
Towards Safe Model Transformation for
Constraint-driven Modeling

Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E. Lopez-Herrejon, and Alexander Egyed
Johannes Kepler University (JKU)

Linz, Austria
Email: {firstname.lastname}@jku.at

Abstract—Model transformation is a key technology in model-
driven engineering. Unfortunately, transformations are typically
written manually and thus they are likely to contain errors and
to produce incorrect or undesired output. Safe transformation
is the guarantee that for every possible source model, the trans-
formed target model is valid with respect to user-definable well-
formedness criteria. This paper introduces safe transformation
for constraint-driven modeling (CDM), an approach that em-
ploys model transformation to generate target model constraints
instead of generating a target model directly. Safe transformation
for CDM ensures that transformations only produce correct and
non-contradictory constraints. We demonstrate the feasibility of
safe transformation and present a formal framework for applying
it to CDM in arbitrary domains.

I. INTRODUCTION

With the increasing popularity of Model-Driven Engineer-
ing (MDE) and modeling languages such as the Unified
Modeling Language (UML), there is also an increasing need
for validating the correctness of design models as they are used
for safety-critical systems or other systems that are subject to
strong regulations [1]. This verification consists of checking
whether a model is syntactically and semantically correct. The
desired conditions are usually expressed in form of model
constraints, using constraint languages such as the Object
Constraint Language (OCL).To date, there exist efficient ap-
proaches for checking constraints (e.g., [2]) on design models.
However, these approaches are not readily applicable to model
transformations [3] where both the source model and the
target model must adhere to defined syntactic and semantic
constraints. Of course, it is possible to verify a target model
once it has been generated. However, what if we want to ensure
that all generated target models are correct? The dilemma is
that there are likely infinite possible source models and thus it
is unscalable to generate all possible target models and verify
them.

Safe model transformation ensures that transformations al-
ways produce results that meet defined criteria. These cri-
teria are typically defined by designers based on either a
specific metamodel or domain knowledge. For example, an
important criterion may be that every transformation result is
syntactically and semantically correct with respect to the target
metamodel – i.e., the transformation will not generate an ill-
formed target model. This implies that the applied criteria are
likely to differ for different metamodels and domains. Safe
model transformation is thus a warranty the transformation

designer would like to provide to the transformation user
(software engineer) – that the transformation result will always
be correct with respect to the defined criteria, regardless of the
given input model.

This work demonstrates safe transformation on Constraint-
driven Modeling (CDM) [4]. CDM avoids premature design
decisions by constraining target models instead of generating
them directly. CDM uses model transformations to automate
the generation of model constraints and to perform required
updates. Hence, designers only have to write and maintain
transformation rules instead of managing specific model con-
straints. However, transformation rules in CDM—and most
other MDE-approaches—are written manually. This means
that there is always a chance that these rules contain errors.
CDM thus benefits from safe transformation as much as
any other transformation-based approach would. Since CDM
transforms source models into constraints, an incorrect trans-
formation may result in contradictory constraints which make
the problem of finding a valid model unsatisfiable. As an
example, imagine two constraints forcing a model element to
have two different values at the same time. Safe transformation
for CDM ensures that defined transformation rules for a given
source metamodel will never lead to contradictory constraints.
This is a satisfiability test for which we apply the formal
modeling and reasoning engine FORMULA [5]. Safe transfor-
mation generally ensures that all possible target models meet
structural and static semantical conformance criteria [6]. For
CDM, for instance, it ensures that no unsatisfiable constraints
can be generated.

In this paper we present a formal approach for safe model
transformation. The approach is generic and validates the cor-
rectness of arbitrary transformations on arbitrary metamodels
and models by using a formal reasoning engine for automatic
solution space exploration and transformation effect analysis.
The approach uses only validity conditions and transforma-
tion definitions to automatically find input models suitable
for validating transformation correctness. The feasibility and
applicability are demonstrated in the context of constraint-
driven modeling using the FORMULA [7] reasoning engine.
For enabling reasoning about constraints as the result of model
transformations, we used a formal (meta)modeling framework
and formalized a basic consistency checking technique. In
addition to a theoretical foundation, we validated the correct-
ness of the implementation through systematic testing and by

(a)

(b) (c)

Fig. 1. Metamodel (a) and model (sequence (b) and class diagram (c)).

applying it to typical UML-like models.

II. RUNNING EXAMPLE

As a running example, we use an excerpt of a meta-
model not unlike the UML metamodel as depicted in Fig.
1(a). The metamodel consists of the following elements:
InstanceSpecification, Message, Class, Method,
and ADClass. The element Class is used for modeling
types. Such classes must provide a description, may have
an arbitrary number of Method assigned, and may be part of
a hierarchy if they have supertypes assigned (super). The
element ADClass is a specialization of Class and provides
an additional description, hence the prefix ”AD” and an
array of size 2 for the field description. The element
InstanceSpecification is used for modeling specific
instances of modeled classes and Message elements are used
for modeling method calls between instance specifications.

We use this metamodel to build the models shown in Fig.
1(b) and Fig. 1(c). In Fig. 1(b) a sequence diagram is shown
that defines instance specifications a and b of the types A and
B, respectively. Fig. 1(c) shows a class diagram in which the
types A, B, and S are defined. A is a Class, B and S are
instance of ADClass. S is also defined as superclass of B.
The message named m, sent from a to b and highlighted by the
rounded frame in Fig. 1(b), is added to the model. According
to UML semantics, this means that the class B must provide a
method named m. At first sight, a simple model transformation
that automatically adds a method with the appropriate name
to the defining type of the message receiver would solve the
problem. Note, however, that adding a method to any of B’s
superclasses and interfaces (e.g., S) would also be a valid
option. Clearly, deciding where to add the required method –
if a new method is required at all – is non-trivial and requires
knowledge of the modeled system. Thus automating such a

decision through a model transformation can be dangerous
as it might produce undesired models. In the next section
we will discuss how the constraint-driven modeling approach
addresses this issue and also illustrate why safe transformation
is important when transformations are used.

III. CONSTRAINT-DRIVEN MODELING

As the illustration shows, using model transformation in
situations where more than one valid solution may exist is
not straightforward and deciding which solution is correct
involves domain knowledge that often cannot be generalized.
Using constraints avoids ambiguous transformations that may
produce invalid results. However, managing them manually
is non-practical in large models. The CDM approach tackles
this problem and uses transformations that generate constraints
on a model automatically instead of directly generating or
changing model elements. When using a traditional transfor-
mation, the target model is generated or adapted automatically
through the transformation execution on the source model. In
contrast, the constraint-driven modeling approach executes the
transformation Tc on the source model SM to generate the
constraints C, as shown in Eq. (1). Compared to traditional
transformations, the source model SM remains unchanged.
The core idea is that defining invariants and desired conditions
of valid models through constraints requires less knowledge
and is therefore easier than defining a fixed set of rules that
always produce a specific result that is always correct, (e.g.,
it is easier to define that two model elements must not have
the same name than defining a rule that assigns meaningful
names to all elements automatically). Moreover, constraints
for similar elements (e.g., different instances of the same
metamodel element) typically require similar constraints in
which only specific parts differ, hence transformation rules can
be seen as a structural template for a specific kind of constraint
that can be instantiated and filled with data for specific model
elements. Note that the target model TMc (the subscript c
indicates that it is constrained) is not manipulated directly in
our approach, neither through a transformation nor through
constraints.

SM Tc−→ C TMc (1)

Let us now illustrate how the approach can be applied to
our running example. As we have shown, there is more than
one possibility for changing the class diagram in Fig. 1(c)
to accommodate the change in the input models and thus
defining a single transformation that always generates the right
solution is not possible. However, we can use the knowledge
provided in the model to define some requirements that must
be fulfilled1:
• B must provide a method m (based on the message from
a to b).

• A must provide a description (based on its type
Class).

1We omit other invariants (e.g., that instances of Class and ADClass
must provide a name) for space reasons.

1 r u l e RuleM
from s : Message

3 to t : C o n s t r a i n t (
e l e m e n t <− s.receiver.type

5 i n v <− ” s e l f . p rov idedMethods−>
e x i s t s (m|m. name= ’ ” + s.name + ” ’) ”)

7 r u l e RuleC
from s : C l a s s

9 to t : C o n s t r a i n t (
e l e m e n t <− s

11 i n v <− ” s e l f . d e s c r i p t i o n−>s i z e () =1”)
r u l e RuleADC

13 from s : ADClass
to t : C o n s t r a i n t (

15 e l e m e n t <− s
i n v <− ” s e l f . d e s c r i p t i o n−>s i z e () =2”)

Listing 1. ATL-like transformation rules to generate constraints.

• S and B must provide two description fields (based
on their type ADClass).

These requirements can be easily stated as constraints, for
example written in OCL. To generate them automatically, we
use ATL [8] to define the three transformation rules shown
in Listing 1. The first rule RuleM (lines 1–6) is defined for
messages in the model and creates constraints that require the
receiver element’s defining class to provide a corresponding
method. Note that this does not require the class to directly
provide the method; it is sufficient that the method is defined
somewhere in the class hierarchy (e.g., in a superclass).
Rule RuleC (lines 7–11) is executed for Class instances
and generates constraints that check the cardinality of the
attribute description. Finally, the third rule RuleADC
(lines 12–16) checks that instances of ADClass provide two
descriptions. Note that for simplicity we treat the two diagrams
shown in Fig. 1(b) and Fig. 1(c) as one model (SM). When
executing the transformation rules on the model in Fig. 1 we
expect the following constraints to be generated:

C1 element B: self.providedMethods->exists(m|
m.name=’m’)

C2 element A: self.description->size()=1
C3 element B: self.description->size()=2
C4 element S: self.description->size()=2

We expect one constraint to be generated for the message
m and three constraints to be generated for checking the
description attributes of Class and ADClass instances. The
constraint C1 will show the inconsistency in our running
example that b provides no method m.

Although the constraints in such a small example could be
written manually, maintaining a large number of constraints
during the modeling process where the metamodels and mod-
els change frequently is error prone. Consequently, constraints
should be managed automatically. We have shown that CDM
is practical in [4].

However, even with automated constraint management,
designers manually write transformation rules or templates
for desired constraints that can be executed or instantiated,
respectively. Thus there is no guarantee that these transforma-
tion rules or templates produce constraints that are syntacti-
cally and semantically correct. Coming back to our running
example, the transformation rules in Listing 1 actually not

only produce the discussed constraints C1–C4, but – because
instances of ADClass are also instances of Class – they
will also create the following constraints C5–C6:

C5 element B: self.description->size()=1
C6 element S: self.description->size()=1

Obviously, the constraint combinations C3∧C5 and C4∧C6
are overconstraining the elements B and S, respectively. Both
elements B and S are forced to have two different numbers of
descriptions at the same time. Hence, the transformation leads
to contradictory constraints.

The reason for this, somehow unexpected, result is that the
transformation rules for cardinality checking constraints are
defined for instances of the types Class and ADClass (lines
7 and 12 in Listing 1). Because ADClass is a subclass of
Class, as defined in the metamodel depicted in Fig. 1(a),
RuleC is also executed for all instances of ADClass. Indeed,
the transformation rules RuleC and RuleADC need addi-
tional guarding statements that ensure the execution of only
one of the rules per element. In fact, automating constraint
generation may even increase the risk of contradictions be-
tween constraints and overconstraining of models as designers
specify transformation rules that are executed when certain
requirements are fulfilled. This means that – in contrast to
manual addition of constraints to individual model elements –
the aggregation of constraints restricting a model element is no
longer directly visible for a designer. Note that this situation is
not unique to constraint transformations. Such issues may arise
in other domains as well. Using transformations to generate
target models implies that the generated model is not known
before rule execution. Automating model generation typically
involves large numbers of transformation rules that are writ-
ten for complex metamodels. Visualization of dependencies
between these rules is usually not available and thus the risk
of overlooking possible side-effects increases with the number
of rules. Checking the correctness of transformation rules by
looking at the results for existing sample models is not a valid
solution to this problem as source models may change and
thus cause errors in target models. This can also occur later
during model refactoring, updates, or extensions when target
models have to be re-generated. Next, we present how safe
transformation helps designers avoid errors in target models.

IV. SAFE MODEL TRANSFORMATION

As we have shown in the previous section, writing trans-
formation rules – regardless of the specific domain – can be a
highly complex task as there may be source models that cause
the execution of combinations of rules that are not supposed
to be executed together or also the execution of rules for
elements where the rule should not be executed at all. Safe
model transformation guarantees that a transformation
will always produce valid results. Validity rules are defined
by designers and typically stem from both the metamodel of
the transformation’s target model (syntax rules) and domain
knowledge (semantic rules). Intuitively, safe transformation
can be easily proven for a single source model by executing
the transformation and validating whether the target model

is valid with a SAT-solver. However, our definition of safe
transformation is that a transformation must not, under any cir-
cumstances, produce invalid results, meaning that there must
not be any possible source model that causes invalid results.
Based on the conventional notation for model transformation,
we can formally define a transformation as the function shown
in Eq. (2). A transformation is a function that uses a source
model sm ≺ SMM and a set of transformation rules T as
input and returns a target model tm ≺ TMM2. The signatures
of the validity functions for both input and target model are
shown in Eq. 3 and Eq. 4, respectively. We can then define a
transformation to be safe if the condition in Eq. (5) holds for
T . Proving that this condition holds requires the execution
of the transformation rules specified in T for all possible
instances sm ≺ SMM, which is indeed not a feasible option
because common metamodels often allow an infinite number
of different instantiations.

trans : (sm ≺ SMM, T)→ tm ≺ TMM (2)
validS : sm ≺ SMM→ {true, false} (3)
validT : tm ≺ TMM→ {true, false} (4)

Safe(SMM, T)⇔ ∀sm ≺ SMM : validS(sm)

⇒ validT (trans(sm, T))
(5)

Unsafe(SMM, T)⇔ ∃sm ≺ SMM : validS(sm)∧
¬validT (trans(sm, T))

(6)

However, we take Eq. (5) as the condition that must hold for
a transformation to be safe and use it to define the condition
that holds for any unsafe transformation, as shown in Eq. (6).
Proving that a transformation is unsafe thus requires only a
single instance sm ≺ SMM to lead to a result tm ≺ TMM
that is not valid.

The FORMULA reasoning engine supports automatic
proofs through solution space exploration and transformations,
thus it is an ideal choice for implementing safe transformation.
However, any reasoning engine for automatic proofs can be
used in principle, even though this could require the additional
formalization of transformations. The solver is capable of
expanding models on its own for finding proofs and partial
models can be used for reasoning. For details about the
reasoning mechanism please refer to [7] and [5].

Note also that safe transformation does not rely on static
analysis and thus allows arbitrary input/output (meta)models,
transformation languages, and conditions. The approach there-
fore is generic and not limited to specific domains or lan-
guages. Moreover, the complete integration of input model
construction, the transformation, and the validity conditions
means that both the validity conditions and the transformation
itself are available to the solver for reasoning, potentionally
enabling higher efficiency and precision.

2We use the notation a ≺ b to indicate that a is an instance of b.

V. APPLYING SAFE MODEL TRANSFORMATION TO
CONSTRAINT-DRIVEN MODELING

As discussed in Section III, constraints can be contradicting.
Because we need to formally specify such a contradiction in
order to apply safe transformation, let us first give formal
definitions of constraints and the models they are applied to.

A. Formalizing Model Constraints and Consistency Checking

Constraints restrict model elements, therefore we need a
formal definition of metamodels and models along with con-
straints definitions. Eq. (7) defines a metamodel MMcdm that
consists of a set of types Types and the set of expressions
available for individual constraints, called CExpr. An in-
stance of the metamodel is then a model M ≺ MMcdm,
as defined in Eq. (8), consisting of model elements N ,
connections E that link model elements, and constraints C.

MMcdm := 〈Types, CExpr〉 (7)
M ≺MMcdm := 〈N,E,C〉|
N = {x|x ≺ y ∈ Types}∧

E = {〈a, b, c〉|a ∈ N ∧ b ∈ N ∧ c ⊆ N}∧
C = {〈context, exp〉|context ∈ N ∧ exp ≺ CExpr)}

(8)
value : (N,N)→ P(N), (x, y) 7→ z : ∃〈x, y, z〉 ∈ E (9)

validate(c ∈ C) 7→

{
inconsistent if c is violated
consistent otherwise

(10)

allowed(〈a, b, c〉 ≺MMcdm) 7→ {〈n, e, v, r〉|
n ∈ a ∧ e ∈ a ∧ v ⊆ a ∧ r ⊆ c∧
(∃〈h, i, j〉 ∈ E : n = h ∧ e = i)∧
(y = value(n, e) ∧ y /∈ v ⇒ ∃rx ∈ r :

validate(rx) = inconsistent)}

(11)

contradiction(m ≺MMcdm)⇔
∃〈n, e, v, x〉 ∈ allowed(m) :v = ∅

(12)

Note that a connection between model elements in Eq. 8
consists of three parts: i) the source model element (a), ii)
a connection identifier (b) which is also a model element, and
iii) the source of the connection (c). Such a connection can
be interpreted as a value c being assigned to the property b
of element a. Thus, we can define a helper function value to
retrieve the value assigned to a given model element property,
as shown in Eq. 9.

We define the generic constraint validation function as
shown in Eq. (10). We omit a detailed discussion of con-
straint validation because of space restrictions and the fact
that validation functions heavily depend on the used consis-
tency checking technique. Additionally, we define the function
allowed that returns the set of allowed values for model
element properties, as shown in Eq. (11). This set includes
tuples of a model element (n), a property of n (e), a set
of values (v) that may be assigned to the model element’s
property without causing a constraint to become inconsistent,

and a set of constraints (r) that restricted the allowed values.
The function contradiction takes a model as input and checks
it for contradictions, as shown in Eq. (12). A contradiction
occurs if there is at least one element for which no value can
be assigned without causing an inconsistency. We omit more
detailed definitions as they would strongly depend on the used
modeling and constraint languages.

Now that the metamodel and the corresponding functions
for constraint validation and the detection of contradictions
are defined, we can use this information to check the trans-
formations from Section III.

B. Ensuring Safe Constraint Transformation

We converted the ATL-like transformations shown in Listing
1 to transformations Tcdm that can be executed by the FOR-
MULA solver. A constraint transformation CT can be written
as shown in Eq. (13). When executing the transformation for
a source model sm ≺ MMcdm, the result is the constrained
model tmc ≺ MMcdm which includes all model elements
defined in sm and a set of constraints generated for these
element. The last part needed for safe transformation are the
source and target validity functions validScdm and validTcdm,
respectively. For the former, the conditions are domain-specific
and thus independent of CDM. Therefore, we omit a formal
definition in Eq. 14. For the latter, results to be valid if they
are free of contradicting constraints, as shown in Eq. (15).
By substituting the constraint transformation function (13), the
metamodel definition (7), and the validity conditions (14) and
(15) in Eq. (6) we get the unsafe condition as shown in Eq.
(16).

CT : sm ≺ MMcdm
Tcdm−−−→ tm ≺ MMcdm (13)

validScdm(x ≺ MMcdm)⇔ x is syntactically correct
and valid w.r.t. domain semantics

(14)

validTcdm(x ≺ MMcdm)⇔ ¬contradiction(x) (15)

Unsafe(MMcdm)⇔ ∃sm ≺ MMcmd :

validScdm(sm) ∧ ¬validTcdm(CT (sm))
(16)

Note that we use the transformation function CT directly on
the right-hand side of the equation and thus we eliminate
the corresponding argument on the left-hand side. We now
ask the FORMULA solver to prove this condition and search
for examples of source models sm that lead to invalid target
models: solve CT sm Unsafe. The solver will return an
input that leads to a contradiction, which tells us that the
transformation is unsafe. In particular, this input will include
an instance of ADClass and also include facts that help
designers find the constraints and the transformations that
caused the contradiction).

Assume that, after taking a closer look at the transformation
rules RuleC and RuleADC based on the solver output,
we identified the error and added guarding statements (e.g.,
s.getClass().getName()="Class") so that RuleC
is no longer executed for instances of ADClass. Asking the
solver again for an example sm of a contradiction-causing

model will fail and the solver will tell us that it could not find
such an example, meaning that the transformation is safe.

VI. VALIDATION

In addition to the presented theories, we demonstrate the
applicability of the generic safe transformation approach by
implementing it for constraint-driven modeling. We also dis-
cuss threats to validity in this section.

A. Correctness

In the paper we presented the theoretical foundations of safe
model transformation. The presented conditions are correct
and they capture the ideas and principles of safe transforma-
tion. The correctness was further assessed by implementing
those conditions and functions in a program that produced
correct results as we discuss next.

B. Implementation

To ensure the feasibility of safe transformation and the
validity of the theoretical foundations presented in the paper,
we have implemented a safe transformation framework for
CDM using the FORMULA language. This implementation
is a straight forward translation of the presented formal
definitions to type declarations and functions, thus we omit
a detailed discussion. It allows the definition of metamodels
and models (based on an existing metamodeling framework
[5]), and it supports the definition of constraints. Moreover, it
provides functions for constraint evaluation and for reasoning
about constraints. For this feasibility study we used a subset
of the constraint expressions available in OCL. The correct
behavior of the implementation was ensured through testing
with systematically varied inputs for expressions.

As mentioned in Section V, we used the implementation
with the model discussed in Section II and the transformation
rules from Listing 1. For the running example and the incorrect
transformation rules, the FORMULA solver returned different
solutions (i.e., sample models) that all included an instance of
ADClass and contained contradicting constraints. Moreover,
the resulting facts derived by FORMULA included as many
constraint contradictions as there were ADClass instances.
After fixing the transformation rules, the problem was not
satisfiable anymore – as expected. This indicates that the
translation to FORMULA is correct and the approach produces
the desired result in practice.

C. Applicability

The presented framework is suitable for ensuring safe
transformation for CDM in arbitrary modeling domains. To
enable safe transformation in general (i.e., for transformations
different to those used in CDM), the following three steps
are necessary: i) define source and target metamodels using
an existing metamodeling framework, ii) describe transforma-
tion rules in FORMULA, and iii) describe desired validity
conditions. We believe that the metamodel definition can be
automated for metamodels based on common frameworks
(e.g., MOF). The transformation description in FORMULA

is straightforward and uses concepts similar to common trans-
formation languages such as ATL – this step may also be
automated. Overall, we deem the effort needed for using safe
transformation acceptable given the importance of transforma-
tion correctness and the effort required for locating and fixing
errors caused by unsafe transformations in later development
stages. Overall, we believe that the steps required for using
the framework are manageable.

D. Threats to Validity

We have used the FORMULA solver for finding input
models for which a transformation is unsafe with respect to
defined criteria. Indeed, FORMULA is capable of searching
solutions efficiently. Nevertheless, it can only guarantee that
there is no solution for a defined maximum size of solution
models [5]. In [9], Sen et al. use Alloy for constructing
test models that meet defined well-formedness criteria from
partial models. We use this principle more extensively as our
input data for constructing input models for transformations
is often empty. Although we expect target model errors to
typically involve only a relatively small number of elements,
the bounded search space is a practical threat to validity. Even
if current solvers might not find input models that unveil
errors in transformations, manually written test models are far
from finding all errors [9], thus our approach gives designers
additional confidence in the correctness of their work.

VII. RELATED WORK

Model transformation has become a very active field of
research. We now discuss other approaches closest to our topic.
Sen et al. [9], [10] presented techniques for finding input
models for testing model transformations. They use Alloy
to expand partial models automatically to complete models
that conform to well-formedness rules. The fact that they use
different languages and strategies for finding sample models
shows that our generic approach can be implemented with a
range of languages. Note, however, that safe transformation
integrates the construction of test input models and the exe-
cution of transformations. Guerra et al. [11] propose the use
of contract for validating transformation correctness. This is
basically the same concept safe transformation uses. However,
they use QVT to enforce defined pre- and post-conditions of
transformations and rely on existing input models while safe
transformation uses such contracts to actively search for input
models that lead to a violation of the target model constraints.
Cabot et al. [12] proposed an approach for deriving OCL con-
straints from declarative transformation specifications. Their
approach generates invariants that must hold between source
and target models. Our approach can be used to ensure that,
for example, only non-contradicting invariants are generated.
Jackson et al. [5] previously used FORMULA for describing
a general purpose (meta)modeling framework.The reasoning
they did about transformations based on their framework can
be seen as an application of the safe transformation approach
to identify undesired behavior of transformations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the safe transformation approach
that allows the use of formal modeling languages for proving
assumptions about arbitrary model transformations for either
arbitrary source models or also source models with specific
characteristics. In particular, we demonstrated its applicability
for the constraint-driven modeling approach by ensuring con-
straint satisfiability and checking the semantical correctness
of transformation rules and their results. The safe transfor-
mation approach was validated by implementing it using the
FORMULA language. For future work we plan to integrate the
framework in existing tools that use CDM and also implement
the approach for other domains.

REFERENCES

[1] Anda, B., Hansen, K., Gullesen, I., Thorsen, H.K.: Experiences from
introducing uml-based development in a large safety-critical project.
Empirical Software Engineering 11(4) (2006) 555–581

[2] Egyed, A.: Instant consistency checking for the UML. In: ICSE. (2006)
381–390

[3] Czarnecki, K., Helsen, S.: Classification of model transformation
approaches. In: OOPSLA Workshop on Generative Techniques in the
Context of Model-Driven Architecture. (2003)

[4] Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Constraint-driven mod-
eling through transformation. Software and Systems Modeling (2013)
DOI: 10.1007/s10270-013-0363-3.

[5] Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about
metamodeling with formal specifications and automatic proofs. In:
MoDELS. (2011) 653–667

[6] Amrani, M., Lucio, L., Selim, G.M.K., Combemale, B., Dingel, J.,
Vangheluwe, H., Traon, Y.L., Cordy, J.R.: A tridimensional approach
for studying the formal verification of model transformations. In: ICST.
(2012) 921–928

[7] Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain
specific modeling languages. In: EMSOFT. (2006) 53–62

[8] OBEO, INRIA: ATLAS transformation language (ATL).
http://www.eclipse.org/atl/ (2014)

[9] Sen, S., Mottu, J.M., Tisi, M., Cabot, J.: Using models of partial
knowledge to test model transformations. In: ICMT. (2012) 24–39

[10] Sen, S., Baudry, B., Mottu, J.M.: Automatic model generation strategies
for model transformation testing. In: ICMT. (2009) 148–164

[11] Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzeg-
ger, W., Schönböck, J., Schwinger, W.: Automated verification of model
transformations based on visual contracts. Autom. Softw. Eng. 20(1)
(2013) 5–46

[12] Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and valida-
tion of declarative model-to-model transformations through invariants.
Journal of Systems and Software 83(2) (2010) 283–302

