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ABSTRACT 

We	  present	  a	  formalization	  of	  indicators	  of	  diagnostic	  performance	  
(sensitivity,	   specificity,	   positive	   predictive	   value	   and	  negative	   predic-‐
tive	  value)	  in	  the	  context	  of	  a	  realist	  ontology.	  We	  dissociate	  the	  indica-‐
tors	  of	  diagnostic	  performance	   from	   their	   estimations	  and	  argue	   that	  
the	  former	  should	  be	  represented	  in	  a	  first	  place	  in	  biomedical	  ontolo-‐
gies.	   Our	   formalization	   does	   not	   require	   to	   introduce	   any	   possible,	  
non-‐actual	  entities	  -‐	  like	  the	  result	  a	  person	  would	  get	  if	  a	  medical	  test	  
would	  be	  performed	  on	  her	  -‐	  and	  is	  therefore	  acceptable	  in	  an	  ontology	  
built	  in	  a	  realist	  spirit.	  We	  formalize	  an	  indicator	  of	  diagnostic	  perfor-‐
mance	  as	  a	  data	  item	  that	  is	  about	  a	  disposition	  borne	  by	  a	  group;	  the	  
diagnostic	  value	  of	   this	   indicator	   is	  given	  by	   the	  objective	  probability	  
value	  assigned	  to	  this	  disposition.	  

1 INTRODUCTION 
1.1 Definition of indicators of diagnostic perfor-

mance 
Biomedical ontologies aim at providing the most exhaustive 
and rigorous representation of reality as described by bio-
medical sciences. A large part of medical reasoning con-
cerns diagnosis and is essentially probabilistic. It would be 
an asset for biomedical ontologies to be able to support such 
a probabilistic reasoning. 

Ledley & Lusted (1959)’s seminal article on Bayesian 
reasoning in medicine defines different kind of probabilistic 
entities. Consider for example the simple case of an instance 
of test of type A aiming at detecting if a patient in a group g 
has an instance of disease of type M1. The performance of 
test A in diagnosing M can be quantified by the positive 
predictive value of this test, hereafter abbreviated PPV, and 
generally defined as the proportion of people who have the 
disease among those who would be tested positive by A in g 
(that is, the proportion of true positives among positives); 
and by the negative predictive value, hereafter abbreviated 
NPV, and generally defined as the proportion of people who 
do not have the disease among those who would be tested 
negative by A in g (that is, the proportion of true negatives 
among negatives). Those two values provide the probability, 
once the result of test A is observed, that the patient has the 
disease M. 

  
1 These will be abbreviated in the following as “a test A” and “the patient 
has M”. 

However, such positive and negative predictive values 
are typically not available in the scientific literature. Instead, 
they are generally computed from other probabilistic values, 
namely: the prevalence value of M in g, generally defined as 
the proportion of people who have the disease M in g, and 
hereafter abbreviated Prev(g,M); the sensitivity value of the 
test A for M in g, generally defined as the proportion of peo-
ple who would get a positive result by A among those who 
have the disease M in g (that is, the proportion of true posi-
tives among diseased), hereafter abbreviated Se(g,A,M); and 
the specificity value of A for M, generally defined as the 
proportion of people who would get a negative result by A 
among those who do not have the disease M in g (that is, the 
proportion of true negatives among non-diseased), hereafter 
abbreviated Sp(g,A,M). As a matter of fact, these values are 
related through the following Bayesian equations: 

M))A,Sp(g,-(1 M))Prev(g,-(1  M)A,Se(g, M)Prev(g,
M)A,Se(g, M)Prev(g,M)A,PPV(g,

+
=

 

M)A,Sp(g, M))Prev(g,-(1  M))A,Se(g, - (1 M)Prev(g,
M)A,Sp(g, M))Prev(g, - (1M)A,NPV(g,

+
=

 

In the wake of Ledley & Lusted (1959), the sensitivity 
and specificity values have often been considered as de-
pending only on the pathophysiological characteristics of 
the disease, and thus as independent of the group of people 
under consideration. However, sensitivity and specificity 
values do in fact depend upon the group under considera-
tion: this is the “spectrum effect” (Brenner & Gefeller, 
1997; for a detailed explanation, see Barton, Duvauferrier & 
Burgun, 2015). Spectrum effect can be manifested, for ex-
ample, as a dependence of sensitivity and specificity on the 
degree of severity of the disease in the group under consid-
eration (Park, Yokota, Gill, El Rassi, & McFarland, 2005). 

In the remainder of the articles, sensitivity, specificity, 
PPV and NPV will be called “indicators of diagnostic per-
formance” and abbreviated “IDPs”. 

1.2 The challenge of representing indicators of 
diagnostic performance in an ontology 

To the extent that they aim at representing biomedical 
knowledge and enabling medical reasoning, biomedical 
ontologies should provide a formalization of IDPs as well as 
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the prevalence. This article will propose such a formaliza-
tion in the context of the OBO Foundry (Smith et al., 2007), 
one of the most massive sets of interoperable ontologies in 
the biomedical domain, built on the upper ontology BFO. 

The question of how probabilistic notions can be repre-
sented in ontologies has been tackled from different per-
spectives in the past. For example, da Costa et al. (2008) 
have proposed the new PR-OWL format that extends the 
classical OWL format; we take here a different approach, 
which does not aim at changing the OWL format. Soldato-
va, Rzhetsky, De Grave, & King (2013) have described a 
model in which probabilities can be assigned to research 
statements. We have proposed an alternative approach 
(Barton, Burgun, & Duvauferrier, 2012) in which we show 
how probabilities can be assigned to dispositions, upon 
which we are going to build here. 

Sensitivity and specificity have been recently introduced 
in the Ontology of Biological and Clinical Statistics (OBCS; 
Zheng et al., 2014) as subclasses of Data item – a classifica-
tion that we will endorse here, and extend to PPV and NPV. 
A data item, as defined by the Information Artifact Ontolo-
gy (IAO), is intended to be a truthful statement about some-
thing. In order to formalize IDPs, one should thus clarify 
what entities in the real world they are about. 

Sensitivity value2, as we said, is generally defined as the 
proportion of people who would get a positive result by A 
among those who have the disease M. But note here the 
conditional structure: what is referred to is the proportion of 
true positives among diseased if A was performed on them. 
In practical situations, however, the sensitivity value will be 
estimated by performing the test on a sample of the popula-
tion only – not the entire population g. This will lead to two 
difficulties. First, it will be necessary to differentiate clearly 
the IDPs’ values from their estimations, and to determine 
which of those should be represented in a first place in an 
ontology – part 2 will be devoted to this issue. Second, pos-
sible-but-non-actual situations cannot be straightforwardly 
defined in a realist ontology like BFO; this problem will be 
explained and solved in part 3, by considering that an IDP is 
a data item about a disposition borne by an instance of 
group of individuals, whose probability value will be identi-
fied to the diagnostic value of the IDP. This will provide a 
formal characterization of IDPs. 

2 THE INDICATORS AND THEIR 
ESTIMATIONS 

2.1 Two limits for the estimations of indicators of 
diagnostic performance 

Numerical estimations of IDPs face two limits (Barton et 
al., 2015). First, frequencies will be measured on a sample 

  
2 Note the distinction between a sensitivity and its value: a sensitivity is a 
data item, but its value is a number.  

judged to be representative of the population as a whole, and 
these values are then extrapolated to the frequencies in the 
entire population. Second, whether a given person has M or 
not cannot generally be known for sure, through reasonable 
means: sometimes, the only way to be certain is to perform 
an autopsy on the deceased patient. Consequently, a “gold 
standard” must be chosen, namely the best reasonable avail-
able diagnostic test3. If a patient gets a positive result to this 
gold standard test, one will conclude that he has the disease; 
if he gets a negative result, one will conclude that he does 
not have it. 

For example, Park et al. (2005) estimate the sensitivity of 
the Neer test for diagnosing the impingement syndrome; 
their estimation is made on a sample of 552 patients consid-
ered as representative of the general population, using as 
gold standard surgical observation. The proportion of pa-
tients tested positive by the Neer test among those who are 
tested positive by surgical operation in the sample is con-
sidered as representative of the sensitivity value - which can 
be interpreted as the proportion of people who would be 
tested positive by the Neer test among those who have an 
impingement syndrome in the whole population. Similar 
estimation strategies hold for prevalence, specificity, PPV 
and NPV. 

Note that the estimations of the values of the prevalence, 
sensitivity, specificity, PPV and NPV depend on both the 
sample and the gold standard; however, the real values of 
the prevalence, sensitivity, specificity, PPV and NPV, as 
defined above, depend neither on the sample, nor on the 
gold standard.  

2.2 What should be represented in an ontology? 
This being clarified, one can ask which entities should be 
preferably represented in an ontology: the IDPs’ values, or 
their estimations? 

For sure, we have no direct access to such IDPs’ values; 
but this does not imply that they should not be represented 
in an ontology. To clarify why, consider an analogy: the 
measure of the ambient temperature by reading the height of 
a mercury column in a thermometer. Suppose that at a given 
time, this height is aligned with the sign “20 °C” written on 
the thermometer. In such a case, an ontology curator would 
be in a first place interested in formalizing the fact that the 
ambient temperature is 20°C, rather than in formalizing the 
fact that the mercury column in the thermometer is at the 
same height as the sign “20°C”. 

In a similar fashion, imagine that 65% of people are test-
ed positive for a gold standard of M in a sample s of a popu-
lation g. The ontology should then formalize in a first place 
the fact that 65% of the people in g have M, rather than the 
  
3 Even if the gold standard consists in the naked-eye observation of a mac-
roscopic disorder associated exclusively with this disease, this can still 
theoretically lead to a diagnostic error: any empirical evidence is defeasi-
ble. 
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fact that 65% of the people in s have a positive result to this 
gold standard. This estimation of this prevalence value may 
be false (it is indeed very likely to be false, strictly speak-
ing), but future estimations will lead to its being corrected to 
bring it closer to the real value. As a matter of fact, realist 
ontologies are built according to a fallibilist methodology 
(Smith & Ceusters, 2010): they represent the state of the 
world according to our best knowledge at the present in-
stant, and can be corrected as our knowledge of the world is 
refined. 

That being said, it is possible to represent in an ontology 
the measurement process of a temperature involving the 
height of a mercury column in a thermometer. Similarly, 
one could represent the different estimation processes of the 
IDPs, and the results to which they led. Such processes are 
biomedical investigations, and should therefore be formal-
ized in an ontology like OBI (Ontology for Biomedical In-
vestigations, Brinkman et al., 2010), a prominent OBO 
Foundry candidate dedicated to these issues. This would be 
relevant in order to formalize in an ontology different esti-
mations given by various samples and gold standards. How-
ever, medical practitioners are first and foremost interested 
in the IDPs’ values themselves, rather than in their estima-
tions, and thus we will deal here with the formalization of 
the former. 

This clarification being made, we can now consider the 
second difficulty mentioned at the end of part 1, namely the 
formalization of possible-but-non-actual situations in BFO. 

3 A FORMALIZATION OF INDICATORS OF 
DIAGNOSTIC PERFORMANCE IN APPLIED 
ONTOLOGIES 

Sensitivity value has been interpreted as the proportion of 
people who would get a positive result to A among M’s 
bearers in g. This definition thus involves the condition of 
performing the test A on the members of g. As we said, such 
a condition is never realized, because the test is performed 
(at best) on a sample of the population, not on the whole 
population g: the performance of test A on g’s members is a 
possible (leaving aside practical difficulties), non-actual 
condition. Interpreting specificity, PPV, and NPV along the 
former lines would also imply such possible, non-actual 
conditions. 

However, BFO is built according to the realist methodol-
ogy, which implies that all the instances it recognizes should 
be actual entities (cf. Smith & Ceusters, 2010). Thus, one 
cannot represent directly such a possible-but-not-actual 
condition in an ontology based on BFO. In order to solve 
this difficulty, we will introduce a strategy named “random-
ization”, enabling to formalize the probabilities of interest as 
assigned to an actual entity, namely a disposition. This 
strategy will enable to represent IDPs in a realist fashion, 
compliant with BFO’s spirit. 

3.1 From proportions to objective probabilities: 
the randomization strategy 

We will explain first how the proportion of a subgroup in a 
group can be formalized as a probability value assigned to a 
disposition; this will help explaining later how the propor-
tion of a subgroup in a group undergoing a possible, non-
actual condition can be formalized along similar lines. 

Dispositions are entities that can exist without being 
manifested; an example of disposition is the fragility of a 
glass, which can exist even when the glass does not break. 
We will use Röhl & Jansen's (2011) model of disposition in 
BFO, which associates to every instance of disposition one 
or several instances of realizations, and one or several in-
stances of triggers (a trigger is the specific process that can 
lead to a realization occurring). In this model, the fragility 
of a glass is a disposition of the glass to break (the breaking 
process is the realization) when it undergoes some kind of 
stress (the process of undergoing such a stress is the trig-
ger); this disposition inheres in the glass. Starting with the 
definition of these entities and their relations at the instance 
level, Röhl & Jansen proceed to formalize them at the uni-
versal level. We have shown in a former article (Barton, 
Burgun & Duvauferrier, 2012) how to adapt this model to 
probabilistic dispositions. Thus, an instance of balanced 
coin is the bearer of a disposition instance to fall on heads 
(the realization process) when it is tossed (the trigger pro-
cess), to which an objective probability 1/2 can be assigned. 

We will now apply this model to the situation at hand. 
Consider the prevalence Prev(g,M), which was defined 
above as the proportion of bearers of M in the actual popula-
tion g. We can define the disposition dg,M, borne by the 
group g, that a person randomly drawn in g has M. More 
specifically, let’s write Tg the process “randomly drawing a 
person in g”, and Rg,M the process “drawing by Tg someone 
who has M”: the triggers of dg,M are instances of Tg and its 
realizations are instances of Rg,M. Following the lines of 
Barton et al. (2012), one can thus define the probability as-
signed to the disposition4 dg,M, which is the probability of 
drawing randomly someone who has M in g. This probabil-
ity is equal to the proportion of individuals who have M in 
g, that is, to Prev(g,M): as a matter of fact, if there are 
e.g. 10% diseased people in g, then the probability of draw-
ing randomly a diseased person in g is 10%. Thus, the prev-
alence value can be identified to the objective probability 
assigned to the disposition dg,M. We name this strategy the 
“randomization” of the proportion of M’s bearers among g. 
  
4 In Barton et al. (2012), a probability was assigned to a triplet (d, T, R) 
rather than to a disposition d, because we had to take into account disposi-
tion that may have several classes of triggers or realizations (that is, multi-
trigger and multi-track dispositions, cf. Röhl & Jansen, 2011). However, in 
the present situation, dg,M is simple-trigger and simple-track: all its triggers 
are instances of Tg , and all its realizations are instances of Rg,M. Therefore, 
the probability value assigned to (dg,M, Tg , Rg,M) can be, for practical mat-
ters, assigned directly to dg,M. 
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The randomization strategy may not be necessary to for-
malize a prevalence, which characterizes a proportion in an 
actual group, and thus could be formalized as such in an 
ontology based on BFO. But this strategy can also be ap-
plied to proportions of people in groups subject to a possi-
ble, non-actual condition – and thus, be relevant to formal-
ize sensitivity and other IDPs. As a matter of fact, the sensi-
tivity value Se(g,A,M) was defined as the proportion of peo-
ple who would get a positive result to A among M’s bearers 
in g. This value can be “randomized” as follows. We can 
define dSe,g,A,M as the disposition to draw someone randomly 
who is tested positive by A, among the individuals of g who 
have M. More specifically, let’s define the process 
TSe,g,A,M as the “performance of test A on the individuals in g, 
and random draw of an individual among those who have 
the disease M”5; and the process RSe,g,A,M as the “drawing by 
TSe,g,A,M of someone who got a positive result to A”. The 
triggers of dSe,g,A,M  are instances of TSe,g,A,M, and its realiza-
tions are instances of RSe,g,A,M . One can then define the sen-
sitivity value Se(g,A,M) as the objective probability as-
signed to this disposition dSe,g,A,M,: indeed, if there are e.g. 
15% of the diseased people in g who would get a positive 
result by A, then the probability of randomly drawing some-
one who would get a positive test result by A among dis-
eased people in g is equal to 15%.  

Specificity value can be defined along similar lines, as 
probabilities assigned to actual dispositions borne by the 
group g noted dSp,g,A,M (and similarly for the PPV and NPV). 
Although dSe,g,A,M and dSp,g,A,M are both dispositions inhering 
in g, they have different triggers and different realizations; 
the process TSp,g,A,M is the “performance of test A on the in-
dividuals in g, and random draw of an individual among 
those who do not have the disease M” and the process 
RSp,g,A,M is the “drawing by TSp,g,A,M of someone who got a 
negative result to A”. 

3.2 A formal model of indicators of diagnostic 
performance in ontologies 

Let us now consider how to formalize these probability val-
ues in ontologies. First, a group g will be considered as any 
collection of humans (for more on collections, see Jansen & 
Schultz, 2010). dSe,g,A,M is a disposition individual inhering 
in the group g; and a probability value can be assigned to 
this disposition using a datatype property 
has_probability_value. Sensitivity of A for M in g will be 
denoted Seg,A,M, and following OBCS, it will be defined as a 
data item. Thanks to our analysis above, we can now answer 
our original question, and state what this sensitivity is about: 
Seg,A,M is_about dSe,g,A,M. We can also introduce a relation 
has_diagnostic_value that relates a sensitivity to its value. 

  
5 In general, we cannot determine in practice with certainty which individu-
als of g have M, and which do not; but the practical impossibility to realize 
this trigger does not preclude to define this entity. 

In our framework, the (diagnostic) value of a sensitivity 
Seg,A,M is the probability value assigned to the disposition 
dSe,g,A,M; this can be formalized by writing that if s is a sensi-
tivity, then: 

s has_diagnostic_value p ⇔ ∃ d ∧ d is_a Disposi-
tion ∧ s is_about d ∧ d has_probability_value p 

As dSe,g,A,M is an individual, it cannot be related directly to 
the universals A and M. However, it can be related indirectly 
to them, by the following formalization. First, dSe,g,A,M can 
be seen as an instance of a disposition universal symbolized 
as DSe,A,M, which has as trigger the processus universal 
TSe,A,M: “performance of test A on the members of a group, 
and random draw of a person among those who have the 
disease M”; and as realization the process universal 
RSe,A,M  defined as “drawing by TSe,A,M of someone who got a 
positive result to A”. We can then introduce two new rela-
tions sensitivity_disposition_of_test and sensitivi-
ty_disposition_for_disease (abreviated as se_of_test and 
se_for_disease) such that DSe,A,M  se_of_test A and 
DSe,A,M se_for_disease M. These two relations are introduced 
for pragmatic reasons of facility of use: on a foundational 
level, DSe,A,M and M (resp. A) could be related through a 
complex array of relations and entities that involve the rela-
tion has_trigger between DSe,A,M and TSe,A,M, as well as a 
sequence of relations between TSe,A,M and M (resp. A). Such 
an analysis would raise theoretical issues though, as instanc-
es of DSe,A,M can exist even if no instance of M or A do exist. 
We would therefore face here issues similar to the ones ad-
dressed by Röhl & Jansen (2011) and Schulz et al. (2014). 

Finally, we introduce a class Sensitivity that can be char-
acterized as a subclass of Data item, which is related to a 
disposition through the above-mentioned relations: 

s instance_of Sensitivity ⇒ s instance_of Data item ∧	 
∃ d instance_of Disposition ∧ ∃ a instance_of Test ∧ 
∃ m instance_of Disease ∧ s is_about d ∧ 
d se_of_test a ∧ d se_for_disease m 

We can also introduce SeA,M, the class of sensitivities of 
test A for disease M (in whatever group), which can be for-
malized as a subclass of Sensitivity related to M and A 
through the following relations: 

s instance_of SeA,M ⇒  s instance_of Sensitivity ∧ 
∃  d instance_of Disposition ∧ ∃ a instance_of A ∧ 
∃ m instance_of M ∧ s is_about d ∧ d se_of_test a ∧ 
d se_for_disease m 

Figure 1 summarizes this formalization of sensitivity 
(with universals in boxes, instances in diamonds, and the 
numerical value assigned by datatype properties in a circle). 
Specificity, PPV and NPV can be formalized along similar 
lines, as data items about dispositions related to tests and 
diseases through relations that could be labeled sp_of_test, 
sp_of_disease, ppv_of_test, etc. 
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4 CONCLUSION 
We have thus provided a practically tractable formalization 
of IDPs in a realist ontology, which clearly dissociates IDPs 
from their estimations (which are relative to a sample and a 
gold standard). It also solves the difficulty of considering 
possible, non-actual conditions in a realist ontology based 
on BFO. 

Note that IDPs raise also other theoretical issues. For ex-
ample, one may want to aggregate two sensitivity values 
Se(g,A,M) and Se(g’,A,M) assigned to two different groups 
g and g’ in order to reach a finer assessment of the sensitivi-
ty in a larger group; how to do this is a question for the me-
ta-analyst though, not the ontologist, who is first and fore-
most concerned with representational issues. 

This model could then be extended in three directions. A 
first step would consist in formalizing the estimations of the 
IDPs, and their relations to a given sample and gold stand-
ard. Second, the relations se_of_test and se_for_disease 
could be reduced to basic relations and entities already ac-
cepted in the OBO Foundry. Third, it could be used by on-
tology-based diagnostic systems that would compute posi-
tive predictive values or negative predictive values from the 
prevalence, sensitivity and specificity values; more general-
ly, it could be articulated with medical Bayesian networks.  

As it takes into account the dependence of IDPs upon the 
group of people considered, it has the potential to contribute 
to the development of precision medicine (Mirnezami, Ni-
cholson & Darzi, 2012), an emerging approach that takes 
into consideration patients characteristics and dispositions, 
including individual variability in  genes, to offer more per-
sonalized preventive, diagnostic and therapeutic strategies. 

 
Figure 1 Sensitivity of a test A for a disease M in a group g with 

probability value 0.75 
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