
An OCL-based Bridge from Concrete to
Abstract Syntax

Adolfo Sánchez-Barbudo Herrera1, Edward Willink2, Richard F. Paige1

1 Department of Computer Science, University of York, UK.
{asbh500, richard.paige} at york.ac.uk

2 Willink Transformations Ltd. ed at willink.me.uk

Abstract. The problem of converting human readable programming
languages into executable machine representations is an old one. EBNF
and Attribute grammars provide solutions, but unfortunately they have
failed to contribute effectively to model-based Object Management Group
(OMG) specifications. Consequently the OCL and QVT specifications
provide examples of specifications with significant errors and omissions.
We describe an OCL-based internal domain specific language (DSL) with
which we can re-formulate the problematic parts of the specifications as
complete, checkable, re-useable models.

1 Introduction

The Object Management Group (OMG) is a consortium whose members produce
open technology standards. Some of these target the Model-Driven Engineering
(MDE) community. OMG provides the specifications for languages such as UML
[1], MOF [2], OCL [3] and QVT [4].

The specifications for textual languages such as OCL and QVT define a
textual language and an information model using:

– an EBNF grammar to define the textual language
– a UML metamodel to define the abstract syntax (AS) of the language

The textual language is suitable for users and for source interchange between
compliant tools. The information model facilitates model interchange between
producing tools such as editors or compilers and consuming tools such as program
checkers or evaluators.

On one hand, textual language designers intend to create compact grammars,
without limiting the textual language capabilities and conciseness for end users.
On the other hand, model information designers intend to create well designed
abstract syntaxes to facilitate the model information adoption by producing and
consuming tools. These intentions are not normally aligned: unless we sacrifice
the interests of any of the mentioned stakeholders, we get the situation in which
we have a big gap between the textual language grammar and the model informa-
tion, and additional conversions between the different involved data structures
are required.

19



Therefore, the conversion between these two representations must also be
specified and may make use of an additional intermediate concrete syntax (CS)
metamodel whose elements correspond to the productions and terminals of the
textual language grammar3. OMG specifications tend to provide concise textual
languages grammars, and well designed AS metamodels, without compromising
one in favour of the other. In consequence, CS to AS conversions are defined
in some OMG specifications, however, as we will see along this paper, there is
room for improvement.

1.1 The OMG specification problem

The OCL [3] and QVT [4] specifications define four languages, OCL, QVTc
(Core), QVTo (Operational Mappings), and QVTr (Relations). The specifica-
tions all provide fairly detailed grammars and metamodels of their respective
abstract syntaxes.

Unfortunately the grammar to AS conversion is poorly specified.
In OCL, a CS is provided and the grammar is partitioned into ambiguous

productions for each CS element. Semi-formal rules define the grammar to CS
correspondence, the CS to AS correspondence, name resolution and disambigua-
tion.

QVTr has a single coherent grammar to accompany its CS and similar semi-
formal rules.

QVTc has a single grammar but no CS and no semi-formal rules.
QVTo similarly has a single grammar, but no CS and no semi-formal rules.

Instead, notation sections suggest a correspondence between source text and AS
elements by way of examples.

Since none of the conversions are modeled, tools cannot be used to check the
many details in the specifications. As a result, the major omissions identified
above are augmented by more subtle oversights and inaccuracies. The specifica-
tions fail to provide the complete, consistent and accurate details to help tool
vendors to provide compliant implementations of the text to AS conversions.

1.2 Our solution

The intermediate CS metamodel is close to the grammar, and it can be auto-
matically generated by modern Annotated EBNF tooling such as Xtext. It is in
the CS to AS conversion that greater challenges arise.

In this paper, we take inspiration from the substantial semi-formal exposition
of the OCL conversions (Clause 9.3 of [3]) and introduce a fully modeled CS2AS
bridge. The models can be used to variously check and even auto-generate a
consistent specification and also to auto-generate compliant tooling. In addition
to conventional CS and AS metamodels, we introduce new CS2AS mapping
models, name resolution models and CS disambiguation models. We demonstrate

3 Modern language workbenches, such as Xtext, can automatically generate the CS
metamodel from their input grammars

20



how OCL itself can be used to provide a suitable internal DSL for these new
models.

The paper is structured as follows. Section 2 presents an example to introduce
the grammar and metamodels. Section 3 demonstrates the semi-formal solution
adopted by the OCL specification. Section 4 explains the proposed solution, i.e.
an OCL-based internal DSL. Section 5 describes related work and Section 6
talks about the current shortcomings of the approach. Section 7 outlines some
future work, including how tool implementors can benefit from the internal DSL.
Finally, Section 8 concludes.

2 Example

Our first example is a collection literal expression. This provides a simple exam-
ple of the grammars and models in use. In Section 3 we show the semi-formal
usage of these concepts by the OCL specification. In Section 4 we provide a con-
trast with our fully-modeled internal DSL solution. This example is too simple to
demonstrate more than the CS2AS characteristics of our solution. We therefore
introduce a further more relevant example later.

The listing in Figure 1 is an example of a collection literal expression com-
prising three comma-separated collection literal parts. The adjacent diagram
shows the corresponding AS metamodel elements. CollectionLiteralExp contains
many abstract CollectionLiteralParts. CollectionItem and CollectionRange are
derived to support the two cases of a single value or a two-ended integer range.
The example text must be converted to instances of the AS metamodel elements.

1 Sequence{1, 1+1, 3..9+1}
2

3 -- equivalent to:
4

5 -- Sequence{1,2,3,4,5,
6 -- 6,7,8,9,10}

Fig. 1: CollectionLiteralPart Example and partial AS Metamodel

The listing in Figure 2 shows the EBNF grammar that parses a collection lit-
eral part as a CollectionLiteralPartCS comprising one direct OclExpressionCS or
a CollectionRangeCS comprising two OclExpressionCS s. The adjacent diagram
shows the intermediate CS model, which is similar to the AS but which omits a
‘redundant’ CollectionItemCS preferring to share a single/first expression from
the non-abstract CollectionLiteralPartCS.

21



1 CollectionLiteralPartCS:
2 OclExpressionCS | CollectionRangeCS
3

4 CollectionRangeCS:
5 OclExpressionCS ’..’ OclExpressionCS

Fig. 2: CollectionLiteralPartCS Grammar and partial CS Metamodel

3 Semi-formal solution: OCL Clause 9.3

The OCL specification provides a full attribute grammar in which inherited and
synthesized attributes are used to describe how the AS is computed from the CS.
Figures 3 and 4 shows our first example. The specification uses OCL expressions
to express how the different attributes are computed.

Fig. 3: OCL specification for CollectionLiteralPartCS to CollectionLiteralPart

The first section defines the EBNF production(s). The example merges two
alternate productions and so many of the rules have an [A] or [B] prefix to
accommodate the alternative rules.

The AS mapping declares the type of the resulting AS element as the type
of a special property of the CS element: ast.

The synthesized attributes populate the AS element using an assignment for
[A]. The more complex [B] worksaround OCL 2.4’s inability to construct a
CollectionItem by imposing constraints on a hypothetical CollectionItem.

The inherited attributes contribute to the name resolution by flowing down
an Environment hierachy of all available name-element pairs from parent to child
nodes using another special CS property: env. In this case all names visible in
the parent are passed without modification to the children.

22



The disambiguating rules provide guidance on the resolution of ambiguities.
In this simple example, there is no ambiguity.

Fig. 4: OCL specification for CollectionRangeCS to CollectionRange

The rules for collection range follow a similar pattern. There is now just one
grammar production whose two OclExpressions are distinguished by [1] and
[2] suffixes. The synthesized attributes have two properties to populate.

3.1 Critique

The presentation comes quite close to specifying what is needed, but uses an
intuitive mix of five sub-languages without any tool assistance. In Figure 3, the
typo whereby CollectionItem::OclExpression rather than CollectionItem::item is
used in the final line of the synthesized attributes has gone unreported for over
10 years.

The lack of tooling also obscures the modeling challenge for the inheritances
between CollectionLiteralPartCS, CollectionRangeCS and OclExpressionCS. The
[B] grammar production in Figure 3 requires OclExpressionCS to inherit from
CollectionLiteralPartCS, if CollectionLiteralPartCS is to be the polymorphic
type of any collection literal part in the CS.

The lack of any underlying models makes it impossible for tool vendors to
re-use the rules. Tool vendors must transcribe and risk introducing further errors.

4 Modeled Solution: CS2AS internal DSL

The critique of the semi-formal exposition highlights the lack of checkable or
re-useable models. In this section we formalize the semi-formal approach using a
DSL to declare the bridge between the CS and the AS of a language. The DSL is
internal [5] and uses only facilities proposed for OCL 2.5. The DSL constrains the
use of the general purpose OCL language to define a set of idioms that express
CS2AS bridges.

Our rationale for choosing OCL as the host language is as follows:

23



– OMG specifications have a problem with bridging the CS to AS gap, so we
would like an OMG-based solution.

– OCL contains a rich expression language which can provide enough flexibility
to express non trivial CS2AS bridges in a completely declarative way.

– Other OMG related languages could be considered (such as one of the QVT
languages), however OCL is a well known OMG language and is the basis of
many others. A QVT practitioner inherently knows OCL but not vice-versa.

Instances of the internal DSL take the form of Complete OCL documents and
can be maintained using Complete OCL tools [6]. Multiple documents can be
used to partition the specification into modules to separate the distinct mapping,
name-resolution, and disambiguation concerns of the CS2AS bridge.

4.1 Shadow Object Construction

The internal DSL uses the proposed4 side-effect-free solution to the problem of
constructing types in OCL. This avoids the need for the hypothetical objects
used by the semi-formal approach. The proposed syntax re-uses the existing
syntax for constructing a Tuple. The Tuple keyword is replaced by the name
of the type to be constructed. A Complex number with x and y parts might
therefore be constructed as Complex{x=1.0,y=2.0}.

4.2 CS2AS mappings

In this subsection we explain the main CS2AS mappings description language.
We start by introducing an instance of the language so that the reader can have
an indication of the DSL used to describe the bridge. Listing 1.1 corresponds
to the CS2AS description of the OCL constructs introduced in Section 2. The
listing should be contrasted with the semi-formal equivalent in Figures 3 and 4.

1 context CollectionLiteralPartCS
2 def : ast() : ocl::CollectionLiteralPart =
3 ocl::CollectionItem {
4 item = first.ast(),
5 type = first.ast().type
6 }
7

8 context CollectionRangeCS
9 def : ast() : ocl::CollectionRange =

10 ocl::CollectionRange {
11 first = first.ast(),
12 last = last.ast(),
13 type = first.ast().type.commonType(last.ast().type)
14 }

Listing 1.1: CS2AS bridge for CollectionLiteralPart and CollectionRange

The mapping is described by defining the ast() operation on a CS element.
The ‘abstract syntax mapping’ and ‘synthesized attributes’ of the semi-formal
approach are modeled by the shadow construction of the appropriate AS type

4 Shadow object construction was called type construction in the Aachen report [7]

24



and initialization of its properties. (The initialization includes the type property
omitted by the OCL specification.)

Declarativeness: An important characteristic of the DSL is that it com-
prises declarative OCL constraints. The OCL constraints specify only true cor-
respondences between AS and CS after a valid conversion. In a scenario of exe-
cuting the proposed CS2AS descriptions, discovery of a suitable order in which
to perform CS to AS conversions requires an implementing tool to analyze the
OCL constraints and exploit their inter-dependencies. (This was also the un-
stated policy of the semi-formal approach.) An automated analysis is desirable
since they are almost too complicated for an accurate manual formulation as a
multi-pass conversion.

Operations: The CS2AS bridge is described using operation definitions.
The underlying rationale is that operation definitions on a potentially complex
class hierarchy of the CS can be overridden. Due to this overriding mechanism,
we provide some flexibility to cope with language extensions such as QVT. The
operation name is not relevant, but we propose the name ”ast” since it is aligned
with the name used in the attribute grammar exposed in the OCL specification.

Shadow object construction: Shadow object constructions express how
AS elements are constructed and how their properties are initialized.

Operation Calls: To compute properties of any AS element, we need to
access the AS elements to determine a CS to AS correspondence. Since ast() is
a side-effect-free query, we may call ast() as many times as necessary to obtain
the appropriate AS element. For example, at line 4, in order to initialize the
CollectionItem::item property, we use the ast() to obtain the OclExpression cor-
responding to the first OclExpressionCS of the context CollectionLiteralPartCS.

Self-contained: With the goal in mind of using the proposed internal DSL
to rewrite part of the OMG specifications, the declaration of the CS2AS bridge
for a particular CS element is complete and self-contained. The computations for
all non-default-valued properties of the corresponding AS element are expressed
directly in the shadow type expression since there is no constructor to share
inherited computations.

Reusable computations: Having OCL as the host language for our internal
DSL, we can factor out and define more complex and reusable expressions in
new operation definitions. The operations can be reused, by just introducing
operation call expressions, across the different computations of the AS element
properties. For example, a t line 13 of Listing 1.1, commonType is a reusable
operation to compute the common supertype of source and argument types.

4.3 Name resolution description

In this subsection, we explain how name resolution is described when defining
CS2AS bridges by the means of our OCL-based internal DSL. In a name reso-
lution activity we can typically find two main roles:

– a producer provides a name-to-element map for all possible elements in its
producing scope.

25



– a consumer looks up a specific element corresponding to a name in its con-
suming context

Our previous example had no need to resolve names, so we will now in-
troduce a new example with a name producer and a consumer. The listing in
Figure 5 is an example of a let expression that declares and initializes a variable
named var for use within the ’in’ of the let expression. In this example the ’in’
comprises just a variable expression that references var. The adjacent diagram
shows the corresponding AS metamodel elements. A LetExp contains the pro-
duced Variable and an arbitrary OclExpression ’in’. For our simple example the
’in’ is just a VariableExp. The complexity of the example lies in the initializa-
tion of the consuming VariableExp.referred Variable to reference the producing
LetExp.variable.

1 let var : String = ’something’
2 in var

Fig. 5: LetExp/VariableExp Example and partial AS Metamodel

Figure 6 shows the corresponding grammar and CS definitions5. A LetExpCS
contains a VariableDeclarationCS and OclExpressionCS which for our example
is just a VariableExpCS.

1 LetExpCS:
2 ’let’ VariableDeclarationCS
3 ’in’ OclExpressionCS
4

5 VariableDeclarationCS:
6 simpleName (’:’ TypeCS)?
7 (’=’ OclExpressionCS)?
8

9 VariableExpCS:
10 simpleName | ’self’

Fig. 6: LetExpCS/VariableExpCS Grammar and partial CS Metamodel

In typical programming languages every use of a variable has a correspond-
ing declaration. The variable declaration is the producer of a name-to-variable
mapping. The variable usage consumes the variable by referencing its name.

5 The complexity of multi comma-separated variables has been removed, because it is
not needed to explain how name resolution is described in our interal DSL

26



Name resolution searches the hierarchy of producing contexts that surround the
consuming context to locate a name-element mapping for the required name.

In our example, the required cross-reference in the AS is represented in the CS
by the distinct VariableDeclarationCS.varName and VariableExpCS.varName
properties. These are both parsed with the value var and so, when consump-
tion of the VariableExpCS.varName is analyzed, the analysis must discover the
corresponding VariableDeclarationCS.varName production.

The semi-formal approach adopted by the OCL specification re-uses the con-
tainment hierarchy of the CS as the scope hierarchy for its ‘inherited attributes’.
The name-to-element mappings are maintained in an Environment hierarchy.
The mappings flow down from the root CS element to all the leaf elements which
accumulate additional name-to-element mappings and/or nested environments
at each intermediate CS element in the CS tree.

In Section 3 we saw the very simple unmodified flow-down for a Collection-
LiteralPart. The equivalent exposition for a LetExp in the OCL specification is
complicated by performing the CS2AS mapping of multiple comma-separated
let-variables with respect to the CS rather than the AS. We therefore present its
logical equivalent in Listing 1.2.

1 LetExpCS ::= let VariableDeclarationCS in OclExpressionCS
2

3 VariableDeclarationCS.env = LetExpCS.env
4 OclExpressionCS.env = LetExpCS.env.nestedEnvironment().addElement(

VariableDeclarationCS.ast)

Listing 1.2: Semi-formal LetExpCS equivalent

The environment of the LetExpCS is passed unchanged to the VariableDec-
larationCS so that name resolution within the VariableDeclarationCS initializer
sees the same names as the LetExpCS.

The environment for the OclExpressionCS is more interesting. A nested Envi-
ronment is created containing the name-to-variable mapping for the let-variable.
The use of a nested environment ensures that the let-variable name occludes any
same-named mapping in the surrounding environment.

Our modeled approach is very similar but re-uses the AS tree rather than
the CS tree as the scope hierarchy. The rationale is that we are interested in
looking up AS elements for which we might not have the corresponding CS (e.g
OCL standard library or user model elements – classes, properties, operations,
etc. –).

1 context OclAny
2 def : env : env::Environment =
3 if oclContainer() <> null
4 then oclContainer().childEnv(self)
5 else env::Environment{}
6 endif
7

8 def : childEnv(child : OclAny) : env::Environment =
9 env

10

11 context LetExp
12 def : childEnv(child : OclAny) : env::Environment =
13 if child = variable
14 then env

27



15 else env.nestedEnv().addElement(variable)
16 endif

Listing 1.3: Name resolution producers

Listing 1.3 presents the name resolution description written in our OCL-
based internal DSL. Line 2 declares an env property to hold the immutable
Environment of the AS element. env is initialized by a containment tree descent
that uses oclContainer()6. Line 5 provides an empty environment at the root,
otherwise Line 4 uses childEnv(child) to request the parent to compute the child-
specific environment.

The default definition of childEnv(child) on lines 8-9 flows down the prevailing
environment to all its children. This can be inherited by the many AS elements
that do not enhance the environment.

The non-default override of childEnv(child) for LetExp on lines 12-16 uses the
child argument to compute different environments for the Variable and OclEx-
pression children. As we saw for the semi-formal approach, the environment for
the Variable is unmodified. The environment for the OclExpression is extended
by the addition of the variable in a nested environment.

The environment is exploited by consumers to satisfy their requirement to
convert a textual name into the corresponding model element. The conversion
comprises three steps

– locate all candidate elements
– apply a filtering predicate to select only the candidates of interest
– return the selected candidate or candidates

The first stage is performed by the environment propagation described above.
The filtering predicate invariably selects just those elements whose name

matches a required name. It may often provide further discrimination such as
only considering Variables, Properties or Namespaces. For operations, the pred-
icate may also match argument and parameter lists.

The final return stage returns the one successfully selected candidate which
is the only possibility for a well-formed conversion. For practical tools a lookup
may fail to find a candidate or may find ambiguous candidates and provide
helpful diagnostics to the user.

The specification is made more readable if the three stages are wrapped up
in helper functions such as lookupVariable or lookupProperty7.

List 1.4 shows the polymorphic ast() operation to map VariableExpCS to
VariableExp. The lookupVariable helper function is used to discover the appro-
priate variable to be referenced by referredVariable.

6 oclContainer() returns the containing element which is null at the root.
7 A practical implementation may provide alternative helper implementations that

exploit the symmetry of the declarative exposition to search up through the con-
tainment hierarchy examining only candidates that satisfy the filtering predicate.
This avoids the costs of flowing complete environments down to every AS leaf ele-
ment where at most one element of the environment is of interest.

28



1 context VariableExpCS
2 def : ast() : ocl::VariableExp =
3 let variable = ast().lookupVariable(varName)
4 in ocl::VariableExp {
5 name = varName,
6 referredVariable = variable,
7 type = if variable = null
8 then null
9 else variable.type

10 endif
11 }

Listing 1.4: CS2AS bridge for VariableExpCS to VariableExp

4.4 Disambiguation

As we commented in the introduction, CS disambiguation is another important
concern which needs to be addressed during the CS2AS bridge. To explain the
need of disambiguation rules, we consider the simple OCL expression x.y.

At first glance, the ’y’ property of the ’x’ variable is accessed using a property
call expression and a variable expression. However ’x’ is not necessarily a variable
name. It could be that there is no ’x’ variable. Rather ’x’ may be a property of
the implicit source variable, self, since the original expression could be a short
form for self.x.y. Semantic resolution is required to disambiguate the alternatives
and arbitrate any conflict.

The OCL specification provides disambiguation rules to ’resolve’ grammar
ambiguities. Clause 9.1 states : “Some of the production rules are syntactically
ambiguous. For such productions disambiguating rules have been defined. Using
these rules, each production and thus the complete grammar becomes nonam-
biguous.”. Figure 7 and Figure 8 are extracted from the OCL specification. It
can be seen that a simpleNameCS with no following @pre matches the [A] pro-
duction of a VariableExpCS and the [B] production of a PropertyCallExpCS.

Fig. 7: Partial OCL Specification for VariableExpCS to VariableExp

The disambiguation rule for VariableExpCS is relatively simple delegating
to the lookup helper and imposing a constraint that the result must be a Vari-
ableDeclaration. This is potentially correct, although unfortunately the specifi-
cation that VariableDeclaration is the supertype of Variable and Parameter is
missing.

The disambiguation rule for PropertyCallExpCS has some ambiguous word-
ing and many details that do not correspond to the “In OCL”. This requires

29



Fig. 8: Partial OCL Specification for PropertyCallExpCS to PropertyCallExp

intuition by the implementor who may also wish to consider how the rules apply
to implicit opposite properties in EMOF.

Both of these disambiguation rules require semantic information which is
not available when the syntactic parser requires it. The problem can be avoided
by unifying the ambiguous alternatives as unambiguous productions that can be
parsed to create a unified CS tree. Once parsing has completed, semantic analysis
of the unified CS can resolve the unified elements into their disambiguated forms.

We therefore introduce additional unifying CS elements that can be resolved
without semantic information. A unifying NameExpCS element replaces Proper-
tyCallExpCS and VariableExpCS. Figure 9 shows the new unifying CS element.

1 NameExpCS:
2 simpleName isMarkedPreCS?

Fig. 9: NameExpCS Grammar and partial CS Metamodel

Listing 1.5 shows the definition for the CS2AS mapping of a NameExpCS,
in which the isAVariableExp() at line 3 is a call of the operation providing the
disambiguation rule. The return selects whether a NameExpCS is mapped to a
VariableExp (lines 5-13), otherwise a PropertyCallExp (lines 15-23).

1 context NameExpCS
2 def : ast() : ocl::OclExpression =
3 if isAVariableExp()
4 then
5 let variable = ast().lookupVariable(name)
6 in ocl::VariableExp {
7 name = name,
8 referredVariable = variable,
9 type = if variable = null

10 then null
11 else variable.type
12 endif
13 }
14 else
15 let property = ast().lookupProperty(name)
16 in ocl::PropertyCallExp {
17 name = name,
18 referredProperty = property,
19 type = if property = null
20 then null
21 else property.type

30



22 endif
23 }
24 endif

Listing 1.5: CS2AS description for an ambiguous name expression

This approach has the benefit of localizing the disambiguation in the isAVari-
ableExp() operation, and so making VariableExpCS and PropertyCallExpCS re-
dundant. The simple two-way disambiguation decision is shown in Listing 1.6

1 context NameExpCS
2 def : isAVariableExp() : Boolean =
3 let variable = ast().lookupVariable(name)
4 in variable <> null

Listing 1.6: NameExpCS disambigutation rule

Simple choices such as the various forms of CollectionLiteralPartCS can be
resolved syntactically. Semantic decisions are required for the unified name exam-
ple above. The conflicts between the use of parentheses for template arguments,
operation calls and iteration calls can be resolved in the same way but with a
more complex semantic decision tree.

5 Related work

In this section we briefly discuss how the proposed OCL-based CS2AS bridge
relates to previous work. To the best of our knowledge there does not exist a
DSL approach based on OMG specifications to describe bridges between CS and
AS. The Complete OCL document based approach was introduced in [8] and
this paper aims to explain the whole approach (i.e. the internal DSL). Recently,
OCLT [9] has been proposed as a functional transformation language to tackle
model transformations. Apart from being too novel to be considered in this work,
OCLT is not domain specific and it needs additional constructs (e.g. pattern
matching) in order to cover more complex transformation scenarios.

We can find languages conceived to sort out the CS2AS bridges in other
contexts, i.e in the context of some specific tools. We highlight two of them:

NaBL [10] & Stratego [11]: These are two separate languages for different
purposes used by the Spoofax language workbench [12]. The former is used to
declare name resolution and the latter to declare syntax rewrites (tree based
structure transformations). As a main difference with respect to our approach,
these languages are completely unrelated: whereas the former is integrated dur-
ing the parsing activities in order to resolve cross-references when producing the
CS tree, the latter is a general purpose program transformation language further
used to obtain the potentially different AS tree. In our approach, we integrate
the name resolution language into a further CS2AS activity, provided that the
parsing activity first produces a CS tree. As it was commented in Section 4.3,
the name lookups are performed on AS elements rather than on CS ones.

Gra2Mol [13]: Gra2Mol is an approach that is closer in objective to the
approach presented in this paper. It is a domain specific transformation language
conceived to define those bridges, and as our approach does, the name resolution

31



activity is also declared as part of the transformation language. However, whilst
their name resolution relies on explicitly specifying a direct search (thus, the
name consumer needs to know where the name producer is located in the syntax
tree), our approach for specifying name resolution is more declarative based on
an independent declaration of name producers and consumer (thus, the name
consumer doesn’t need to know where the producer is located in the syntax
tree). Another difference is that whilst we use OCL as the expression language
to express the bridges, they define a structure-shy8 query language instead. They
claim that the usage of their query language is more compact and less verbose
when compared to using OCL expressions. However such languages are not suit-
able from the point of view of OMG specifications. Besides, we can add that
structure-shy languages are more error prone or sensitive to changes in the in-
volved metamodels (metamodel evolution): when having a static typed language
such OCL, supporting tools can better assist with metamodel evolution.

6 Limitations and shortcomings

From the point of view of the OMG specification, we do not see any limitations of
the proposed internal DSL. Having OCL as the host language is a good solution
for OMG specifications, because the instances of the DSL can be directly ported
to those specifications in order to precisely define the corresponding CS2AS
bridges. Likewise, the flexibility and modularity that Complete OCL documents
provide has promise in addressing very large CS2AS gaps.

On the other hand, from the final user point of view, i.e the user of the DSL,
and specially when comparing with related work, we perceive that having an
external DSL fully designed to deal with concepts related to name resolution
(e.g. NaBL) or disambiguation may be more convenient. We discuss this further
in the next section when talking about future work.

Another shortcoming to mention is that the DSL is based on the concept of
shadow type expression, which is not yet part of the OCL specification, although
it is planned to be included in the next OCL version (2.5) [7]9. The number of
OCL tools which can currently be used to validate the CS2AS bridges is therefore
limited (we are using Eclipse OCL[6] which prototypes some proposed OCL 2.5
features).

7 Ongoing and future work

Apart from using this OCL-based internal DSL to define CS2AS bridges, we are
also producing the Java based source code responsible for obtaining AS models
from CS ones. This ongoing work follows the line drawn in the introduction which
highlights that the CS2AS internal DSL can be exploited by tool implementers.
Although in this paper we are unable to go into further detail, we can point

8 Xpath is an example of this kind of language
9 It is cited in the report as type construction expression, Section 3.1

32



the reader out to some JUnit test cases10 working on small examples, which
demonstrate that the instances of the CS2AS internal DSL can be transformed
to executable code and perform the CS2AS gap resolution of a language.

In terms of future work, we highlight the following.

– Definition of CS2AS bridges for OCL and QVT. We will apply the
proposed OCL-based internal DSL to provide complete CS2AS bridge de-
scriptions for the whole OCL and the three QVT languages. We expect these
CS2AS bridge specifications to be included as part of the future OCL and
QVT specifications. Likewise, we expect auto-generated code from from these
bridge specifications to be used in future releases of the Eclipse OCL and
QVTd projects. This should eliminate errors attributable to hand-written
conversion source code.

– Incremental CS2AS bridges. Since generation of code from the declar-
ative CS2AS bridges requires a detailed dependency analysis to identify a
valid conversion schedule, we plan to exploit this analysis to synthesize in-
cremental code for use in interactive contexts such as OCL editors. This
should improve accuracy and performance dramatically since accurate effi-
cient incremental code is particularly hard to write manually and pessimistic
simplifications to improve accuracy are not always sound.

– Creation of an external DSL. By bringing together the good aspects
of other related languages such as NaBL or Gra2Mol, we plan to create an
external DSL and with a higher level of abstraction and more concise than
the one presented here, to ease even more the creation of those bridges. This
external DSL can embed the OCL expressions language, and the supporting
tooling can include a code generator to modularly produce the instances of
the internal DSL presented in this paper.

– Integration with existing language workbenches. As added value of
the DSL and to provide more proofs about how tool vendors may benefit
from it (not covered in this paper), we want to exploit the proposed DSL in
the context of a modern language workbench called Xtext.

8 Conclusions

We have introduced a Concrete Syntax to Abstract Syntax bridge that is:

– Sound. We have shown how intuitive aspects of the current OCL specifica-
tion are formalized by OCL definitions and faults corrected.

– Executable. We can use the dependencies behind the OCL definitions to
establish an execution schedule.

– Extensible. We can reuse the formalization of the OCL bridge in a QVT
bridge.

Our bridge modularizes and separates the specification concerns:

10 http://git.eclipse.org/c/mmt/org.eclipse.qvtd.git/tree/tests/org.eclipse.qvtd.cs2as.
compiler.tests/src/org/eclipse/qvtd/cs2as/compiler/tests/OCL2QVTiTestCases.java

33



– Mapping. An OCL operation hierarchy maps CS artifacts to the AS.
– Name Resolution. An OCL operation hierarchy flows the visible names

down to the point of access.
– Disambiguation. Unified CS artifacts, plus CS disambiguation rules, avoid

the need for semantic resolution within a syntactic parser.

Our bridge is currently ready-to-go; it works on test examples. It will now be
applied to replace manual tooling in Eclipse OCL and QVT by tooling generated
direct from the potential OCL 2.5 specification models.

Acknowledgement. We gratefully acknowledge the support of the UK En-
gineering and Physical Sciences Research Council, via the LSCITS initiative,

References

1. Object Management Group. Unified Modeling Language (UML), V2.5. OMG
Document: ptc/2012-10-24 (http://www.omg.org/spec/UML/2.5), 2012.

2. Object Management Group. Meta Object Facility (MOF) Core Specification,
V2.4.1. OMG Document: formal/2013-06-01 (http://www.omg.org/spec/
MOF/2.4.1), 2013.

3. Object Management Group. Object Constraint Language (OCL), V2.4. OMG Doc-
ument: ptc/2013-08-13 (http://www.omg.org/spec/OCL/2.4), January 2013.

4. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/-
Transformation V1.2. OMG Document: ptc/2014-03-38 (http://www.omg.org/
spec/QVT/1.2), May 2014.

5. Martin Fowler. Domain-Specific Languages. Pearson Education, 2010.
6. The Eclipse Foundation. Eclipse OCL. On-Line: http://projects.eclipse.

org/projects/modeling.mdt.ocl, 2005.
7. Achim D Brucker, Dan Chiorean, Tony Clark, Birgit Demuth, Martin Gogolla,

Dimitri Plotnikov, Bernhard Rumpe, Edward D Willink, and Burkhart Wolff. Re-
port on the aachen ocl meeting. In Proceedings of the MODELS 2013 OCL Work-
shop, volume 1092. CEUR Workshop Proceedings, 2014.

8. Adolfo Sánchez-Barbudo Herrera. Enhancing Xtext for General Purpose Lan-
guages. In Benoit Baudry, editor, Proceedings of the Doctoral Symposium at MOD-
ELS’14, volume 1321. CEUR Workshop Proceedings, 2014.

9. Frédéric Jouault, Olivier Beaudoux, Matthias Brun, Mickael Clavreul, and Guil-
laume Savaton. Towards functional model transformations with ocl. In Theory
and Practice of Model Transformations, pages 111–120. Springer, 2015.

10. Gabriël Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser. Declarative
name binding and scope rules. In Software Language Engineering, volume 7745,
pages 311–331. Springer Berlin Heidelberg, 2013.

11. Eelco Visser. Program transformation with stratego/xt. In Christian Lengauer,
Don Batory, Charles Consel, and Martin Odersky, editors, Domain-Specific Pro-
gram Generation, volume 3016 of Lecture Notes in Computer Science, pages 216–
238. Springer Berlin Heidelberg, 2004.

12. Delft University of Technology. Spoofax. On-Line: http://strategoxt.org/
Spoofax.

13. Javier Luis Cánovas Izquierdo and Jesús Garćıa Molina. Extracting models from
source code in software modernization. Software & Systems Modeling, 13:1–22,
2012.

34


