {B,D}}
are Preferred Extensions, {B,D} is a Stable Extension, and ∅ is the only Ground
Extension.

5 Argumentation-based Reading Order Detection

Summing up, we aim at designing a procedure for reading order detection in
document pages that fulfills several requirements ensuring maximum generality
and widest applicability. First of all, the procedure must not take into account
the textual content of the document blocks, but just their layout organization
(hence, the exploitation of NLP techniques is not required). Indeed, using the
textual content would require the exploitation of NLP techniques, and it is well-
known that these technique are language-dependent and are not available for
all languages, or at least not with the same quality. Conversely, our proposed
approach can be applicable to any kind of document because it relies basically
on the position of components resulting from the layout structure of the page(s).

This is consistent with the human approach, in which the reading order
is determined without actually reading the document3. Also, our technique is
specifically interested in non-Manhattan layouts, where techniques based on a
partition of the page according to its background are not applicable. For instance,
newspapers are a good representative of this kind of documents. Third, we want
the technique to be based on very simple layout information, that can be easily
and reliably extracted from an automatic procedure and is independent of the
specific kind of document. Having such a low-level input clearly places most
burden on the reading order detection technique. While this complexity is often
tackled using knowledge-based approaches, we want to avoid this setting, because

3 It may be necessary to leverage the textual content in order to solve inconsistencies
or ambiguities in the text flow across subsequent components in the determined
reading order. E.g., in Figure 3 one would expect the horizontally-oriented reading
order (0,1,2,3,4,5), while the correct one is vertically-oriented (0,3,1,4,2,5).



Fig. 3. Sample document having a counter-intuitive reading order

hand-written rules are costly, error-prone and typically depend on the kind of
document. We want to avoid also the Machine Learning-based solution to this
problem, by which such rules are automatically obtained by the system starting
from examples of manually labeled documents. Indeed, a manual intervention
is anyway required, and the learned knowledge is in any case dependent on the
kind of documents, and on the specific documents, used for training the system.
So, it is valid only up to proof of the contrary. Finally, it is often the case that
the reading order in a document page does not determine a total order, but the
components can be partitioned into independent subgroups, each characterized
by its own reading order, leaving the reader free to decide an order among groups.

Among the various inferential strategies available in Artificial Intelligence,
Abstract Argumentation seemed to provide the proper tools to deal with all of
the above requirements. Indeed, one might just express possible (even trivial)
partial reading orderings and identify pairs of these partial solutions that are
mutually inconsistent. Given a document page image, we run DoMInUS to ob-
tain the layout structure, consisting of layout blocks labeled with their type of
content. For the reading order detection purposes, image blocks are simply ig-
nored. Moreover, horizontal or vertical lines are considered as natural separators
when their projection spans more than one content (i.e., image or text) block.
The presence of these separators allows to partition the page into independent
portions in which the reading order can be determined separately, which slightly
simplifies the problem. Frames in a page can be considered as made up of 4
different lines to which this perspective can be applied. Given the text blocks
in the (portion of) page under processing, we consider only the following very
basic and document-independent reading rules for providing the input to our
technique:

– horizontally or vertically adjacent components are candidates to be read
consequently;



– a component at the bottom of the (portion of) page might be followed by a
component at the top of an adjacent column, and

– a rightmost (resp., leftmost) component might be followed by a leftmost
(resp., rightmost) component in an adjacent row.

As required, these rules are so trivial and general that a computer may easily
identify, given the document layout, which pairs of components fulfill them. Each
pair of blocks (A,B) in the considered (portion of) document that fulfills any of
these requirements is translated into an argument representing the claim “com-
ponents A and B are to be read one after the other in a document”. Formally,
we express this in FOL using predicate next/2, as next(A,B). Note that
this predicate does not imply any direction in the relationship between A and
B, and hence it applies both to languages in which the reading order proceeds
left-to-right and to those in which it proceeds right-to-left.

Arguments of this kind are so simple and intuitive that it is also immediate
to automatically infer the possible attacks to be provided to the argumentation
engine. Indeed, given three components A, B and C, one knows that arguments
of the type next(A,B) and next(A,C) mutually attack each other, because
if B is to be read after A, then C cannot be read after A; conversely, if C is to
be read after A, then B cannot be read after A. This can be expressed by the
following attacks in our Argumentation Framework:

attacks(next(A,B),next(A,C)), attacks(next(A,C),next(A,B)).

The same holds for two arguments of the type next(A,C) and next(B,C):
if A is to be read immediately before C, then B cannot be read immediately
before C as well, and vice-versa:

attacks(next(A,C),next(B,C)), attacks(next(B,C),next(A,C)).

For instance, the document page in Figure 1 yields the following formal descrip-
tion, corresponding to the segments in Figure 4a:

(0,3), (1,2), (3,1), (4,5), (4,6), (4,7), (5,6), (5,9), (6,7), (8,0), (8,4), (8,9)

for which the following attacks are automatically derived:

(4,5)-(4,6), (4,6)-(4,5), (4,6)-(4,7), (4,7)-(4,6), (4,5)-(4,7), (4,7)-(4,5),
(5,6)-(5,9), (5,9)-(5,6), (8,0)-(8,4), (8,4)-(8,0), (8,0)-(8,9), (8,9)-(8,0),
(8,4)-(8,9), (8,9)-(8,4), (4,6)-(5,6), (5,6)-(4,6), (4,7)-(6,7), (6,7)-(4,7),

(5,9)-(8,9), (8,9)-(5,9)

The correct reading order is the following (graphically shown in Figure 4b):

(3,1), (1,2), (2,4), (4,5), (5,6), (6,7)

Our technique returned exactly this reading order, except for relation (2,4).
This is due to the presence of a ruling line between the paper heading and its
body. Actually, this may be considered acceptable, since the heading and the
body may indeed be read independently.



Fig. 4. Correct reading order in a document description

The proposed technique was tested on a dataset including 103 document
pages of different layout complexity, taken from newspapers, magazines and (sci-
entific) papers. Trivial cases of single-column documents were not included in the
dataset, while tricky cases (such as the one in Figure 3) are present. Statistics
about the dataset are reported in the top and middle rows of Table 1, both for
single classes and for the whole dataset (in the last column). Table cells report
average values, with minimum-maximum range in parentheses. The last column
reports both the averages computed on single documents, and the averages over
class averages (in parentheses). The dataset involved on average 20.73 blocks,
22.98 arguments and 63.17 attacks per document. It is evident that, as expected,
the simplest class is ‘Magazine’, while the most complex one is ‘Newspaper’,
both for the number of involved components and for the reading order-related
relationships. Figure 5 shows the structure of the most complex document in
the dataset, a newspaper page involving 106 blocks, 137 arguments and 1020
attacks. The last two rows of Table 1 report the figures of the experimental re-
sults, using the same representation as for the dataset statistics. The justified set
of arguments was determined using Preferred Extensions. Interestingly, for this
parameter the ‘Magazine’ and ‘Paper’ classes become very close to each other.
While the maximum number of Preferred Extensions is still higher for papers
than for magazines, on average ‘Magazine’ turns out to have slightly more Pre-
ferred Extensions. However, the gap between these classes and ‘Newspaper’ is
huge (the number of Preferred Extensions in the latter is 3 orders of magnitude
larger than in the former). This is due to the fact that pages with complex lay-
out arrangement are often partitioned so that reading order is relevant for blocks
within the same element of the partition, but reading order of partition elements
is independent. Newspaper pages in the dataset have a significant impact on the
overall complexity of the dataset, as can be noted by looking at the averages in
the last column.



Fig. 5. A very complex document in the dataset

For each extension, the recall was evaluated as the ratio of correct next/2

items retrieved over next/2 items in the correct order sequence. Since a page
may admit several Preferred Extensions (i.e., alternative correct reading orders),
the recall of a given page was determined as the average recall over all Preferred
Extensions for that page. The proposed technique reached 77.94% average recall
on the entire dataset (79.73% considering the compound average over classes).
Consistently with the class complexity, the worst recall occurred on newspapers,
but still being quite satisfactory (70.74%) for such a difficult class. Interestingly,
the best recall was reached on papers (91.32%), even if they have a more complex
structure than magazines. Conversely, the performance on magazines is very
close to that for newspapers (71.75%), despite its much less complex structure.
Since the competitor systems, and/or the dataset on which they were run, are
not available, we have run our own experiments and compared our performance
with those reported in the other papers. It should be noted that we included in
our dataset very complex cases having non-Manhattan layout. Our performance
is comparable to that of previous systems, which can be considered a success,
since we take a trivial input that does not require high-level interpretation. and
we can deal with very complex non-Manhattan layouts. As regards techniques
that handle many possible reading orders, we are better than [14]. We are worse
than [12], but [12] uses linguistic information, which is not always available,
while we can deal with any kind of document independently of the language in
which it is written.

We also carried out a qualitative analysis to spot problems and get hints for
improvement. Most problems are due to the fact that sometimes there are fancy
reading orders that deviate from the general ‘top-down, left-to-right’ rule. These
are the cases where linguistic information may help. This is an intrinsic limita-
tion of our approach, that we accepted when we ruled out any language-based
processing. Other minor problems concerned the separation of the portions of the



Table 1. Dataset and experimental statistics.

Paper Magazine Newspaper Overall

#Documents 43 40 20 103

Text 15.18 8.13 26.35 14.61
blocks (5-14) (5-13) (16-66) (16.55)
Image 1.05 0.70 5.35 1.75
blocks (0-6) (0-1) (3-11) (2.37)

Separators 0.37 2.60 16.50 4.37
(lines) (0-3) (0-5) (8-50) (6.49)

#Blocks 16.60 11.42 48.20 20.73
(3-27) (7-18) (29-106) (25.41)

#Arguments 24.13 9.20 44.45 22.98
(2-42) (3-19) (21-137) (25.93)

#Attacks 61.67 14.20 164.3 63.17
(0-180) (0-62) (42-1020) (80.06)

#Preferred 6.65 6.83 5 053.85 986.76
extensions (1-120) (1-108) (14-59 916) (1 689.11)
Recall(%) 91.32 71.75 70.74 77.94

(62.50-100) (0-100) (10.80-100) (79.73)

pages. On papers, the technique fails when header and footer are not separated
by lines; on magazines, when multi-line titles are across different backgrounds;
on newspapers when columns of the same article are separated by lines. These
problems might be tackled by refining the rules to consider additional layout
information, such as spacing and font size.

6 Conclusions

DIA aims at automatically extracting high-level information from the purely
pictorial appearance of the document. A task of DIA is determining the reading
order among text components in a document page. This is a required step to
ensure applicability and effectiveness of automatic procedures for the acquisition
of the document content. While this may be trivial in single-column documents
or in documents in which each layout component is self-contained, there are
tricky cases in which (some of) the layout components in a document page are
related to each other, in that they contain different portions of a single discourse.

This paper proposed an automatic strategy for identifying the correct read-
ing order of a document page’s components based on abstract argumentation.
The technique is unsupervised, and works on any kind of document based only
on general assumptions about how humans behave when reading documents.
Experimental results show that it is very effective, also compared to previous
solutions that have been proposed in the literature. Qualitative analysis of the
results suggested possible directions for further improvement of the approach.
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