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Abstract. Multidimensional constrained global optimization problem
with objective function under Lipschitz condition and constraints gener-
ating a feasible domain with computable boundaries is considered. For
solving this problem the dimensionality reduction approach on the base
of the nested optimization scheme is used. This scheme reduces initial
multidimensional problem to a family of one-dimensional subproblems
and allows applying univariate methods for the execution of multidimen-
sional optimization. Sequential and parallel modifications of well-known
information-statistical methods of Lipschitz optimization are proposed
for solving the univariate subproblems arising inside the nested scheme
in the case of domains with computable boundaries. A comparison with
classical penalty function method being traditional means of taking into
account the constraints is carried out. The results of experiments demon-
strate a significant advantage of the methods proposed over the penalty
function method.
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1 Introduction

The global optimization problem [1–3] is considered in the following form:

f(y)→ min, y ∈ Q ⊆ RN , (1)

where the feasible domain

D =
{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
, (2)

Q =
{
y ∈ D : gi(y) ≤ 0, 1 ≤ i ≤ m

}
, (3)

is defined by constant (2) and functional (3) constraints. The objective function
is supposed to satisfy in the domain Q the Lipschitz condition∣∣F (y′)− F (y′′)

∣∣ ≤ L‖y′ − y′′‖, y′, y′′ ∈ Q (4)
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with the Lipschitz constant L > 0, where the denotation ‖ · ‖ signifies the Eu-
clidean norm in RN .

The traditional way of solving the constrained problems of mathematical
programming consists in solving the unconstrained problem

F (y)→ min, y ∈ D, (5)

where
F (y) = f(y) + CG(y). (6)

An auxiliary function G(y) (penalty function) satisfies the condition

G(y) = 0, y ∈ Q, G(y) > 0, y /∈ Q, (7)

and the constant C > 0 (see [1, 2, 4]).
If the constant C is sufficiently large and functions f(y) and G(y) are, for

instance, continuous, solutions of the problems (1) and (5) coincide. For some
function classes there is a finite penalty constant providing the coincidence of
solutions (Eremin-Zangwill exact penalty functions [4, 5]).

As an example of penalty function one can take the function

G(y) = max
{

0; g1(y), . . . , gm(y)
}
. (8)

If all the functions gj(y), 1 ≤ j ≤ m are continuous in D, the function (8) is
continuous as well.

On the one hand, the problem (5) is simpler than the initial problem (1)
because of simplifying the feasible domain D. On the other hand, a choice of the
penalty constant is rather difficult. If it is insufficiently large the global minimizer
of the problem (5) can fall out of feasible domain. If the penalty constant is too
large, it worsens the properties of the function F (y) in comparison with the
initial function f(y) (the function F (y) can have a ravine surface, the Lipschitz
constant of F (y) can increase considerably, etc.).

Another factor which influences the complexity of the optimization signif-
icantly is the dimension N of the problem. To overcome this complexity, the
approaches connected with reducing the multidimensional problem to one or
several univariate subproblems are often applied. We consider one of approaches
to the dimensionality reduction based on the nested optimization scheme which
replaces solving the multidimensional problem (1) by solving a family of uni-
variate subproblems connected recursively. In the framework of this approach in
combination with different univariate global search methods [6–12] many sequen-
tial and parallel multidimensional algorithms have been proposed [7, 8, 13–16]
and applied to practical problems (see, for example, papers [17–19]). The other
interesting approaches to parallelizing global search algorithms can be found in
publications [21–24].

The scheme of nested optimization consists in the following [3, 7, 20].
Let us introduce the notations

ui = (y1, . . . , yi), νi = (yi+1, . . . , yN ), (9)
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allowing to write down the vector y as a pair y = (ui, νi) for 1 ≤ i ≤ N − 1.
Assume that y = ν0 if i = 0 and y = uN for i = N .

Let us define also two series of sets. The first series contains sections of the
domain Q:

S1 = Q, Si+1(ui) =
{
νi ∈ RN−i : (ui, νi) ∈ Q

}
, 1 ≤ i ≤ N − 1. (10)

The second collection of sets consists of projections

Pi+1(ui) =
{
yi+1 ∈ R : ∃(yi+1, νi+1) ∈ Si+1(ui)

}
, 0 ≤ i ≤ N − 1, (11)

of the sections Si+1(ui) onto the axis yi+1.
Then, according to [3] and [8] the basic relation of the nested optimization

scheme
min
y∈Q

f(y) = min
y1∈P1

min
y2∈P2(u1)

. . . min
yN∈PN (uN−1)

f(y) (12)

takes place.
Now let us introduce one more family of functions generated by the objective

function f(y):
fN (y) ≡ f(y), (13)

f i(ui) = min
{
f i+1(ui, yi+1) : yi+1 ∈ Pi+1(ui)

}
, 1 ≤ i ≤ N − 1, (14)

defining in the projections

Qi =
{
ui ∈ Ri : ∃(ui, νi) ∈ Q,

}
, 1 ≤ i ≤ N, (15)

of the domain Q onto the coordinate axes y1, . . . , yi.
As it follows from (11), in order to solve the problem (1) – (3) it is sufficient

to solve a one-dimensional problem

f1(y1)→ min, y1 ∈ P1 ⊆ R1. (16)

According to (14), each estimation of the function f1(y1) at some fixed point
y1 ∈ P1 consists in solving a one-dimensional problem

f2(y1, y2)→ min, y2 ∈ P2(y1) ⊆ R1. (17)

This problem is a one-dimensional minimization with respect to y2 since y1 is
fixed, etc., up to solving the univariate problem with fixed vector uN−1.

fN (uN−1, yN ) = f(uN−1, yN )→ min, yN ∈ PN (uN−1), (18)

On the whole, the solving of the problem (1) – (3) is reduced to solving a
family of “nested” one-dimensional subproblems

f i(ui−1, yi)→ min, yi ∈ Pi(ui−1), (19)

where the fixed vector ui−1 ∈ Qi−1.
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The approach of nested optimization can be applied to the problem (5) as
well. In this case the domains of one-dimensional search in (19) are simple,
namely, they are closed intervals Pi = [ai, bi], 1 ≤ i ≤ N .

However, in general case subject to continuity of the penalty function G(y)
the projection Pi(ui−1) is a system of non-intersecting closed intervals

Pi(ui−1) =

qi⋃
s=1

[asi , b
s
i ]. (20)

where the number of the intervals qi and their bounds asi , b
s
i , 1 ≤ s ≤ qi, depend

on the vector ui−1, i.e.,

qi = qi(ui−1), asi = asi (ui−1), bsi = bsi (ui−1). (21)

If the domain Q is such that it is possible to obtain the explicit (analytical)
expressions for the values qi, a

s
i , b

s
i as functions of ui−1 ∈ Qi−1 for all 1 ≤ i ≤ N ,

then the feasible set Q is called the domain with the computable boundaries.

2 Sequential and parallel algorithms of global search over
a system of closed intervals

Let us introduce a unified form for one-dimensional problems (19) arising inside
the nested scheme

ϕ(x)→ min, x ∈ X =

q⋃
s=1

[αs, βs], (22)

where q ≥ 1, αs ≤ βs, 1 ≤ s ≤ q, βs < αs+1, 1 ≤ s ≤ q − 1.
One of the most efficient methods of univariate multiextremal optimization is

the information-statistical algorithm of global search (AGS) proposed by Stron-
gin [7] for the case (22) with q = 1. We will consider a sequential modification
of AGS for the more general situation (22) when q > 1, i.e., the domain X of
one-dimensional search consists of several intervals and call this modification as
AGS-G. This method belongs to the class of characteristical algorithms [21] and
can be described like these methods in the following manner.

Let the term “trial” denote an estimation of the objective function value at a
point of the domain X, k be a trial number, xk be the coordinate and zk = ϕ(xk)
be the result of k-th trial.

The initial stage of AGS-G consists in carrying out 2q initial trials at points
x1 = α1, x

2 = β1, x
3 = α2, x

4 = β2, . . . , x
2q−1 = αq, x

2q = βq, i.e., x2j−1 =
αj , x

2j = βj , 1 ≤ j ≤ q, with corresponding trial results zj = ϕ(xj), 1 ≤ j ≤ 2q.
The choice of a point xk+1, k > 2q, for implementation of a new (k + 1)-th

trial consists in the following steps.

Step 1 Renumber by subscripts the points x1, . . . , xk of previous trials in in-
creasing order, i.e.,

α1 = x1 < x1 < · · · < xk = βq, (23)
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and juxtapose to them the values zj = ϕ(xj), 1 ≤ j ≤ k, obtained earlier,
i.e., zj = ϕ(xl), if xj = xl.

Step 2 Assign to each interval (xj−1, xj), 2 ≤ j ≤ k, generated by the points
from (25) a feasibility indicator τj in the following way: if xj−1 = βj and
xj = αi+1, or xj−1 = xj , then τj = 0, otherwise, τj = 1.

Step 3 For feasible intervals (xj−1, xj) with indicator τj = 1 calculate the di-
vided differences

λj =
|zj − zj−1|
xj − xj−1

, (24)

and the value
Λk = max{λj : 2 ≤ j ≤ k, τj = 1}. (25)

Step 4 Determine an adaptive estimation

Mk =

{
rΛk, Λk > 0,

1, Λk = 0,
(26)

where r > 1 – a parameter of the method.
Step 5 Juxtapose a numerical value (characteristic)

R(j) = Mk(xj − xj−1) +
(zj − zj−1)2

Mk(xj − xj−1)
− 2(zj + zj−1), (27)

to each feasible interval (xj−1, xj), 2 ≤ j ≤ k, τj = 1.
Step 6 Among feasible intervals select the interval (xt−1, xt) which the maximal

characteristic R(t) corresponds to.
Step 7 Choose in the interval (xt−1, xt) the point

xk+1 =
xt + xt−1

2
− zt − zt−1

2Mk
, (28)

as the coordinate of (k+ 1)-th trial and calculate the value zk+1 = ϕ(xk+1).
Step 8 Increase the iteration number k by 1 (k = k + 1) and go to Step 1.

The computational scheme described above generates an infinite sequence of
trials. It can be truncated by introducing a termination criterion. For character-
istical algorithms as such criterion the inequality

xt − xt−1 ≤ ε, (29)

is used, as a rule, where ε > 0 is a predefined search accuracy, i.e., the search is
considered to have been completed when the length of the interval with maximal
characteristic is less than accuracy ε.

As AGS-G is a simple modification of AGS it is easily to show that their
convergence conditions (see [3]) are the same. In particular, convergence to global
minima is provided by fulfillment of the inequality Mk > 2L, where L is the
Lipschitz constant of the function (22).
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In order to describe a parallel version of AGS-G let us assume that at our
disposal there are p > 1 independent processors, and modify the steps 6 – 8 of
the algorithmic scheme presented above. Initial stage of executing trials in end
points of intervals (22) can be realized either sequentially or in parallel – no
matter.

Step 6 Arrange all characteristics (27) in the decreasing order

R(t1) ≥ R(t2) ≥ . . . (30)

and take intervals (xtj−1
, xtj ), 1 ≤ j ≤ p, which the first p characteristics in

the series (30) correspond to.
Step 7 Within intervals with maximal characteristics determined at the previ-

ous step calculate points

xk+j =
xtj + xtj−1

2
−
ztj − ztj−1

2Mk
, 1 ≤ j ≤ p, (31)

as the coordinates of new p trials and calculate in parallel values zk+j =
ϕ(xk+j), 1 ≤ j ≤ p, (each value on a separate processor).

Step 8 Increase the iteration number k by p (k = k + p) and go to Step 1.

The described method (PAGS-G) belongs to the class of parallel character-
istical algorithms the theoretical substantiation of which has been done in [25].

3 Numerical experiments

In order to compare the efficiency of the penalty function method and the method
of explicit boundaries in the framework of nested optimization scheme a class of
known two-dimensional multiextremal test functions has been considered and on
the base of this functions taken as objective ones the problems of constrained op-
timization have been constructed with constraints forming a feasible domain with
computable boundaries, which provide the complicated structure (non-convex
and disconnected) of this domain.

For the experiment test functions two-dimensional [10, 25] as objective ones in
the problem (1) have been choosen. The domain (2) is the square 0 ≤ y1, y2 ≤ 1
and 5 non-linear constraints

g1(y1, y2) = 0.5 exp(−y1)− y2 − 0.25 ≤ 0,

g2(y1, y2) = −4(y1 − 0.9)2 + y2 − 0.8 ≤ 0,

g3(y1, y2) = −4(y2 − 0.6)2 + y1 − 0.7 ≤ 0,

g4(y1, y2) = −10|y2 − 0.5y1 − 0.1|+ | sin(7πy1)| ≤ 0,

g5(y1, y2) = −(y1 − 0.2)2 − (y2 − 0.8)2 + 0.1 ≤ 0

form the feasible domain (3).



Global Optimization in Domains with Computable Boundaries 81

Hundred test problems of this type have been minimized by means of the
nested optimization scheme with the algorithm AGS-G applied inside for uni-
variate optimization (19) (method MAGS-G). Moreover, the same problems have
been solved by the penalty function method (MAGS-P) with different penalty
constants C. For illustration of methods behavior Figure 1 shows level curves
of a test function, the feasible domain and trial distribution in the region (2)
for MAGS-G and MAGS-P (trials are marked with crosses). Figure 1 demon-
strates that all the trials of MAGS-G are placed in the feasible domain only
while MAGS-P carried out a significant part of trials of the the feasible region.

Fig. 1. Trial distributions of MAGS-G and MAGS-P

For conclusive comparison of the optimization algorithms considered above
the method of operating characteristics [3, 16] was used. In the framework of
this method several test problems are taken and each of them is solved by an
optimization algorithm with a given set of its parameters. After the experiment
one can determine a number P of problems solved successfully and average num-
ber K of trials spent by the algorithm. Repeating such experiment for different
sets of parameters we obtain a set of pairs (K,P ) called operating character-
istic of the algorithm. It is convenient to represent operating characteristics of
the algorithms compared on the plane with axes K and P . Such representation
enables to compare efficiencies of the algorithms in a visual manner. If for the
same K the operating characteristic of a method is located above the character-
istic of another one, the first method is better as it has solved successfully more
problems than its rival spent the same computational resources.

Figure 2 contains the operating characteristics of MAGS-G and MAGS-P
with penalty constants C = 1, C = 10, C = 100, obtained after minimization of
100 two-dimensional random functions [10, 25] with r = 3 and different values
of accuracy ε from (29).
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Fig. 2. Operating characteristics of MAGS-G and MAGS-P

The experiment confirms known situation when for small penalty constant
MAGS-P are not able to find the global minimum of certain constrained prob-
lems. On the other hand, if the penalty constant is overestimated MAGS-P
spends too many trials for searching the global minimum. Moreover, the MAGS-
P efficiency worsens because of placing trials out of the feasible domain while
MAGS-G executes trials at feasible points only.

For evaluation of efficiency of parallelizing the nested optimization scheme
let us take again the test class (33) with the same 5 constraints and apply to
optimization the nested scheme where for solving problem (16) the sequential
method AGS-G is used, but the parallel algorithm PAGS-G with different num-
bers of processors performs solving the univariate problems for the coordinate
y2. This parallel multidimensional method will be called PMAGS-G. Let K(1)
be the average number of trials executed by MAGS-G and K(p) be the average
number of trials spent by PMAGS-G with p > 0 processors for optimizing 100
test functions. As a criterion of efficiency the speed-up in trials is taken. This
criterion is defined [21] as s(p) = K(1)/(pK(p)) and characterizes the speed-up
under assumption that the time spent for realization of algorithmic scheme and
data transmission is much less than the time of objective function evaluations.
The graph of speed-up in trials is presented in Figure 3.

Experiments were performed using two-socket machine with Intel R© XeonTM

E5-2680 v3 processors (Haswell, 2.5GHz, 12 Cores; OS: Red Hat Enterprise Linux
Server 6.6; compiler: GCC 4.8.2). Library Intel R© Threading Building Blocks 4.3
Update 3 was used for implementing parallel version of the method.

4 Conclusion

A class of multidimensional multiextremal problems with special type of con-
straints has been considered. Constraints of this type can generate non-convex
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Fig. 3. Speed-up of PMAGS-G Non-linear character of the speed-up is accounted for
by the loss of information while planning the new trials in the decision rule (30) – (31)
of the parallel methods (detailed explanation of this effect can be found in [25])

and even disconnected feasible domains. For solving the problems under con-
sideration sequential and parallel global optimization methods on the base of
nested optimization scheme have been adapted. Decision rules of these methods
provide estimating the objective function within the feasible domain only and do
not require any parameters for taking into account the constraints as opposed
to classical penalty function method. Computational experiments demonstrate
advantages of the algorithms proposed in comparison with the penalty function
method for constraints of the considered type.

As a further way of the development of researches it would be interesting
to investigate different parallelization schemes inside the nested optimization
approach in combination with other methods of univariate optimization.
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