
A Network-based Communication Platform for a
Cognitive Computer

Mostafa W. Numan, Jesse Frost, Braden J. Phillips, and Michael Liebelt

Centre for High Performance Integrated Technologies and Systems (CHiPTec)
School of Electrical and Electronic Engineering

The University of Adelaide
Adelaide, Australia

{mostafa.numan,jesse.frost,braden.phillips,michael.liebelt}@adelaide.edu.au

Abstract. Street is a reconfigurable parallel computer architecture. It
executes a production language directly in hardware with the aim of re-
alising advanced cognitive agents in a more energy efficient manner than
conventional computers. Street requires frequent communication between
many processing elements and to make this communication more energy
efficient, a network-based communication platform, StreetNet, is pro-
posed in this paper. It maps the processing elements onto a 2D mesh ar-
chitecture optimized according to the data dependencies between them.
A deadlock-free deterministic routing function is considered for this plat-
form along with the concept of sleep period, analogous to human sleeping,
to reorganize the placements of processing elements based on runtime
traffic statistics. These mechanisms serve to reduce total network traffic
and hence minimise energy consumption.

Keywords: Cognitive computer, computer architecture, networks-on-
chip, mapping

1 Introduction

Street is a reconfigurable, flat, parallel architecture designed for symbolic cog-
nitive workloads [6]. The goal of Street is to find a new computer architecture
that can take advantage of the huge number of transistors in modern integrated
circuits to achieve advanced cognitive computation in real time, but with much
lower power consumption than current computers. It is designed to use in real
time embedded implementations of artificial general intelligence, exemplified by
the plethora of potential autonomous robotics applications. The new machine is
very different from conventional computers, consisting of many simple process-
ing elements executing and communicating in parallel. A bus-based interconnect
performs well in production systems with a small number of processing elements,
or when groups of dependent productions are mapped to the same processor [1],
however it does not scale well for more frequently interacting processing ele-
ments. For chips with a large number of processing elements, network based

communication provides better scalability, and is seen as the most efficient solu-
tion [13]. In this paper, a network-based communication platform, StreetNet, is
proposed for efficient communication among the processing elements of Street.

2 Street

Street executes a parallel production language directly in hardware. This lan-
guage, which we call Street Language, is inspired by Forgy’s OPS5 [5] and the
languages used in the Soar [10] and ACT-R [3] cognitive architectures. However
Street Language is different from all of these. Street is asynchronous, with no
global match-select-act cycle as found in traditional production systems. This
asynchronous model provides the best opportunity to parallelise traditional pro-
duction systems in application level [2].

2.1 Street Language

An intelligent system is implemented using a set of production rules written in
Street Language [6]. Each production rule is an if-then statement: if a specified
pattern exists in working memory, then the rule makes some changes to working
memory. Working memory is a set of tuples called working memory elements
(WMEs). Each WME has one or more elements called attributes. For instance,
the WME (ID17 source ID2) has 3 attributes: ID17, source, and ID2. Here is
a simple example of working memory of just 3 WMEs:

{(ID17 name Torrens), (ID17 source ID2), (isCounted ID5)}

Each production rule consists of a left hand side (LHS) of one or more con-
dition elements (CEs), and a right hand side (RHS) of one or more actions.
In the example in Fig. 1, (<p> type dog) is a CE and (<p> isOld) is an ac-
tion. A complex cognitive agent would consist of thousands of production rules
operating on symbolic and numeric data in working memory.

st {oldDogs

(<p> type dog) // condition elements

(<p> age (<a> > 7))

-->

(<p> isOld) // actions

}

Fig. 1. A Street Language production rule

A subset of working memory that satisfies all of the CEs in a production rule
with consistent variable assignments is called an instantiation of the rule. So
instantiations of the rule above will be pairs of WMEs in working memory such
as: {(pet1 type dog), (pet1 age 8)}. Note that the first attributes must be

Procedural	
Memory

Cognitive	architecture	
production	rules

Cognitive Architecture
Kernel

Street language

Street	language

Network	on	Chip

Working	memory	distributed	among	
local	memories	in	productors

Street Engine

Episodic	&
Semantic
Memory

Pr
od
uc
to
rs

I/O

Fig. 2. Hardware/software stack on Street (adopted from [6])

the same as they were specified by the same variable <p>. The WMEs must join
on any shared variables. The actions of a production rule are performed for each
new instantiation of the rule. An action such as (<p> isOld) adds a WME to
working memory. Actions can also remove WMEs from working memory. This
change in working memory may cause other production rules to instantiate, and
all new instantiations are executed.

2.2 Street Architecture

The Street architecture consists of a large number of identical and simple mi-
crocoded processing elements (PEs) with a single production rule assigned to
each. A PE contains a controller, a block of content-addressable memories (CAMs)
and an Arithmetic Logic Unit (ALU). The PEs communicate using tokens to no-
tify each other of changes to working memory. The local memory of a PE stores
just the subset of working memory that may lead to instantiations of its rule.
Each PE matches the associated production rule against its own local memory
with an algorithm similar to TREAT [12]. For each incoming token, a PE up-
dates the contents of its local memory, finds new instantiations (match), and
outputs tokens corresponding to the rule’s actions (act). The controller coordi-
nates the PE’s match-act cycle. Fig. 2 shows Street architecture executing an
agent using a symbolic cognitive architecture.

3 StreetNet: The Communication Platform

When a PE produces tokens these are transmitted to other PEs and may cause
new rule instantiations and yet more tokens. There may be a large amount of
token traffic between PEs or small clusters of PEs so efficient data interconnect is

Dest.
Table

Productor

Routing
Table

Switch

Fig. 3. A 3× 3 StreetNet structure

required. For a device with a large number of PEs a network based interconnect,
named the StreetNet, is proposed in this paper.

3.1 Network Architecture

A regular tile-based 2D network architecture is considered for StreetNet. Each
tile contains a single PE and router, however adjacent tiles may be linked to
share memory resources (discussed below in 3.6). Every PE has a destination
table generated from the dependency graph. It lists the desired destinations and
corresponding tokens to those destinations. Each router is connected to its local
PE and four neighbouring tiles. Each router also has a routing table that is
checked for destination. The tokens are broken into packets and forwarded to
the neighboring tile towards the destination. A crossbar switch is used as the
switching fabric in the router. Fig. 3 shows the structure of a StreetNet.

3.2 Dependency Graph

The mapping of PEs onto network architecture is based on a dependency graph.
A dependency graph is a directed graph, where each vertex pi represents a PE.
Directed arcs represent non-zero communication paths between two PEs and
are assigned a weight characterising the communication rate between the PEs.
Fig. 4 shows an example of a dependency graph of nine PEs. This graph is used
to map the PEs onto the network so that the most dependent PEs are placed
close together in the expectation this will reduce communication latency and
power consumption. The PEs are sorted by total incoming and outgoing traffic
that was recorded during runtime, and mapped in this order. This is useful since
the positions of the PEs with high traffic requirement have higher impact on the
overall energy consumption. This dependency graph is updated during a sleep
period (described in subsection 3.5) depending on runtime traffic statistics.

P7P5 0.00800304

P1

0.0448455

0.0468928

P2

0.0612313

P6

0.0322667

P4

0.027465

P3

0.0256243

P0 0.0256137

0.0728398

P8

0.0130523

0.0391742

0.0285391

Fig. 4. An example of dependency graph with nine PEs

3.3 Mapping Techniques

In [8], an energy aware mapping technique is proposed for networks-on-chip
(NoC) with a regular architecture. This technique is adopted in the StreetNet.
The average energy consumed in sending one bit of data from a tile to a neigh-
boring tile is calculated as

E = ES + EB + EL (1)

where ES , EB and EL are the energy consumed at the switch, buffer and link.
Since the energy consumed for buffering is negligible compared to EL [8], (1)
becomes

E = ES + EL (2)

Now, if the bit traverses n hops to reach tile tj from tile ti, the average energy
consumption is

Eti,tj = n× ES + (n− 1) × EL (3)

For a system that involves a large number of processing elements, it is impor-
tant to adopt efficient mapping and routing techniques so that total energy
consumption is minimized and communication traffic does not exceed available
bandwidth. Two different mapping techniques have been considered in this work:
one is based on Simulated Annealing (SA) and the second is based on Branch-
and-bound (BB) technique.

Simulated Annealing based Mapping Simulated Annealing (SA) [9] is a
well known technique for solving optimization problems. It effectively optimizes
solutions over large state spaces by making iterative improvement. It has a con-
cept of temperature which is initially very high and keeps reducing in every step
until it reaches the minimum temperature. For each temperature, it starts with

current_temp=MAX_TEMPERATURE;

previous_cost=INITIAL_COST;

current_mapping=randomMapping();

current_cost=cost(current_mapping);

do{
while(attempts<MAX_ATTEMPTS){

current_mapping=makeRandomTileSwap(current_mapping);

new_cost=cost(current_mapping);

∆C=new_cost - current_cost;

if (random(0,1)≤exp(-∆C/current_cost×current_temp))
current_cost=new_cost;

else

current_mapping=rollbackTileSwap(current_mapping);

}
if(toleranceTest(previous_cost,current_cost)‖current_temp≤MIN_TEMPERATURE)

done=1;

else{
previous_cost=current_cost;

current_temp=getNextTemperature(current_temp);

}
}while(!done);

Fig. 5. Simulated annealing algorithm for PE mapping

a random feasible solution and searches for better solutions with lower cost. This
is a greedy algorithm. A tolerance test is done in every iteration to check if the
cost is changing insignificantly over the last few temperatures or the tempera-
ture reaches a certain limit. Eventually, when the temperature goes below the
minimum limit, it defaults to the greedy algorithm only. Fig. 5 illustrates the
SA algorithm for PE mapping.

Branch-and-bound based Mapping In this mapping technique, a search tree
is generated that represents the solution space. The root node corresponds to the
state where no PEs are mapped. Each internal node represents a partial mapping
and each leaf node is a complete mapping of PEs onto tiles. Fig. 6 shows the
search tree of the solution space. For example, the node labelled t0tn−1t1...tn−2

represents the placement in which PEs P0, P1, P2, ... Pn−1 are mapped to tiles
t0, tn−1, t1, ... tn−2 respectively.

The branch-and-bound (BB) mapping finds the solution node which has
the minimum cost. The cost of mapping is calculated by the total energy con-
sumed by all the PEs that are already mapped. The PEs are initially sorted
based on their traffic demand obtained from the dependency graph. As the PEs
with higher traffic demands dominate the overall energy consumption, they are
mapped first to the unoccupied tiles to generate new child nodes. Each node has
a table that stores the routing paths between its occupied tiles. When a child
node is generated, the table from its parent node is inherited, and the routing

t0xx...x t1xx...x tn-1xx...x

t0t1x...x t0t2x...x t0tn-1x...x

t0t1t2...tn-1 t0tn-1t1...tn-2
Leaf nodes

with complete mapping

Internal nodes
with partial mapping

Root

Fig. 6. Search tree of solution space

path to the new tile is added to the table. Then, each of the newly generated
child nodes are examined to see if it is possible to generate the best leaf node
later. The upper and lower bounds of the nodes are calculated to detect candi-
date optimal nodes. The upper bound of a node is the value that is no less than
the minimum cost of its leaf nodes; the lower bound is defined as the lowest cost
that its descendant leaf nodes can possibly achieve. If the cost or lower bound
of a node is higher than the lowest upper bound that is already found so far, it
is deleted without any expansion, because it is guranteed that the node cannot
lead to the best mapping solution. The lower and upper bounds are updated
after every step. All the nodes are traversed this way, and finally the node with
minimum cost is accepted as the best mapping.

3.4 Routing

Wormhole routing is considered in this work because of limited buffering re-
sources. In wormhole routing, packets are broken down into flow control digits
(flits) and the flits are routed over the network in a pipelined fashion. The
header flit contains routing information and leads the packet to the destination.
Deterministic dimension-ordered routing is chosen in this work. In comparison
to adaptive routing, deterministic routing requires less buffering space since no
ordering is required for received packets [4]. Moreover, deterministic routing al-
gorithms are livelock free. We use the west-first turn model [7] that prohibits
north-to-west and south-to-west turns to make it deadlock-free.

3.5 Sleep Period

Street stores traffic statistics during runtime which are used periodically to up-
date the dependency graph. The assignments of rules to PEs and their location
within the network are refined based on this so that total traffic energy con-
sumption is minimized. During this period, the execution is paused, analogously
to human sleeping [11], and the memory contents as well as destination tables

are re-arranged between PEs. However, the network structure and routing table
remain unchanged as they are the fixed components of StreetNet. After the sleep-
ing period, it continues to operate as before, but with improved performance.

3.6 Clustered PEs

If memory content exceeds the capacity of a PE, the flat architecture of Street’s
tiles allows the PE to use the memory resources of adjacent unused tiles. One
of the PEs in the group of tiles acts as a master PE, and the destination table
attached to it remains active. This master PE acts as source or destination of
packets, the other routers of the cluster are used to forward the packets only.
The PEs inside the cluster communicate through a local bus. If there are no
unused adjacent tiles, the rule is moved to a new PE with free adjacent tiles and
the contents are transferred during a sleep period.

4 Experiments

StreetNet was tested over network architectures ranging from 4 to 196 pro-
cessing elements. As we have not yet developed any large-scale agents, depen-
dencies were artificially created. For every architecture, 10 random dependency
sets were generated. Each dependency set was used for mapping using both
simulated annealing and branch-and-bound techniques. Fig. 7 shows the total
energy consumption comparison between the mapping techniques. This shows
that SA based mapping performs slightly better than BB based mapping, but
when compared in terms of computation time, the latter significantly outper-
forms the former, as seen in Fig. 8. This indicates that BB mapping works much
faster than SA mapping but the energy savings at execution time from the SA
mapped solution may warrant the extra mapping time. StreetNet creates rout-
ing tables for all the routers as well. Since deterministic dimension-order routing
has been considered in this work, routing tables do not change over time. As a
result, ordered packet delivery and simplicity are ensured.

5 Conclusion

In this paper, a network-based communication platform, StreetNet, is proposed
for the Street cognitive computer in which the PEs are mapped onto a 2D
mesh architecture. The mapping is derived from a dependency graph that is
obtained from runtime traffic statistics. This work introduces the concept of a
periodic sleep period, during which the placement of the PEs is updated to im-
prove overall energy efficiency. Branch-and-bound and simulated annealing based
mapping techniques are discussed here. Experiments indicate that branch-and-
bound mapping significantly outperforms simulated annealing based mapping
when compared in terms of computation time. Clustered PEs are implemented
in this work to accommodate large memories. The number and orientation of

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9
x 10

8

StreetNet size

T
ot

al
 e

ne
rg

y
(p

ic
oJ

ou
le

)

Branch−and−bound

Simulated annealing

Fig. 7. Energy comparison between two mappings

0 50 100 150 200
0

2

4

6

8

10

12

14

16
x 10

4

StreetNet size

C
om

pu
ta

tio
n

tim
e

(s
ec

)

Branch−and−bound

Simulated annealing

Fig. 8. Computation time comparison between two mappings

the tiles of a clustered PE will affect the overall energy consumption of the sys-
tem to an extent that is yet to be investigated. Moreover, we plan to implement
the mapping algorithm using Street Language so that Street can update PE
mapping using its own resources.

References

1. Amaral, J.N.: A parallel architecture for serializable production systems. Ph.D.
thesis, Citeseer (1994)

2. Amaral, J.N., Ghosh, J.: Parallel Processing for Artificial Intelligence 1, chap.
Speeding up production systems: From concurrent matching to parallel rule firing,
pp. 139–160 (1993)

3. Anderson, J.R.: ACT: A simple theory of complex cognition. American Psycholo-
gist 51(4), 355 (1996)

4. Bhattacharyya, S.S., Deprettere, E.F., Teich, J.: Domain-Specific Processors: Sys-
tems, Architectures, Modeling, and Simulation (2003)

5. Forgy, C.L.: OPS5 user’s manual. Tech. rep., Computer Science Department,
Carnegie-Mellon University (Jul 1981)

6. Frost, J., Numan, M.W., Liebelt, M., Phillips, B.J.: A new computer for cognitive
computing. In: 14th IEEE International Conference on Cognitive Informatics &
Cognitive Computing. Beijing, China (July 2015)

7. Glass, C.J., Ni, L.M.: The turn model for adaptive routing. SIGARCH Comput.
Archit. News 20(2), 278–287 (Apr 1992), http://doi.acm.org/10.1145/146628.
140384

8. Hu, J., Marculescu, R.: Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems 24(4) (April 2005)

9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (May 1983)

10. Laird, J.E.: The Soar Cognitive Architectures. The MIT Press, Cambridge (2012)
11. Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder,

K., Frase, L., Riemann, D., Sterr, A., Nissen, C.: The reorganisation of memory
during sleep. Sleep Medicine Reviews (0), – (2014), http://www.sciencedirect.
com/science/article/pii/S1087079214000264

12. Miranker, D.P.: TREAT: A New and Efficient Match Algorithm for AI Production
Systems. Morgan Kaufmann (2014)

13. Richardson, T., Nicopoulos, C., Park, D., Narayanan, V., Xie, Y., Das, C., De-
galahal, V.: A hybrid SoC interconnect with dynamic TDMA-based transaction-
less buses and on-chip networks. In: VLSI Design, 2006. Held jointly with 5th
International Conference on Embedded Systems and Design., 19th International
Conference on (Jan 2006)

