
Towards a formal semantics of the TESL
specification language?

Hai Nguyen Van, Thibaut Balabonski, Frédéric Boulanger, Safouan Taha,
Benoît Valiron, Burkhart Wolff, and Lina Ye

LRI, Univ. Paris-Sud, CentraleSupélec, CNRS, Université Paris-Saclay, France
Firstname.Lastname@lri.fr

Abstract. Most relevant industrial modeling problems depict hetero-
geneity issues when combining different paradigms. Designing such sys-
tems with discrete and continuous parts necessarily raises formal verifi-
cation problems. We focus on a synchronous heterogeneous specification
language, called TESL. In particular, it allows the expression of interrela-
tions of clocks and — unlike other existing languages — is able to express
time-triggered behaviors above event-triggered ones. We are interested in
formalizing such a language to derive a verification framework, includ-
ing model-checking, and testing. The long-term purpose of this work is
to develop in the Isabelle/HOL proof assistant, a formal semantics for
such a language. In the current paper, we present and compare three
complementary semantic approaches for our problem.

Keywords: Heterogeneity, Synchronicity, Time Model, Logic, Formal
Methods, Theorem Prover

1 Introduction

Modeling complex systems often requires several different paradigms, each with
its own representation of time, whether discrete or continuous. Such a system is
said to be heterogeneous. As an example, a car power window might be modeled
using several separate sub-systems [4]: the controller is represented by timed
finite state machines, while the mechanical part of the window is handled with
synchronous data flows, and yet discrete events are used to model the commu-
nications on the car’s bus between the components.

In this work, we consider the Tagged Events Specification Language (TESL) [5],
developed to express time-triggered behaviors, as well as the more usual event-
triggered behaviors. The language has been jointly designed with a simulator1
that takes a specification and produces a run (i.e. an execution trace of clocks
satisfying the constraints).

This paper presents our approach to the design of a formal semantics for
TESL. The first goal is to develop a mathematical representation of the type of
? This work has been partially funded by the Euro-MILS project funded by the Eu-
ropean Union’s Programme FP7 under grant agreement ICT-318353.

1 URL: http://wwwdi.supelec.fr/software/TESL

http://wwwdi.supelec.fr/software/TESL


2 Nguyen Van, Balabonski, Boulanger, Taha, Valiron, Wolff and Ye

model that the language can describe. In particular, we wish to handle entities
like clocks or run traces as well as all the constraints provided by the language.

Using this formalization, we want to investigate the existing algorithm that
is used in the simulator. Our main concerns are: Does the algorithm produce a
“correct” run trace? What properties may be derived? Is there any “canonical”
solution?

We develop the formalization using the Isabelle/HOL proof assistant. This
tool combines a programming language and a proof assistant. It can be used
both to test intuitions and to build formal definitions and proofs. It also has
code generation capabilities that allow us to produce an executable semantics,
which could directly implement a simulator.

Our final purpose is to allow for automatic generation of test cases, and thus
provide a good exploratory tool for developing specifications of heterogeneous
timed systems.

Contribution. In this paper, we introduce and compare three possible seman-
tics for TESL, which we respectively call “axiomatic”, “trace compositional”, and
“algebraic”. These different semantics are meant to be equivalent, but they have
different strengths and weaknesses: one is close to the application, one naturally
enables test cases generation, and one relies on generic mathematical structures.
We discuss how these different presentations relate and compare them to the
existing informal semantics used in the simulator.

2 Related work

The TESL specification language takes ideas from several sources. On one hand,
it combines the (purely synchronous) clock operators of the CCSL specification
language [9], adding support for time tags and time scales relations found in
the Tagged Signal Model [8], which allows specifying that an event should occur
after another event, with a chronometric delay ∆t (on a given time scale). On
the other hand, the solving algorithm relies on principles from the constructive
semantics [3] of the Esterel synchronous language.

Benveniste et al. [2] proposed an algebra of tag structures to formally define
heterogeneous parallel composition. The relationships between heterogeneous
models at different levels is represented by morphisms between tag structures.
Such a formalism captures logical time, physical time, causality, scheduling con-
straints, and so on. However, even though their theory can be used as a unifying
mathematical framework to relate heterogeneous models of computations, there
are no explicit relations between the time scales of different models. Further-
more, their theory is not proposed in a machine-checkable formalization, which
is exactly what we want to achieve in our work.

3 Brief presentation of TESL

TESL is used to describe the behavior of synchronous clocks. Each has its own
time scale with attached events, represented by ticks timestamped with tags.



Towards a formal semantics of the TESL specification language 3

They are specified by positive constraints, i.e. a set of minimal required pre-
existing tags. Whereas, clocks timescales might be very diverse and can possibly
be specified with negative constraints, which forbid some arrangements of tags.
Tag domains might be continuous, discrete, or even the singleton Unit where time
does not progress, as long as they remain totally ordered.

Compared with CCSL, the special nature of TESL is its ability to specify
relations between the time scales of clocks and to characterize time-triggered
events under three main classes of primitives.
Event-triggered implications. Such an implication is typically of the form: “For
all ticks of clock a with property X, clock b also has a tick”.
Time-triggered implications. These properties are what makes TESL special.
They are of the form: “For all ticks of clock a, clock b has a tick after a delay ∆t
measured on the time scale of clock c”. The clock c does not need to have ticks:
it only serves as a time-measuring reference.
Tag relations. For time-triggered implications to make sense, we need relations
between time scales of different clocks: this is the purpose of tag relations (e.g.,
a typical use will be: “Time on clock a runs 2 times faster than on clock b”).

A small example of time and causalities in TESL is given below:
1 rational -clock m1 sporadic 1, 2
2 rational -clock m2
3 tag relation m1 = 2 * m2 + 0
4 m1 delayed by 1 on m1 implies m2
5 m1 time delayed by 1.5 on m2 implies m2

Lines 1 and 2 define two clocks m1 and m2 with tags valued in rationals. The
constraint sporadic imposes at least two ticks on m1 whose tags are 1 and 2.
Line 3 specifies that time on m1 goes twice as fast as on m2. Finally, Line 4
specifies to count 1 tick on m1 before requiring one on m2. Whereas on Line 5, for
each tick on m1, there is a tick on m2 1.5 units of time (measured on m2) later.

The specification does not impose any maximal number of ticks: they are
only required to satisfy the set of constraints described in the specification. Two
satisfying runs are given in Figure 1 where ticks (solid rectangles) necessarily
have tags (small numbers above right) and are partitioned by a sequence of
coincidence instants (In)n≥0 (dashed rectangles). The run on the right side has
more ticks than required, but keeps satisfying the specification.

m1

m2

1.0 2.0

0.5 1.0 2.0 2.5

I0 I1 I2 I3

m1

m2

1.0 2.0 3.0

0.5 1.0 1.5 2.0 2.5 3.0

I0 I1 I2 I3 I4 I5

Fig. 1. Two satisfying runs



4 Nguyen Van, Balabonski, Boulanger, Taha, Valiron, Wolff and Ye

4 Formal approach

Our main purpose is the understanding of the meaning of a TESL specification
made of entities such as clocks, ticks, tags and relations between these tags.
The desired semantics consists in a set of all possible execution traces (runs) of
the specified clocks and whose tags match the constraints. Currently, the TESL
simulator takes as input a specification, and outputs only one run, empirically
designed, that is suitable for the execution of heterogeneous models where events
occur as soon as possible.

The goal of the current work is threefold :
1. Give a machine-checkable formalization of TESL semantics,
2. Show the correctness of the existing simulator algorithm w.r.t. the semantics,
3. Derive properties over the simulator runs: time complexity, compactness, . . .

The formalization relies on the Isabelle/HOL proof assistant with several
expected benefits : (1) formally characterize what a correct run is, (2) prove
properties on runs, (3) derive the simulator from the formal semantics, and (4)
generate tests, especially with the HOL-TestGen framework [6].

The difficulty steams from several aspects : (1) the lack of formal definitions
of heterogeneous time and causality models, (2) the non-trivial nature of such
entities, and (3) the need to prove correctness of the TESL informal simulation
algorithm with a machine-checkable formalization.

In order to make sure to capture most of the aspects of the problem, we
chose to work on several parallel, independent representations of the semantics.
Each has its strengths and weaknesses. Formalizing them and then exploring
their relations will help us to understand real issues.

4.1 Axiomatic semantics

Our first approach to give a formal semantics for TESL runs starts with an ax-
iomatic semantics based on first-order logic. We give a logical formula for each
atomic TESL specification operator standing for the expected correct behavior.
In particular, we observe that such a framework does not allow constructiveness
and cannot derive runs for the satisfiability problem. We notice that the un-
bounded µ-operator2 becomes largely useful for non-trivial TESL specifications.

The axiomatic semantics is given by a correctness assessment rule for each
atomic specification and a run is said to satisfy the specification when all atomic
rules hold. We shall denote ⇑cr as a predicate satisfied when clock c is ticking at
instant index r. For instance, in the case of the delayed implication on Line 4
in the listing page 3, both runs in Fig. 1 do satisfy the following rule. We check
that each time m1 ticks then the next tick on m1 will trigger a tick on m2:

∀ instant index r s.t. ⇑m1r , ∀r′ > r s.t. r′ = µxr<x.
[
⇑m1x

]
, we have ⇑m2r′

A more complete version is available online as a research report3.
2 µxn<x.ϕ(x) is the smallest integer – greater that n – such that ϕ(x) is satisfied.
3 URL: http://wwwdi.supelec.fr/software/downloads/TESL/axiomatic_semantics_tesl.pdf

http://wwwdi.supelec.fr/software/downloads/TESL/axiomatic_semantics_tesl.pdf


Towards a formal semantics of the TESL specification language 5

4.2 Trace compositional semantics

In this second approach, we want to construct all possible runs for a specification,
using executable semantic definitions. For now, we consider only finite traces.

A first solution consists in generating all possible interleavings of the clocks in
the specification, and then to filter out those which do not satisfy the constraints
of the specification. This solution has the advantage of giving a simple to under-
stand specification of each TESL operator, however, it generates a huge amount
of potential runs before keeping only the ones that satisfy the constraints.

A second solution consists in generating only the interleavings that satisfy
the constraints. This is much more efficient, but the correctness of the algorithm
has to be proved by showing that the generated runs are the same as those
obtained with the first solution.

Although it is executable, this formal specification can only check that some
interleavings of clocks satisfy a specification. It is not yet able to add ticks to the
clocks so that all correct interleavings are generated. This formal specification
is available online4.

4.3 Algebraic semantics

The last approach we follow, aims to separate time and causality entities between
mathematical n-cells. Distinguishing entities this way tends to give a complete
generic semantics, in which only basic mathematical structures are used in a
symmetric setting [1], as depicted below.

Hierarchy Objects Time entities
1-cells posets events, tags
2-cells monotonic functions clocks
3-cells morphisms clock relations

In fact, clocks are seen as monotonic relations over partially ordered sets
(aka posets): where order stands for time flow. The intuition is that a clock in
TESL is not just a (time) ordered set of events: each event is also timestamped
with a tag (valued in an ordered set). Therefore, a clock is an (ordered) set of
pairs – each consisting of the instant at which the event occurs together with its
tag – i.e. a monotonic relation of Events× Tags.

5 Comparison of the semantics

Following Cousot [7], we wish to construct and relate a hierarchy of semantics,
in order to provide a general understanding of the TESL semantics.

First, the axiomatic semantics gives rules, that are close to the concrete
system, but lack constructiveness. The occurrence of unbounded µ-operators and

4 URL: http://wwwdi.supelec.fr/software/TESL/Isabelle#TraceComp

http://wwwdi.supelec.fr/software/TESL/Isabelle#TraceComp


6 Nguyen Van, Balabonski, Boulanger, Taha, Valiron, Wolff and Ye

the non-restriction of first-order logic are one of the reasons why such semantics
would not be executable.

The algebraic semantics is an attempt to go further by classifying entities in
n-cells and focusing on posets. This semantics would still not be executable, but
it would give a generic understanding of entities at a larger scale than TESL and
help define a general clock calculus.

Finally, the trace compositional semantics can be seen as a concrete instance
of the previous approach, which allows generating runs. The management of
large execution traces is a challenge, as exponential time and space are required
to store intermediate computations. We address this issue with a monadic ap-
proach. While the adequacy of this last semantics to the original system is not
straightforward, we expect it can be related to the other, more direct approaches.

6 Conclusion

The TESL language allows specifying timed systems whose components obey
complex synchronization patterns. It is relatively easy to give to such a language
an abstract, constraint-based semantics. However, in order to be able to compute
on the semantics and generate test-cases, we have to derive far more involved
semantics artifacts. Relating these approaches from the closest to the original
TESL to the most fitted for implementation, would give us usable and trustable
tools to specify complex timed systems.

References

1. S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in Computer
Science, pages 1–168. Clarendon Press, 1994.

2. A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-
Vincentelli. Composing heterogeneous reactive systems. ACM Trans. Embed. Com-
put. Syst., 7(4):43:1–43:36, Aug. 2008.

3. G. Berry. The constructive semantics of pure esterel. 1996.
4. F. Boulanger, C. Jacquet, C. Hardebolle, and A. Dogui. Heterogeneous Model

Composition in ModHel’X: the Power Window Case Study. In Workshop on the
Globalization of Modeling Languages at MODELS 2013, Miami, USA, Sept. 2013.

5. F. Boulanger, C. Jacquet, C. Hardebolle, and I. Prodan. Tesl: A language for recon-
ciling heterogeneous execution traces. In Formal Methods and Models for Codesign
(MEMOCODE), 2014 Twelfth ACM/IEEE Intl Conf on, pages 114–123, Oct 2014.

6. A. Brucker and B. Wolff. On theorem prover-based testing. Formal Aspects of
Computing, 25(5):683–721, 2013.

7. P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science, 277(1–2):47 – 103, 2002.
Static Analysis.

8. E. Lee, A. Sangiovanni-Vincentelli, et al. A framework for comparing models of
computation. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 17(12):1217–1229, 1998.

9. F. Mallet. Clock constraint specification language: specifying clock constraints with
Uml/Marte. Innovations in Systems and Software Engineering, 4(3):309–314, 2008.


	Towards a formal semantics of the TESL specification language

