
A Case Study on Teaching Software Engineering 
Concepts using a Case-Based Learning Environment

Kirti Garg
IIIT-Hyderabad (India)

kirti@iiit.ac.in

Ashish Sureka
ABB (India)

ashish.sureka@in.abb.com

Vasudeva Varma
IIIT-Hyderabad (India)

vv@iiit.ac.in

Abstract—Case-based teaching is a well-known teaching
methodology consisting of learning by reading, discussing and an-
alyzing real-life cases and scenarios. We present a Case-Oriented
Learning Environment (COSEEd) for teaching Software Engi-
neering concepts to undergraduate and graduate students in a
first course of Software Engineering. The novelty of the proposed
model lies in being a complete learning environment framework,
consisting of pedagogy, broad level learning objectives, assess-
ment, resources and management details, all designed specifically
for Software Engineering. Learning and teaching is centered
around well-designed SE case studies from authentic software
development instances. We describe the COSEEd model, a sample
case-study and share out insights as well as lessons learnt while
applying the proposed model in practice. We implement and
evaluate the proposed model in Software Engineering courses at
a University in India focused on the core areas of Information
Technology. We use empirical studies on student perception and
actual performance to determine the effectiveness of COSEEd
towards achieving various learning goals of SE.

I. INTRODUCTION

We present a Case-Oriented Learning Environment
(COSEEd) for teaching Software Architecture and Design at
University (undergraduate and graduate programs in Com-
puter Science). The proposed learning environment has been
implemented in several course offerings at IIIT-Hyderabad1

(University in India). We conduct empirical studies to validate
our framework and experimental results in the classroom
demonstrate that the proposed learning environment frame-
work is effective and a suitable teaching approach in Software
Engineering (SE) courses. Case studies are known to promote
think forward from first principles. Thus as an instructional
method, use of cases can bring both theory and practice to
learning by engaging students in contextualized and real(isitic)
learning [1], [2], [3]. Irby et al. suggested that cases are
suitable for professional education as they can be used to
create a collaborative learning environment for experiential
learning through contextualized instruction that could actively
involve the learners; could model professional action and
thinking, and provide feedback [4]. These qualities resonate
with the requirements of Software Engineering education [5].
Case-Studies are versatile tools of learning and can be used in
didactic as well as an active learning environment. The utility
is considered multifold:

1https://www.iiit.ac.in/

1) Help students gain deeper understanding of concepts by
seeing their application in real world complex situations
[1], [2], [3], [4]

2) Involve students in active learning
3) Nurture analytic skills by solving of case
4) Encourage discussion [4].
5) Nurture interpersonal or communication skills

There have been a few recent uses of case studies in SE
education [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]. These studies used some
variation of the typical case study based approach used in man-
agement education. Razali and Chitsaz [17] even prescribed
a process of writing case studies for teaching SE. However,
most reports in the literature are from experiential studies that
suggest considerable potential of case studies for teaching SE.
Further rigorous research based investigation is required to
understand and recommend useful customizations to suit the
nature of the SE education. Our work bridges this gap. In
context to existing work, the study presented in this paper
makes several novel and unique contributions to the field of
Software Engineering Education. The novelty of COSEEd lies
in being a complete framework i.e. the learning environment
that uses well-designed case studies for teaching and learning.
COSEEd is a learning environment, not just a pedagogical
model. A learning environment consists of learning objectives,
pedagogy and assessment in tight integration to help students
learn a particular set of knowledge. COSEEd also prescribes
ways of using it in different academic settings. COSEEd
is flexible, highly reusable and a refined blend of multiple
learning theories (case based reasoning/learning being just
one of them), though it has case studies as primary teaching
instruments. A problem solving model lies at its heart. It uses
well-designed case studies, crafted from authentic problems
seen in software industry. Cases can be used as a context
of problem solving and as an authentic record of the real-
world problems, allowing student to experience the same
unstructured, multi-perspective, complex nature of real world
problems and simulate on-the-job learning. In this paper, we
will present the COSEEd model and an empirical study to
show its suitability for learning software architecture and
design.

1st International Workshop on Case Method for Computing Education (CMCE 2015) 71



II. COSEED MODEL

COSEEd is a case study oriented learning environment
specifically designed for Software Engineering. In this section,
we present the design of our learning environment.

A. Basic Design
Basic design decisions of the learning environment are

as follows: The prosed model primarily utilizes a blend of
Case Based Reasoning (CBR)[22], [3], and traditional didactic
methods as the base pedagogical models. It also consists of
attributes from several supporting pedagogical models namely
Cognitive Apprenticeship [23], Learning by Doing [24], [25],
Learning by Reflection [26]. COSEEd uses enquiry of case
studies of a certain nature as the central objects to learning
Software Engineering. We call the model as COSEEd i.e.
Case Oriented Software Engineering Education model. This
is a modified version of the traditional case study teaching
method [27], [28]. Here, the case i.e. a hypothetical or real
context already exists and student works on a problem (also
called as a challenge) situated in this case. The task of solving
case challenges is equivalent to informed decision-making as
required in software engineering. It involves analysis of prob-
lems, and devising a solution by application of knowledge and
skills, evaluation of alternatives and thus informed decision
making. As a side effect of case solving, the domain and
discipline knowledge (both conceptual and procedural) are
reinforced and problem-solving skills get practiced. We find
that case studies can be a useful tool for SE education on
many accounts, given as follows.

1) As a Recording Instrument: Literature suggests that
cases can be used to record knowledge as well as the
experience [22], [29]. Cases can be particularly useful
for recording the heuristic based, practical knowledge
and skills of SE that otherwise remain tacit and stay
with the professionals. Cases can adequately record
the complex, semi-structure, ill-structured nature [2]
of software development and hence can provide the
glimpse of the real world SE. Cases can describe the
roles and responsibilities of various people in software
development. Thus it will help to cover the breadth of the
knowledge base, which may be otherwise difficult in a
didactic classroom setting. This recorded experience will
provide the necessary concretization of the SE concepts
that students find abstract otherwise.

2) As a Context for Problem Solving: Cases can be the units
of problems that require application of SE concepts and
skills to solve them systematically. The case-study will
form the context and students will understand, reason
and act based on it [22]. Student can use the context to
understand the way the industry is working and the asso-
ciated issues and challenges, use the given challenges as
the problems to be solved. They will be asked to reason
about their solution based on its suitability to address
the problem. These problems, since representing the
software development activities, may not always be well-
structured. This will create opportunities for students to

employ techniques suitable for solving semi-structured
and ill-structured problems as well [30].

3) As a Prescribed Way to Think: The case solving process
where the context is not very structured, will prescribe a
particular approach to think through structured learning
activities so that the thinking process will get nurtured
without being very explicit about it.

4) As Unit of Practice: A case study will allow students to
practice SE and general engineering skills of communi-
cation, collaborative work, problem solving, etc. These
contexts will provide problems that require systematic
application of SE knowledge and skills, are sufficiently
complex and can be addressed within time and resource
constraints. The case context can be used to demonstrate
usage of authentic skills for an authentic problem and
case challenges will provide opportunities to practice
those skills. Thus each case will act as a unit of practice.

5) As a Medium to Include Higher Order Cognitive Skills:
Case challenges will be structured such that they require
cognition at various levels (understanding to synthe-
sis/create) [31]. Some challenges may be application
oriented, while others may require students to analyze
the events, decisions taken in a scenario and their result.
Other challenges may require students to evaluate two
given solutions and choose the better alternative. Design-
ing Software systems are synthesis activities. Hence all
cognitive levels can be addressed through well designed
SE cases, unlike typical case studies that limit them to
Analysis.

6) As a Unit for Reflection: The case study description will
allow students to reflect on a coherent unit. Each case
is based on an authentic software development example.
Hence students can reflect on the events to understand
the way industry works. Multiple solutions to same case
challenges will help students to see the problem solving,
heuristic, not so structured nature of SE.

7) As an Organization Medium: Use of case studies will
allow us to organize the course in units. Each case can
be situated in a) individual topics in SE, or b) Essential
skills.

COSEEd framework is not bound to a specific curriculum. It
is flexible to adapt to curriculum changes with little effort.
The flexibility is achieved through configurations of learning
objects (case studies, lecture units, assignments) and learning
activities according to the learning objectives. We find that
Case studies allow us the flexibility. Same case context can
be used with different case challenges.The challenges can
be modified for every course offering or set of learning
objectives. This quality makes COSEEd in line with the
evolving, dynamic nature of SE. CoSEEd supports Solving
of Ill and Semi-structured problems, as commonly seen in
Software Engineering in general, and software architecture
and design in particular. Studies show that learning from
well-structured problem solving do not always transfer to ill-
structured problems, since they relate to different sets of cogni-

1st International Workshop on Case Method for Computing Education (CMCE 2015) 72



tive, meta-cognitive processes, communication processes and
even epistemological beliefs[32]. COSEEd requires reflection
of learning [26], [33]. Reflection is important in a Case Based
Reasoning environment since a single case is not representative
of all problems and hence reflection can help students in
seeing patterns, or form structures that will aid in far transfer.
The reflection is incorporated in COSEEd through Reflection
reports that require a student to reflect on their learning and
solve select exercises, leading to far transfer. Instruction and
assessment in COSEEd use common techniques or activities
[34]. This will reduce the number of activities, leading to lesser
administrative overhead and complexity.

B. The Learning Cycle

A complete COSEEd learning cycle, i.e. the pedagogical
element of the learning environment, is illustrated in Figure
1. The concepts are taught and learned in a learning cycle. A
cycle includes learning activities of lectures, case solving, case
discussions and reporting (reflection or detailed case solution).
A case is assigned to select teams. Rest of the class is in
an Active Listener mode and focuses on understanding the
case study, SE concepts, case discussion and submission of
a Reflections report. Selected teams are solvers and focus on
addressing case challenges through use of SE concepts learned
in class or labs. There are certain optional elements like
quizzes, reading assignments, and role-plays. Every activity
has specific purpose and contributes towards one or more
learning objectives. Activities require inputs and many produce
artifacts that can be used to assess a students competency
of certain skills. The cycle is specific to a topic and will
commence with lectures. Lectures will be used to impart theo-
retical knowledge, mainly conceptual and procedural, from SE
and problem solving domains. The lectures can be didactic or
contain elements of active learning. Assignments and tutorials
may accompany lectures depending on the nature of the topic,
desired levels of competencies or cognitive goals. Students
engage in case solving. Each case represents a real world
software development project, and forms the learning context.
Challenges given in the case need to be solved. Some of the
possible forms of challenges for a given scenario in software
development are:

• Find a promising software architecture and justify it using
SE principles

• Given two or more alternative architecture or design, pick
the more suitable one

• Analyze and describe why a particular problem occurred
in first place (what went wrong)

• Given outline of a technical solution, implement the
solution

• Use a particular tool to model the system
• Identify good and bad practices as observed in the design

process. Justify using SE concepts.
A case contains on or more such challenges embedded in

a context. Each case is assigned to multiple pre-formed teams
(solvers). Rest of the students, termed as Case Listeners, are
instructed to read the case, understand it, actively participate

in case discussion and submit a Reflection report. Reflection
is the instrument to make students reflect and record the
learning from the learning cycle. It may include a few practice-
oriented questions. A case solution evaluation guideline is
posted for Case Solvers reference. Solution to these challenges
will require different types of efforts. Students will have to
analyze the case in order to understand the context and the
challenges. A thorough analysis of the case will require the
following:

• Understand the project in context using domain and SE
knowledge

• Identify the constraints,
• Identify implicit problems and factors impacting the

explicit challenges
• Identify various stakeholders, their roles and consider

different stakeholder perspectives.

In light of the acquired understanding, students apply SE
knowledge and skills to develop solutions for the given chal-
lenges. Most of the required knowledge and skills will come
from the lectures and self-learning. Contextual application re-
enforces the learning. Typically students develop many alter-
nate solutions. Further, students may implement the proposed
solutions, which is application of SE knowledge and skills.
This is followed by a self-evaluation of the work by exercising
the evaluation and meta-cognitive skills. Thus students use the
problem solving techniques and skills to solve contextualized
SE problems i.e. case studies. The Learning Cycle consists
of Pre-evaluation sessions. A session is conducted for a team
1-2 days before the presentation and discussion of solutions
with class. Primarily these are scaffolding and coaching ses-
sions. Scaffolding [1] is the support that the instructors and
support staff provides to the solvers. These sessions contain
typical elements of coaching i.e. observing students, offering
hints and reminders, providing feedback and encouragement,
scaffolding, modeling of problem solving and software design.
Students revert to the case solving process after the pre-
evaluations. They may be asked to prepare a formal presenta-
tion for class. Depending on available time for presentations,
students may be asked to present solutions to only a limited
number of challenges. The major learning activity is case
presentation and discussion in class. Once a specific solution
is obtained, students present their problem understanding and
solution in form of a presentation, a role-play and a detailed
report to the class. The solution will be discussed with peers.
Role-play, a small dramatic enactment, can be used to present
any aspect of the problem or the general understanding of the
topic. Such role-plays serve many purposes. First is to add to
the interestingness of the session. Students get the opportu-
nity to see the relationships/similarities of SE concepts and
problems with other aspects of life. Second, role-play can be
used to emphasize a certain message deemed important by the
solvers. Third, it makes the instruction interesting. Discussion
is another important aspect of proposed methodology. It will
not be exaggeration to say that Discussions are the core of
case study method and will be important in our proposed

1st International Workshop on Case Method for Computing Education (CMCE 2015) 73



Fig. 1. COSEEd Learning Cycle showing Learning Activities, Input and Output Artifacts

variant as well. Discussions make the instruction learner
centric and focus on airing different view, may be opposing
[35]. Discussion provides listeners the opportunity to seek
clarifications, raise concerns, highlight different perspectives,
present different viewpoints or personal insights, and to know
multiple perspectives. Useful discussion are hence entrusting
personalized learning as it will allow learners to form informed
opinions of their own. The solvers can improve their solutions
in light of the discussion. This discussion can continue after
class as well. Instructor can use a guided discussion to
emphasize on certain learning objectives by highlighting the
connections between the case and the objective during the
discussion. Active participation by students is a must for this
effective discussion [35]. Students must read and analyze the
case beforehand for useful discussion and should feel confident
to raise their concerns, seek clarifications or present alternates.
Once discussions are over, the instructor will provide feedback

to the solvers. The last activity in the learning cycle (refer
to Figure 1) is submission of detailed case solution report
and all other artifacts (the presentations, role-play scripts,
recorded AV sessions). It formally records the detailed solution
to case challenges, the problem solving process and the
overall learning. A good report is the assimilation of learning
from case solving, discussion and feedback. It can be an
improvement over the solution presented even. It requires
students to explicitly state their goals and then validate the
techno-managerial solutions if it fulfilled the said goals. The
process of writing the detailed report will force the solvers
to introspect on their problem solving process. Solvers are
asked to list their individual contributions in the case solving
process for accountability. This information, along with the
peer reviews and pre-evaluation is used in grading. Thus ends
a Case Oriented Learning cycle.

1st International Workshop on Case Method for Computing Education (CMCE 2015) 74



C. A Sample Case Study

In this section, we will present summary of one of the
case-studies that was designed and used by us to teach the
topic of Software architecture. Twitter Refactoring case is one
of our most popular cases due to its technical appeal. The
case can be easily modified to suit very specific learning
outcomes or student profiles. Even if students search for
solution on the web, no complete solution is found. Students
need to understand the Twitter requirements, specially the
non-functional ones. They can see the impact of architectural
choices of achievement of the non-functional requirements.
The relation between computer science (CS) and SE becomes
evident. For advanced case, we invite students to simulate the
network architecture or build a prototype of the system. We
also list case challenges used for the same. We modify the case
context every year to reflect the current state of Twitter and
also to avoid plagiarism. We also modify our case challenges
to meet specific learning objectives of a course offering. We
provide a brief description of the case in the following Section.
The entire details of the case cannot be covered in this paper
due to the page-limit and hence we present some of the key
points and ideas.

1) Twitter Case Summary: Twitter started as a side project
of some of the employees of Odeon Inc. in 2006. It had
immense growth nearly 1000 % growth/year and soon became
the micro blogging platform of choice for majority of Internet
users. It had 400,000 tweets per quarter in 2007. This grew
to 100 million tweets per quarter in 2008. By 2010 there
were around 175 million users, 90 million tweets per day
and around 500 million searches per day. Twitter was initially
built with time to market in mind. So the architecture and
technology to build twitter was chosen such that they can build
the site in a very short time. Twitter was not designed with
this kind of growth in mind. So Twitter had lot of outages
especially during popular events such as 2008 Macworld
conference keynote address. The main task assigned to our
team is to come up with a new architecture that addresses
the scalability problems of twitter. We have to identify the
most important goals and architectural drivers for twitter
and we have to redesign the twitter architecture based on
these architectural drivers. We have to identify what COTS
components we can use in this architecture and come up
with a deployment architecture so that twitter can meet its
rapidly growing demand and does not encounter any outages
or availability problems.

2) Twitter Case Challenges:

• Challenge 1: What are the architectural drivers, assump-
tions and major constraints? Give details of at least 5
decisions related to major architectural strategies.

• Challenge 2: Give the architecture in terms of system de-
composition (as a diagram and text), structure, connector
and component responsibilities.

• Challenge 3: Give examples from your architecture to
exhibit various basic design principles.

III. COSEED FRAMEWORK EVALUATION

A. Experimental Setup

We conduct a post-course survey recording students per-
ception about their competencies and learnings from vari-
ous topics taught during the course. The course offerings
were a first course in software engineering at one of Indias
premier research institute. The SE course is offered once
every year as part of undergraduate (B.Tech and B.Tech Dual
Degree program) and graduate engineering degree program
(M.Tech, MS and PhD) in CSE. Undergraduate, graduate stu-
dents and industry participants (Post-Graduate Student Status
Programme (PGSSP2) students) attend the SE course. Most
graduate students possess undergraduate degree in Computer
science, and may have attended Software Engineering course.
All students have some project experience, either academic or
industrial, but not necessarily team-work. Graduate students
may have some work experience or experience of a large
project, usually system development done as part of their
undergraduate degree program. This system building may
not be in accordance with SE principles and practices. All
undergraduate students take the SE course after taking basic
CS courses like programming, algorithms, database systems,
operating systems, and principles of programming languages.
This profile is typical of almost all SE students in India.

B. Experimental Results

We asked students to rate their confidence-level in perform-
ing certain tasks that directly reflect the learning outcomes
of the course in a post-course survey. We received 320 valid
responses from 4 course offerings of COSEEd. A Cronbachs
Alpha (reliability coefficient) of 0.9 makes our data highly
reliable.Less than 2 % of valid responses had missing values,
which were replaced using mean value imputation, computed
for every item. The results for the topics of Architecture and
Design are presented in Figure 2. The evaluation is done for
five learning objectives: identification of architecture drivers,
selection of architecture style, object-oriented design, deciding
architecture strategy and realizing classes. The evaluation
consists of five choices: cannot do at all, lots of help required,
some help, very little help and without any help (refer to
Figure 2). Being ordinal data, we use simple descriptive
statistics to analyze the distribution of students perception
of their competency. Lower values indicate higher perception
of competency and hence the learning. Frequencies and cu-
mulative frequencies show positive perception of individual
competencies.

We found that responses were heavily skewed towards
confidence scores of 1 and 2. At least 60% students felt
that they can accomplish the tasks, across all categories,
with little help. Deciding architectural strategy i.e. taking all
major decisions regarding the architecture of a given system
was one of the most difficult for students. We believe that
this lack of confidence is more related to the nature of the
task and its complexity. It requires undergraduate students,

2https://www.iiit.ac.in/academics/programmes/pgssp

1st International Workshop on Case Method for Computing Education (CMCE 2015) 75



Fig. 2. Evaluation Results based on Course Survey by Students

who have limited exposure to technology, multi-disciplinary
knowledge and abstract thinking, to involve at a very high level
of cognition resulting into a cohesive architecture. Students
were comfortable with the design related tasks. We believe
that a contributing factor towards this ease was multiple
opportunities to practice, conduct of tutorials and highly
modular nature of Object-Oriented design activities. Students
conduct Object-Oriented realization one use-case at a time and
in guidance of architecture and high level design decisions.
Such a guided design was absent when dealing with software
architecture. For next analysis, we computed actual scores
of student on the respective competencies. The actual scores
were calculated by considering student grades of the respective
artifacts generated by them during course. The scores were
added, scaled to 5 and then binned to make them comparable
with confidence perception scores. The perception scores were
also recoded such that now a score of 5 represents highest
level of confidence (I can do the Task without any help), and
1 represents the lowest confidence. Now we can compare the
actual and perception scores.

It is evident that students feel more confident about their
competencies than their actual abilities. About 50% students
actually did the competency tasks with no or very little help
(highest score, or minor problems with their solutions), as
compared to about 60% who showed similar confidence in
perception scores. The gap is more visible in architectural
topics as compared to the design topics. This is inline with
our observations of the Perception data.

We further drill to understand if the nature of learning
activity impacted actual competencies (refer to Table I). An
examination of the cumulative frequencies of actual compe-
tency scores tabulated against learning mode (refer to Table I)
clearly shows that students that actually solved a case scored
higher than the students who were active Listeners and worked
on smaller exercises (like assignments).

Fig. 3. Confidence and Actual Scores for Different Cognitive Levels

We further examine student perception of their communi-
cation skills, another important learning objective of students.
COSEEd learning environment is designed to nurture SE
relevant aspects of communication skills. We evaluated student
communication skills through detailed report and class pre-
sentations. Students also self-reported their improvements in
communication skills and attributed them to different learning
activities. Evidently, case solving and case listening activities
provided opportunities to work on these skills. (see Figure
4: Perception Score for Communication Skills). A Wilcoxons

1st International Workshop on Case Method for Computing Education (CMCE 2015) 76



Fig. 4. Evaluation Results (on Communication Skills) based on Course Survey by Students

TABLE I
ACTUAL SCORE (BINNED) - LEARNING MODE CROSS-TABULATION (CS: CASE SOLVING, CL: CASE LISTENING)

CL CS Total
I can’t do the task at all 140 (14.2%) 12 (6.7%) 152 (13.1%)
I will need a lot of help 143 (14.5%) 1 (0.6%) 144 (12.4%)
I will need some help 232 (23.6%) 48 (27.0%) 280 (24.1%)
I will need very little help 304 (30.9%) 48 (27.0%) 352 (30.3%)
I will not require any help Count 164 (16.7%) 69 (38.8%) 233 (20.1%)

983 178 1161

signed rank test to compare the median scores assigned by stu-
dents suggest that students believe that COSEEd significantly
contributed towards their communication skills as compared
to lectures (Z = −8.109, p = 0.00).

C. Other Observations and Suggestions

• Practice using authentic systems: We used a live system
(Twitter) as a well-designed teaching case study. The
authenticity associated with such systems makes the
learning activity realistic, interesting and hence motivat-
ing for students.

• Need for Scaffolding: Scaffolding through timely feed-
back, skill demonstration and discussion were very im-
portant for architecture and design. Scaffolding helped
to build student skills and confidence. Pre-presentation
discussions allowed students to design well reasoned
quality solutions and avoid tangents.

• Encouraging Collaborative Work: We believe that col-
laboration, apart from a prevalent software development
practice, is necessary for designing useful systems. We
found collaborative work particularly useful since stu-
dents were very new to the process and architecting.
Teamwork helped to bring multiple perspectives and
knowledge sets, thus strengthening the process of design.
We felt that the quality of designs improved due to
collaborative knowledge and design.

• Set expectations realistically: Experience with Software
architecture and design clearly suggests that instructors
should set their expectations after due consideration of
student profile, nature of topic and time available. Soft-
ware architecture is a difficult topic for 20 something
undergraduate students. The solutions to Twitter engi-

neering were reasonable, but not matching to the level of
sophistication seen in actual system. Students explored
newer technologies, but had limited time to actually
experiment and implement their solutions.

• Clearly defined grading criteria: The grading criteria was
known to students in advance. They know that the evalua-
tion will include their reasoning, detailing of architecture
and design and suitability to the requirements/challenge.
Clear definitions made the evaluation task easy for in-
structors and teaching assistants. It also helped students
to decide when to stop with detailing, since the topics are
kind of endless, but we had limited time.

• Openness to multiple right solutions: A very important
value adopted by COSEEd is the acceptance of all right
solutions, in accordance with the very ill-structured nature
of SE problems, where multiple right answers exist. Dif-
ferent teams prescribed different solutions, most of which
were right (suitable for the purpose, satisfied functional
and non-functional requirements, followed some chosen
design principle, technically correct). We felt that not
looking for one specific solution also made students com-
petency oriented instead of performance oriented. The
Listeners also got an insight into nature of the topics and
provided pointers for deeper analysis like ”Why solution
by team A is better than that of team B?” Collins also
says ”By allowing students to generate their own solution
paths, it helps make them conscious, creative members of
the culture of problem-solving mathematicians. And, in
enculturating through this activity, they acquire some of
the culture’s tools–a shared vocabulary and the means to
discuss, reflect upon, evaluate, and validate community

1st International Workshop on Case Method for Computing Education (CMCE 2015) 77



procedures in a collaborative process” [1].

IV. CONCLUSION

Case-oriented teaching pedagogy creates an active environ-
ment by encouraging learning, discussion, team working and
higher order thinking. COSEEd is a learning environment for
SE with contextualized case enquiry at its heart. It consists
of learning objectives, pedagogy and assessment in tight
integration to help students learn SE and engineering skills
expected from a software professional. COSEEd is designed
in accordance with the, evolving, dynamic, problem solving,
heuristic nature of SE as well as best practices from the
learning sciences. The evaluation of COSEEd in 4 Software
Engineering courses (on Software Architecture and Design
module) by 320 student reveals that the prosed model improves
student competencies. Students also felt that COSEEd con-
tributed towards their communication skills, with Case solving
activities contributing more than case listening activities. Over
all, we believe that a case study oriented approach, with well-
designed case studies is suitable for teaching and learning of
software engineering.

REFERENCES

[1] J. S. Brown, A. Collins, and P. Duguid, “Situated cognition and the
culture of learning,” Educational Researcher, vol. 18, no. 1, pp. 32–42,
1989.

[2] M. J. Hannafin, “Grounded design of web-enhanced case-based activity,”
Educational Technology Research and Development, vol. 56, pp. 161–
179, Apr. 2008.

[3] J. L. Kolodner, “Instructional design: Case-based reasoning,” Retrieved
July, vol. 3, p. 2004, 2003.

[4] D. Irby, “Three exemplary models of case-based teaching,” Academic
Medicine, vol. 69, no. 12, pp. 947–953, 1994.

[5] P. Freeman, “Essential elements of software engineering education
Revisited,” IEEE Transactions on Software Engineering, vol. 13, no. 11,
pp. 1143–1148, 1987.

[6] J. Burge and D. Troy, “Rising to the Challenge: Using Business-Oriented
Case Studies in Software Engineering Education,” Software Engineering
Education and Training, 2006. Proceedings. 19th Conference on, pp. 43–
50, 2006.

[7] S. A. Butler, “A client/server case study for software engineering
students,” pp. 156–165, 1999.

[8] T. B. Hilburn, M. Towhidnejad, S. Nangia, and S. Li, “A Case Study
Project for Software Engineering Education,” in 36th Annual Frontiers
in Education Conference, pp. 1–5, 2006.

[9] J. Krone, D. Juedes, and M. Sitharam, “When theory meets practice:
Enriching the CS curriculum through industrial case studies,” Proceed-
ings 15th Conference on Software Engineering Education and Training
(CSEE&T2002), pp. 207–214, 2002.

[10] N. R. Mead and E. Hough, “Security Requirements Engineering for
Software Systems: Case Studies in Support of Software Engineering
Education,” Software Engineering Education and Training, 2006. Pro-
ceedings. 19th Conference on, pp. 149–158, 2006.

[11] M. Mittal and A. Sureka, “Process mining software repositories from
student projects in an undergraduate software engineering course,”
in Companion Proceedings of the 36th International Conference on
Software Engineering, ICSE Companion 2014, (New York, NY, USA),
pp. 344–353, ACM, 2014.

[12] P. K. Raju, C. S. Sankar, G. Halpin, and G. Halpin, “Bringing theory and
practice together in engineering classrooms,” in 29th Annual Frontiers
in Education Conference, p. 11, 1999.

[13] M. B. Rosson, J. M. Carroll, C. M. Rodi, M. B. Rosson, J. M. Carroll,
and C. M. Rodi, Case studies for teaching usability engineering, vol. 36.
ACM, Mar. 2004.

[14] Y. Jia and Y. Tao, “Teaching Software Design Using a Case Study on
Model Transformation,” in 6th International Conference on Information
Technology: New Generations, pp. 702–706, 2009.

[15] J. Zhang and J. Li, “Teaching Software Engineering Using Case Study,”
Biomedical Engineering and Computer Science (ICBECS), 2010 Inter-
national Conference on, pp. 1–4, 2010.

[16] R. Razali and D. A. P. Zainal, “Success Factors for Using Case
Method in Teaching and Learning Software Engineering,” International
Education Studies, vol. 6, May 2013.

[17] R. Razali and M. Chitsaz, “Cases development for teaching software
engineering,” 2nd International Conference on Education Technology
and Computer 2010, vol. 2, pp. V2–121 – V2–125, 2010.

[18] S. Sripada, Y. Reddy, and A. Sureka, “In support of peer code review
and inspection in an undergraduate software engineering course,” in
Software Engineering Education and Training (CSEET), 2015 IEEE 28th
Conference on, pp. 3–6, May 2015.

[19] A. Fuller, P. Croll, and L. Di, “A new approach to teaching software
risk management with case studies,” in 15th Conference on Software
Engineering Education and Training, pp. 215–222, 2002.

[20] A Case Study Initiative for Software Engineering Education, 2005.
[21] k. Garg and V. Varma, “A Study of the Effectiveness of Case Study

Approach in Software Engineering Education,” in 20th Conference on
Software Engineering Education & Training,, pp. 309–316, IEEE, 2007.

[22] A. Aamodt and E. Plaza, “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches,” AI Communica-
tions, vol. 7, no. 1, pp. 39–59, 1994.

[23] A. Collins, J. S. Brown, and A. Holum, “Cognitive apprenticeship:
Making thinking visible,” American Educator, 1991.

[24] R. C. Schank and C. Cleary, “Engines for Education - Roger Carl
Schank, Chip Cleary - Google Books,” Lawrence Erlbaum Associates,
Inc, 1995.

[25] R. Bareiss, M. Griss, R. Bareiss, and M. Griss, “A story-centered, learn-
by-doing approach to software engineering education,” ACM SIGCSE
Bulletin, vol. 40, pp. 221–225, Mar. 2008.

[26] D. A. Schön, “Educating the reflective practitioner,” San Francisco:
Jossey-Bass, 1987.

[27] R. K. Yin, “Case Study Research: Design and Methods - Robert K. Yin
- Google Books,” 2009.

[28] W. Tellis, “Introduction to Case Study,” The Qualitative Report, 1997.
[29] K. Hyeonjin, Situated learning with cases: Web-enhanced case-based

reasoning in teacher education. PhD thesis, University of Georgia,
University of Georgia, Athens, Georgia, 2005.

[30] k. Garg and V. Varma, “An effective learning environment for teach-
ing problem solving in software architecture,” in 2nd India Software
Engineering Conference, p. 139, ACM Press, 2009.

[31] D. R. Krathwohl, “A Revision of Bloom’s Taxonomy: An Overview,”
Theory into practice, vol. 41, no. 4, pp. 212–218, 2002.

[32] D. H. Jonassen, “Instructional design models for well-structured and III-
structured problem-solving learning outcomes,” Educational Technology
Research and Development, vol. 45, pp. 65–94, Mar. 1997.

[33] J. Armarego, “Learning from Reflection: Practitioners as Adult Learn-
ers,” in 20th Conference on Software Engineering Education & Train-
ing,, pp. 55–63, IEEE, 2007.

[34] J. D. Bransford, A. L. Brown, and R. R. Cocking, How People Learn:
Brain, Mind, Experience, and School. . National Academy Press
Washington, DC, 2000.

[35] B. P. Shapiro, “Hints for Case Teaching,” Harvard Business Publishing,
2005.

1st International Workshop on Case Method for Computing Education (CMCE 2015) 78




