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ABSTRACT
Biomedical ontologies are particularly successful in the uniformiza-

tion of the life sciences domain and ontology matching systems are
useful to discover relationships between concepts of two different
ontologies. However, that is also a limitation as there is a growing
interest in discovering more complex kinds of mappings and existing
techniques are limited to matching two ontologies. Therefore,
producing ’compound’ alignments, which match more than two
ontologies, could be potentially useful to support a next generation
of semantic technologies.

In this paper, we present a novel algorithm that produces
compound matches between three different ontologies and its
performance is evaluated against seven automatically inferred
reference alignments from the biomedical domain. We analyze all
alignments manually to verify the results and propose a new way to
complete the logical definitions of OBO cross-products.

1 INTRODUCTION
Biomedical ontologies typically contain a high number of classes
and many times cover the same field or related fields, which hinders
their interoperability. One approach to address this problem is
the use of matching systems which are capable of establishing
meaningful connections between ontologies.

Still, most ontology matching systems produce equivalence
mappings between classes or properties in two ontologies. However,
in a complex domain such as biomedicine, where several ontologies
describe different but related aspects of biomedical phenomena, it
may be advantageous to create mappings by combining entities
from more than two ontologies. We argue that it would be useful
for the developers of ontology alignment systems to develop new
techniques and tools for identifying ’compound matches’, i.e.
matches between class or property expressions involving more than
two ontologies. To the best of our knowledge, there are currently no
ontology matching systems capable of generating such mappings.

The purpose of this work is to develop novel algorithms which can
be used for the efficient and effective creation of alignments between
a class A of one ontology with an expression relating classes B and
C of two other ontologies, constituting a ternary relationship.

2 METHODS
We consider that a ternary compound alignment is a set of
correspondences (mappings) between classes from a source
ontology Os and class expressions obtained by combining two other
classes each belonging to a different target ontology Ot1 and Ot2 (see
Figure 1). This means that we define a ternary compound mapping
as a tuple <X, Y, Z, R, M>, where X, Y and Z are classes from
three distinct ontologies, R is a relation established between Y and
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Z to generate a class expression that is mapped to X via a mapping
relation M. Here, we consider the ontology to which X belongs to
be the source ontology, and the ontologies that define Y and Z to be
the target ontology 1 and 2, respectively. In this particular case the
relation R is always an intersection (regardless of any qualifier) and
the mapping M an equivalence.

Fig. 1. Example of a possible ternary compound match.

2.1 Implementation
We developed a novel algorithm to establish compound mappings
integrated into the AgreementMakerLight (AML) (Faria et al.,
2014) ontology matching system1. Our algorithm exploits AML’s
Word Lexicon, the set of all words in an ontology’s vocabulary to
which are assigned an evidence content (EC), reflecting the usage
of the word within the ontology.

In a first step, we perform a pairwise mapping of the labels of Os

with the labels of Ot1, by the ratio of the sum of the EC of the words
shared by the source label (ls) and the target 1 label (lt1), and the
sum of the EC of the words in lt1.

sim(ls, lt1) =

∑
EC(word ∈ (ls ∩ lt1))∑

EC(word ∈ lt1)
(1)

We filter out all mappings with similarity below a given threshold.
In a second step, for each mapping found in step 1, we remove from
the source labels all the words that have already been matched (ls∗).
Taking as an example the mapping in Figure 1, after matching HP
and FMA, which would capture the mapping for ‘aorta’, the HP’s
class label would be reduced to ‘stenosis’.
In a third step, for each mapping, we perform a pairwise comparison
of the reduced source labels with target 2 labels. However, here the
ratio divisor corresponds to the sum of EC of the words in the label
with more words, to ensure the longest possible match.

sim(ls, lt2) =

∑
EC(word ∈ (ls∗ ∩ lt2))∑

EC(word ∈ longest(ls, lt2))
(2)

In a fourth step, the final similarity between the matched labels is
computed as the average between the similarities computed in steps
1 and 3. Label mappings below the second threshold are filtered out.
Finally, the algorithm has a greedy selection step, which selects the

1 Available at: https://github.com/AgreementMakerLight/AML-Compound
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mapping with the highest similarity, amongst the source classes with
more than one mapping.

2.2 Evaluation
To evaluate our strategy we used a set of seven reference alignments
(Pesquita et al., 2014) automatically created by inferring compound
mappings from cross-products (Mungall et al., 2011) of the logical
definitions in OBO ontologies (Smith et al., 2007). For this, we
computed precision, recall and f-measure. We also performed a
manual evaluation of the results, where we classified mappings
into three possible categories: ’Correct’, where the mapping is
deemed correct and the source class has no mapping in the reference
alignment; ‘Conflict’, where the mapping is deemed correct but the
source class has a different mapping in the reference alignment; and
‘Incorrect’, where the mapping is deemed incorrect. We applied this
to all mappings created by using 0.5 as a threshold for step 1 and 0.9
for step 2.

3 RESULTS
Table 1 presents some statistics about the alignments obtained.
Preliminary results using this evaluation approach present low F-
Measure, with a higher precision, which fluctuates between 67.9
and 11.6 and recalls that always fall below the 50% mark.

Precision Recall F-Measure
MP-CL-PATO 52.6 % 20.8 % 29.8 %
MP-GO-PATO 67.9 % 47.2 % 55.7 %

MP-NBO-PATO 47.3 % 30.1 % 36.8 %
MP-UBERON-PATO 64.7 % 19.4 % 29.9 %

WBP-GO-PATO 11.6 % 7.7 % 9.2 %
HP-FMA-PATO 21.2 % 12.4 % 15.6 %

Table 1. Evaluation results from the comparison with the
automated reference alignments

Correct Conflict Incorrect
MP-CL-PATO 63.71 % 34.60 % 1.69 %
MP-GO-PATO 92.16 % 6.97 % 0.87 %

MP-NBO-PATO 72.46 % 26.09 % 1.45 %
MP-UBERON-PATO 91.33 % 7.96 % 0.70 %

WBP-GO-PATO 88.55 % 7.49 % 3.96 %
HP-FMA-PATO 77.82 % 15.56 % 6.61 %

Table 2. Manual evaluation of results.

The manual inspection of the mappings (Table 2) revealed that
the algorithm is finding mostly correct mappings, with the lowest
percentage belonging to the MP-CL-PATO compound alignment,
which had the highest number of conflicting mappings.

4 DISCUSSION
One challenge in computing compound alignments is the memory
requirements involved in the process. If matching two large
biomedical ontologies is already a challenge for many ontology
matching systems, handling three ontologies in a compound
alignment scenario is even more demanding. Our algorithm reduces
the search-space by using the two-step matching approach, which
both reduces the time and memory requirements 2.

2 The largest alignment takes less than 15 minutes with an Intel R©

CoreTMi7-2600 CPU 3.40GHz x 8 processor and 16GB memory.

Although our algorithm’s performance against the reference
alignments is low (Table 1), the manual evaluations of the mappings
reveals a very low proportion of incorrect mappings, so we
investigated how these new mappings could impact the logical
definitions of the source ontology. The results presented in Table
3 indicate that the logical definitions of the three source ontologies
could be expanded with more than 800 new logical definitions.

Ontology New Mappings OBO classes % of Growth
MP 422 7694 5.48

WBP 182 957 19.02
HP 259 14059 1.84
Table 3. Influence of the new mappings on the source

ontology.

We can conclude that our approach is capable of producing good
precision (Table 2 shows an average of 81% of the matches are
correct), and is able to find many correct mappings that are not
in the reference alignment. However, it struggles with capturing
many of the mappings in the references, which is mainly due to
our algorithm’s inability to distinguish between similar PATO class
(e.g., PATO:0000470: ‘present in greater numbers in organism’ vs.
PATO:0002002: ’has extra parts of type’), or the use of synonyms
not defined in any of the ontologies.

5 CONCLUSION
We have presented, to the best of our knowledge, the first algorithm
for compound matching of ontologies. It is particularly suited for
biomedical ontologies, given its ability to handle large ontologies
and the need in this domain to reveal more complex relations
between them. Our preliminary experiments have shown that,
despite the challenges in handling an increased matching space
and the inherently more difficult-to-compute ternary mapping, our
algorithm is able to produce good precision mappings. Moreover,
we posit that it could also be used as a first step in adding new logical
definitions to ontologies, since we were able to find several correct
mappings that were not in the reference alignments..
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