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ABSTRACT
OBO logical definitions are a means to support the creation of

integrated reference ontologies. In ontologies they exist for, logical
definitions currently cover a small portion of classes, which limits the
potential for integration.

We present a novel preliminary strategy to derive logical definition
candidates based on an ontology compound matching algorithm.
Preliminary results show that this strategy is able to increase the
coverage of logical definitions between 2 and 19%.

1 INTRODUCTION
The Open Biological and Biomedical Ontologies (OBO) Foundry
(Smith et al., 2007) is a collaborative initiative for establishing a set
of principles for ontology development in the biomedical domain.
Its goal is to support the creation of orthogonal interoperable
reference ontologies and OBO cross-products were created to
provide computable logical definitions for classes.
Several of the current logical definitions present in the OBO
Foundry were obtained with the Open Bio-Ontology Language
(Obol) (Mungall, 2004). Obol has a fairly complex set of rules to
define ontology-specific grammars and generate potential logical
definitions, which have to be manually curated. It has been
applied in the improvement of phenotype ontologies (Mungall et al.,
2010) and in the normalization of GO (Mungall et al., 2011). A
more recent approach, cross-products extension (CPE) (Quesada-
Martı́nez et al., 2014) has been applied to the GO.
However, adding and maintaining these definitions requires a
significant amount of effort, which likely contributes to their
incomplete coverage. For instance, the logical definitions of the
three ontologies employed in this paper account for less than half
of the classes in the ontology (see Table 1).

Ontology Classes Logical Definitions Proportion
HP 28621 14059 49.1%
MP 28643 7694 26.9%

WBP 2290 957 41.7%
Table 1. Proportion of classes represented by logical

definitions.

This paper describes a preliminary strategy to derive logical
definitions candidates that is based on a novel algorithm used for the
creation of compound alignments. Our algorithm is centered around
a ternary compound mapping approach, which we define as a tuple
<X, Y, Z, R, M>, where X, Y and Z are classes from three distinct
ontologies, R is a relation established between Y and Z to generate
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a class expression that is mapped to X via a mapping relation M.
Here, we consider the ontology to which X belongs to be the source
ontology, and the ontologies that define Y and Z to be the target
ontology 1 and 2, respectively. In this particular case the relation R
is always an intersection and the mapping M an equivalence.

Fig. 1. Example of a possible ternary compound match in the HP logical
definitions.

Due to the nature of the matching algorithm our strategy
only finds logical definitions for classes which are composed of
constructs from two different ontologies. This is the case of many
of the classes in the Human Phenotype Ontology which have
definitions that are composed of classes from the PATO and FMA
ontologies (see Figure 1). Our goal is to investigate whether our
proposed strategy is able to reliably find definitions which were
not obtained through previous methodologies, and where thus not
included in the available logical definitions.

2 MATERIALS AND METHODS
2.1 Ontologies
For creating and testing our algorithm we matched different
combinations (see Table 2) of the following OBO ontologies:
Cell Type (CL) (Bard et al., 2005), Foundational Model of
Anatomy (FMA) (Rosse and Mejino, 2003), Gene Ontology
- Biological Process (GO) (Ashburner et al., 2000), Human
Phenotype Ontology (HP) (Köhler et al., 2013), Mammalian
Phenotype (MP) (Smith et al., 2004), Neuro Behaviour Ontology
(NBO) (Gkoutos et al., 2012), Phenotypic quality (PATO) (Mungall
et al., 2010), Uber Anatomy Ontology (UBERON) (Haendel et al.,
2009) and Caenorhabditis elegans phenotype (WBP) (Schindelman
et al., 2011).

These ontologies were downloaded from the OBO Foundry
(http://obo.sourceforge.net) in February 2015.

2.2 Algorithm
We developed a novel algorithm (Oliveira and Pesquita, 2015) to
establish compound mappings integrated in AgreementMakerLight
(AML) (Faria et al., 2014) ontology matching system. We compute
the confidence of the first step, based on the ratio of words of the
first target ontology classes’ labels that overlap with the words of
the labels of the classes of the source ontology, weighted by their
evidence content (i.e., the inverse log of their frequency in the
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ontology’s vocabulary). In the second step, we filter out source
classes whose matches were below the threshold, and then match
the remaining ones based on their unmatched words in step 1,
to the second target ontology. To compute the confidence of this
second step, if the number of words of a certain label is higher than
the number of words of a target 2 ontology label we compare the
unmatched words to the each word of the target 2 terms. Else, if
the number of words of a certain label is lower than the number of
words of a target 2 ontology label we compare the unmatched words
to the each word of the source. Finally, the algorithm had a greedy
selection step, which selects the mapping with the highest similarity,
amongst the source classes with more than one mapping.

2.3 Evaluation
To evaluate our strategy we performed a manual analysis of the
results, where we classified mappings into three possible categories:
’Correct’, where the mapping is deemed correct and the source class
has no mapping in the logical definitions; ‘Conflict’, where the
mapping is potentially correct but the source class has a different
mapping in the logical definitions; and ‘Incorrect’, where the
mapping is deemed incorrect. We applied this to all mappings
created by using 0.5 as a threshold for step 1 and 0.9 for step 2.

3 RESULTS AND DISCUSSION
The manual evaluations of the mappings (Table 2) reveals a
very low proportion of incorrect mappings, and an intermediate
proportion of conflicting mappings. Given the low error rate, we
consider our strategy to be suitable to the identification of candidate
logical definitions. However, we are also interested in ascertaining
whether our strategy can contribute with a signficant number of
novel definitions. In fact, the novel logical definitions represent a
percentual increase between 2 and 19%, which corresponds to more
than 800 new logical definitions for the three ontologies (see Table
3). This indicates that our strategy is able to find candidate logical
definitions which are missed by the currently employed methods.

Correct Conflict Incorrect
MP-CL-PATO 63.71 % 34.60 % 1.69 %
MP-GO-PATO 92.16 % 6.97 % 0.87 %

MP-NBO-PATO 72.46 % 26.09 % 1.45 %
MP-UBERON-PATO 91.33 % 7.96 % 0.70 %

WBP-GO-PATO 88.55 % 7.49 % 3.96 %
HP-FMA-PATO 77.82 % 15.56 % 6.61 %

Table 2. Manual evaluation of results.

Ontology New Mappings Logical Definitions % of Growth
HP 259 14059 1.84
MP 422 7694 5.48

WBP 182 957 19.02
Table 3. Impact of the new mapping derived logical definitions.

However, for some ontologies, the number of conflicting
mappings represents a greater proportion. Upon comparing the
novel mapping with the conflicting logical definition we have found

that in many cases this is due to similar PATO classes, whose
synonyms are hard to distinguish.

4 CONCLUSION
Our proposed strategy was able to successfully identify a significant
number of novel logical definitions candidates, with a low error rate.
Therefore, this new methodology could help expert curators expand
the current logical definitions. Although our current approach is
limited to logical definitions established by the intersection of
classes from two distinct external ontologies, we expect it can easily
be adapted to logical definitions that employ classes from the source
ontology and a single external ontology. In the future, we will also
explore how different similarity thresholds can affect the accuracy
and coverage of the obtained logical definitions.
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Köhler, S., Doelken, S. C., Mungall, C. J., Bauer, S., Firth, H. V., Bailleul-Forestier,
I., Black, G. C., Brown, D. L., Brudno, M., Campbell, J., et al. (2013). The
Human Phenotype Ontology project: linking molecular biology and disease through
phenotype data. Nucleic acids research, page gkt1026.

Mungall, C. J. (2004). Obol: integrating language and meaning in bio-ontologies.
Comparative and functional genomics, 5(6-7), 509–520.

Mungall, C. J., Gkoutos, G. V., Smith, C. L., Haendel, M. A., Lewis, S. E., and
Ashburner, M. (2010). Integrating phenotype ontologies across multiple species.
Genome biology, 11(1), R2.

Mungall, C. J., Bada, M., Berardini, T. Z., Deegan, J., Ireland, A., Harris, M. A.,
Hill, D. P., and Lomax, J. (2011). Cross-product extensions of the Gene Ontology.
Journal of biomedical informatics, 44(1), 80–86.

Oliveira, D. and Pesquita, C. (2015). Compound matching of biomedical ontologies. In
International Conference on Biomedical Ontology (ICBO) (to appear).

Quesada-Martı́nez, M., Mikroyannidi, E., Fernández-Breis, J. T., and Stevens, R.
(2014). Approaching the axiomatic enrichment of the Gene Ontology from a lexical
perspective. Artificial intelligence in medicine.

Rosse, C. and Mejino, J. L. (2003). A reference ontology for biomedical informatics:
the Foundational Model of Anatomy. Journal of biomedical informatics, 36(6),
478–500.

Schindelman, G., Fernandes, J. S., Bastiani, C. A., Yook, K., and Sternberg, P. W.
(2011). Worm Phenotype Ontology: integrating phenotype data within and beyond
the c. elegans community. BMC bioinformatics, 12(1), 32.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg,
L. J., Eilbeck, K., Ireland, A., Mungall, C. J., et al. (2007). The OBO Foundry:
coordinated evolution of ontologies to support biomedical data integration. Nature
biotechnology, 25(11), 1251–1255.

Smith, C. L., Goldsmith, C.-A. W., and Eppig, J. T. (2004). The Mammalian Phenotype
Ontology as a tool for annotating, analyzing and comparing phenotypic information.
Genome biology, 6(1), R7.

2 Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes


