
Processing Large Amounts of Images
on Hadoop with OpenCV

Timofei Epanchintsev1,2 and Andrey Sozykin1,2

1 IMM UB RAS, Yekaterinburg, Russia,
2 Ural Federal University, Yekaterinburg, Russia

{eti,avs}@imm.uran.ru

Abstract. Modern image collections cannot be processed efficiently on
one computer due to large collection sizes and high computational costs
of modern image processing algorithms. Hence, image processing of-
ten requires distributed computing. However, distributed computing is a
complicated subject that demands deep technical knowledge and often
cannot be used by researches who develop image processing algorithms.
The framework is needed that allows the researches to concentrate on
image processing tasks and hides from them the complicated details of
distributed computing. In addition, the framework should provide the
researches with the familiar image processing tools. The paper describes
the extension to the MapReduce Image Processing (MIPr) framework
that provides the ability to use OpenCV in Hadoop cluster for distributed
image processing. The modified MIPr framework allows the development
of image processing programs in Java using the OpenCV Java binding.
The performance testing of created system on the cloud cluster demon-
strated near-linear scalability.

Keywords: OpenCV · Hadoop · MapReduce · image processing · dis-
tributed processing

1 Introduction

Image processing is one of the important tasks in many areas of research such as
medical imaging, remote sensing, astronomy, Internet analysis, etc. The industry
also widely uses image processing.

Nowadays, image processing often requires distributed computing. The sizes
of modern image collections, for example, the Yahoo 100 million creative com-
mons flickr images for research [6], are large (terabytes and petabytes of data);
such collections cannot be stored and processed efficiently on a single computer.
In addition, contemporary image processing algorithms are becoming very com-
plex and, hence, computationally intensive.

However, distributed computing is a complicated subject that requires deep
technical knowledge. Many scientists, who developed image processing algo-
rithms, does not have the qualification required to use distributed computing
efficiently. They need an image processing framework that hides the complicated

138 Timofei Epanchintsev and Andrey Sozykin

details of distributed computing from the application developers and allows them
to concentrate on image processing tasks and algorithms.

Previously, we have developed the MapReduce Image Processing framework
(MIPr) [4], which allows to process images on Apache Hadoop cluster using
the MapReduce technology. MIPr provides the image representations in the
Hadoop internal format, which are suitable for MapReduce processing, and the
input/output tools for image processing integration into the Hadoop data work-
flow. In addition, MIPr includes high-level image processing API for application
developers who are not familiar with Hadoop.

However, providing the application developers with a convenient framework
is not enough for efficient distributed image processing. The developers must
be able to use image processing tools that they already know together with
the framework. In such case, the developers can quickly create software for dis-
tributed computing framework, or even use their existing software. Otherwise,
the developers will have to implement image processing algorithms from scratch,
which require a lot of time and labor.

In this paper we describe an approach for using the popular open source com-
puter vision library OpenCV [1] for distributed image processing on a Hadoop
cluster with the help of the MIPr framework. OpenCV includes more than 2500
computer vision and machine learning algorithms for image and video processing.

2 Related Work

Several systems can be used for image processing in Hadoop. HIPI (Hadoop
Image Processing Interface) [5] is a framework specifically designed to enable
image processing in Hadoop. OpenIMAJ (Open Intelligent Multimedia Analysis
for Java) [2] contains several Hadoop implementation of computer vision algo-
rithms. In contrast to our work neither system supports the OpenCV library.

The image processing cloud with the OpenCV support was built at the Prairie
View A&M University (PVAMU)[7]. The PVAMU cloud provides the Platform
as a Service for distributed image processing and storage, which includes the
Hadoop cluster and the OpenCV library. Two types of Hadoop InputFormat and
OutputFormat based on OpenCV have been developed: for image and video files.
Hadoop Streaming is used for data processing. Hence, it is possible to use various
programming languages to develop image processing algorithms. Unfortunately,
the authors did not share their implementation of OpenCV support for Hadoop.
Hence, the system can be used only in the PVAMU cloud, which is not very
convenient. Sometimes, copying a large image collection to the remote cloud
through the network requires more time than the processing of the images. Our
MIPr framework is open sourced and freely available to use in any Hadoop
cluster, not only at the cloud platform. On the other hand, the PVAMU cloud has
two advantages compared with the MIPr: the ability to process not only images,
but also videos, and the support of multiple languages for implementation of
image and video processing algorithms.

OpenCV in MIPr 139

Core
components

Map-Reduce Drivers

Java API C++ API
Image

processing
API

Python API

LibrariesImage processing libraries

I/O Serialization
Mat writableOpenCV I/O tools:

- Input Format
- Combine File Input Format
- Record Reader
- Output Format
- Record Writer

OpenCV Map-Reduce
Driver

Fig. 1. Extended architecture of the MIPr framework (new blocks are gray)

3 Integration of OpenCV Library into the MIPr
Framework

The MIPr framework has an open architecture, which allows adding new image
representation based on various libraries. The extended architecture of MIPr
with the support of OpenCV library is presented in Fig 1. The extensions in-
clude an OpenCV-based image representation in the Hadoop internal format,
input/output tools for inclusion of OpenCV-based images into the Hadoop data
workflow, and MapReduce Driver to execute Hadoop programs with the OpenCV
support.

3.1 Image Representation

OpenCV uses the Mat class as an image container, and most of OpenCV image
processing functions accept Mat as an argument. Hence, the Mat class was chosen
to build the OpenCV-based image format in MIPr. Similar to other MIPr image
representation formats, the Hadoop Writable interface was used for serialization.
By combining these two components, the MatWritable image format was created,
which is suitable for use as a value in MapReduce programs.

3.2 Input/Output tools

For reading images from the Hadoop Distributed File System (HDFS) into
the memory for processing, two types of InputFormat for OpenCV have
been developed: OpenCVFileInputFormat and OpenCVCombineFileInputFor-
mat. OpenCVFileInputFormat reads one image at a time and is suitable for

140 Timofei Epanchintsev and Andrey Sozykin

big images (larger than the HDFS block size). In contrast with it, OpenCVCom-
bineFileInputFormat reads several images from the same HDFS block in one
operation and is suitable for processing large amount of small files. Both Input-
Formats produce pairs <file name, MatWritable> (OpenCVCombineFileInput-
Format can produce several pairs if the HDSF block contains several images).
To actually read an image from HDFS and present it in the MatWritable format,
the OpenCVRecordReader was developed, which is used both by the OpenCV-
FileInputFormat and OpenCVCombineFileInputFormat.

For writing the OpenCV-based images to HDFS after processing, special im-
plementations of OutputFormat and RecordWriter, which are capable of work-
ing with MatWritable, were developed. In contrast to the traditional Hadoop
approach, the created components preserve the original names of image files.

3.3 MapReduce Driver

MapReduce driver is intended to execute the MapReduce program on the cluster.
The developed OpenCV MapReduce driver sets up the appropriate InputFormat
and OutputFormat, defines the MapReduce values type as a MatWritable, loads
OpenCV native C++ library, and executes the job on the Hadoop cluster. To
distribute the binary OpenCV C++ library to the cluster nodes, the Hadoop
distributed cache is used.

3.4 Image Processing

The MIPr extensions use the OpenCV Java binding. In contrast to the PVAMU
cloud, MIPr utilizes the standard Hadoop Mappers and Reducers for image
processing. Hence, only Java is supported for developing image processing algo-
rithms in MIPr using OpenCV.

4 Performance evaluation

In order to estimate the performance and scalability of the proposed approach,
two computational experiments with the modified MIPr implementation have
been conducted. The Microsoft Azure HDInsight cluster in the Microsoft Azure
cloud platform have been used for the experiments. The cluster consists of 18
nodes: 2 head nodes and 16 computational nodes. The configuration of the nodes
is presented in the Table 1.

The MIRFLICKR-1M image collection (one million of images downloaded
from Flickr, 118GB total size) [3] was used as a benchmark dataset. The following
image processing operations were performed during the experiments:

– conversion of color images to grayscale;
– face detection;
– Canny edge detection.

OpenCV in MIPr 141

Table 1. Configuration of the Hadoop cluster nodes

Configuration parameter Value

CPU Intel Xeon E5-2660 @ 2.20GHz, 4 cores
RAM 14 GB

Local HDD 200GB SSD
Network interface Gigabit Ethernet
Operating System Linux Ubuntu 12.04 LTS

0

5000

10000

15000

20000

25000

30000

35000

Img2Gray FaceDetection CannyEdgeDetection

Processing time, sec

Number of nodes

Sequental program 1 2 4 8 16

Fig. 2. Image processing time depending on the number of nodes in the cluster

The purpose of the first experiment was to estimate the scalability of the
modified MIPr implementation with the growing number of nodes in the cluster.
During this experiment, the entire MIRFLICKR-1M image collection was pro-
cessed using varying number of nodes. In addition to the cluster implementation,
the performance of sequential image processing was measured. The results are
presented in Fig. 2. With the exception of single node cluster, the system has
near-linear scalability. A poor performance of the single node cluster, as com-
pared with the sequential implementation, is caused by the Hadoop overhead.

The second experiment was aimed at estimating how the system scales with
the increasing volume of images. For this purpose, the whole cluster was used
to process varying number of images. The results are presented in Fig. 3 (log-
arithmic scale). For small datasets (the number of images is less than 10000),
there is no difference in processing time due to the cluster overhead. However,
the scalability for large image collection processing is near-linear.

Near-linear scalability of the modified MIPr implementation is an expected
result, because images are processed independently.

142 Timofei Epanchintsev and Andrey Sozykin

1

10

100

1000

10000

Img2Gray FaceDetection CannyEdgeDetection

Processing time,

sec

Number of images in the collecton

1000 10000 100000 1000000

Fig. 3. Image processing time depending on the number of images in the collection
(logarithmic scale)

5 Conclusion

The approach to use OpenCV library for distributed image processing on a
Hadoop cluster was presented. The approach is based on the previously devel-
oped MIPr framework for image processing in Hadoop. The MIPr framework was
extended to include OpenCV-based image representation in the Hadoop internal
format, tools for reading images from HDFS and writing processed images back
to HDFS, and drivers for MapReduce jobs with OpenCV support. The exten-
sion allows to develop image processing programs in Java using OpenCV Java
bindings.

The performance of the modified MIPr implementation was evaluated. For
large clusters and image datasets the scalability is near-linear. Poor performance
of single node cluster and small dataset processing is caused by Hadoop overhead.

MIPr framework is open sourced and available for free at https://github.
com/sozykin/mipr.

Future work include porting MIPr to Apache Spark [8] for in-memory image
processing and providing the ability to use Python and C++ for developing
MapReduce image processing programs.

Acknowledgements. The reported study was supported by RFBR (research
project No 14-07-31324 mol a) and by Microsoft Azure for Research Russia Ini-
tiative. Our work was performed using the “Uran” supercomputer from Institute
of Mathematics and Mechanics UrB RAS.

OpenCV in MIPr 143

References

1. Bradski, G.: The opencv library. Dr. Dobb’s Journal of Software Tools (2000)
2. Hare, J.S., Samangooei, S., Dupplaw, D.P.: Openimaj and imageterrier: Java li-

braries and tools for scalable multimedia analysis and indexing of images. In: Pro-
ceedings of the 19th ACM international conference on Multimedia. pp. 691–694. MM
’11, ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/2072298.
2072421

3. Huiskes, M.J., Thomee, B., Lew, M.S.: New trends and ideas in visual concept
detection: The mir flickr retrieval evaluation initiative. In: Proceedings of the In-
ternational Conference on Multimedia Information Retrieval. pp. 527–536. MIR
’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/1743384.
1743475

4. Sozykin, A., Epanchintsev, T.: Mipr – a framework for distributed image process-
ing using hadoop. In: Application of Information and Communication Technologies
(AICT), 2015 IEEE 9th International Conference on. pp. 35–39 (2015)

5. Sweeney, C., Liu, L., Arietta, S., Lawrence, J.: HIPI: A Hadoop Image Process-
ing Interface for Image-based MapReduce Tasks. B.s. thesis, University of Virginia
(2011)

6. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth,
D., Li, L.J.: The new data and new challenges in multimedia research. arXiv preprint
arXiv:1503.01817 (2015)

7. Yan, Y., Huang, L.: Large-scale image processing research cloud. In: CLOUD COM-
PUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs,
and Virtualization. pp. 88–93 (2014)

8. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Clus-
ter computing with working sets. In: Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing. pp. 10–10. HotCloud’10, USENIX Associa-
tion, Berkeley, CA, USA (2010), http://dl.acm.org/citation.cfm?id=1863103.
1863113

