
A Case Study based Software Engineering Education using

Open Source Tools
Sowmya B J
Dept. of CSE

M. S. Ramaiah Institute of Technology
sowmyabj@msrit.edu

 Srinidhi Hiriyannaiah
Dept. of CSE

M.S. Ramaiah Institute of Technology
srinidhih@msrit.edu

K.G. Srinivasa
Dept. of CSE

M.S. Ramaiah Institute of Technology
kgsrinivas@msrit.edu

ABSTRACT
Software engineering is a course for undergraduate computer

science students that comprises of principles of engineering in a

software development. In this course, students learn about typical

phases of software that involves requirement analysis, planning

and scheduling, design and coding, testing, deployment and

management on different case studies. In this paper, we

investigated a practical approach for learning software

engineering through open source tools for different phases of the

software on different case studies they have chosen as their

problem statement.

Keywords
Software Engineering, Waterfall model, Open source tools for

Software Engineering.

1. INTRODUCTION
Software Engineering describes about various phases involved in

a software project such as requirements and analysis, design and

coding, testing, deployment and maintenance. In this paper we

discuss the lab process that was implemented to provide a

conducive and a near software firm environment for students to

provide a better understanding of Software engineering principles,

different phases of the software and finally the principles of

management through Open source tools. The paper is further

organized as follows. Section 2 discusses about a brief

introduction to the process model and Case Studies categories

followed for the projects in the lab. Section 3 describes about

course overview, tasks carried out in each week and the tools

used, section 4 discusses about survey conducted for the

curriculum and its results based on the course outcomes of the

introduction of a practical way to teach software engineering with

tool.

2. PROCESS AND PHASES
Software engineering consists of process models such as waterfall

model, incremental process, prototyping model, spiral model,

scrum model and several other models [1] [2]. Out of these

models, waterfall process model is one of the basic models that is

used for developing a typical software in a industry [1]. It consists

of phases requirement analysis, planning and scheduling, design,

development, testing, deployment and maintenance.

In requirement analysis phase, the requirements are gathered for

the project based on the features and goals listed down for a

project. It may include functional requirements such as

authentication of a user login and non-functional requirements

such as reliability, performance. During planning phase the

overall estimate or listing the various tasks to be carried out

carries out the schedule of the project and resources are assigned

to the tasks identified. In the system design phase, various

modules are identified that defines the features and requirements

identified in the phase 1. The modules identified are developed

using suitable implementation language during development

phase and tested with appropriate test cases either manually or

automated during testing. There are some disadvantages with

waterfall model compared to other software processes such as

early frozen requirements, no feedback from the user and so on as

discussed in [1][2].

Compared to other models we have followed a waterfall model

approach with some modifications in the phase of requirements

analysis and the feedback. During requirement analysis phase a

SMART matrix approach was followed to frame the objectives

and goals of a software project. For a feedback analysis in each

phase a weekly status reports were designed that are discussed in

the upcoming sections.

3. COURSE OVERVIEW
The course of Software Engineering is conducted for

undergraduate students for Computer Science and Engineering as

per ACM guidelines for Software Engineering education [7] in

the third year of their curriculum having 4 credits with lectures

and a practical lab. In the lab a team of 3 -4 students were formed

where each one will be playing a different role in each phase. In

this section we discuss the approach and the phases that we

followed for our practical approach to teach Software Engineering

using Open source tools. The different Case studies based on the

problem statements chosen by the students were identified as

shown in the table 1.

Table 1. Case Studies

Type Case Studies Example

A E-commerce

applications

e-banking, Online shopping &

Logistics

B Social related

applications

Smart city, e-Voting, Remote health

monitoring

C Management

application

Cab reservation, Hotel management

system, Just Dial application

In the first week, a problem statement was designed and given to

the students for applying Software Engineering techniques to it.

1st International Workshop on Case Method for Computing Education (CMCE 2015) 79

This problem statement was then formulated into SMART

(Specific, Measurable, Achievable, relevant and Time Bound)

matrix that helps in coming up with Goals and Objectives of the

problem to be solved. Based on these goals and objectives,

features are listed down for the software to be developed for the

defined problem statement.

Now based on the features, requirements elicitation is carried

out to create the Software Requirement Specification (SRS) using

the tool called OSRMT (Open Source Requirements Management

Tool) [8]. It provides a GUI interface for specifying the

requirements, add dependencies between them. Once the final

requirements are ready, a report on the requirements can be

exported using the tool. Based on the categories of projects as

identified in table we have identified top requirements for each

category as shown in the table 2.

Table 2. Top requirements for the Case Studies

Case Study

Classification

Top Requirements

Type A User Info database, User Accounts,

Session Allotment, SMS and e-mail alert,

Easy to use User interface

Type B User Info database, User Accounts, Travel

Guide, Emergency Services, Smart

communication, Data Access manger, fast

Disaster force, Smart Health care,

Type C User Info database, User Accounts, Area

and Time of booking, Queries ON

In the next phase, planning is carried out for the Case study using

ProjLibre [9]. With the help of this tool, team of students

identifies the different type of activities and their dependencies

that need to be carried out during the project and their roles in

each activity. At the end of this phase, a project plan or schedule

generically called as Gantt chart is prepared.

Various cost drivers such as application experience; required

reliability and so on drive a software project. In this phase, effort

estimation is carried out for the project based on COCOMO

model using tool available by University of Southern California

[10]. The selection of cost drivers is estimated based on the

features, requirements and planning schedule as carried out in the

previous phases. At the end of this phase, effort required for the

project is calculated in person months with number of resources

required at each phase. The next phase of the project for the case

study is Design where the features and requirements are now

represented schematically using StarUML tool [11]. We

instructed the students to design the following representations for

the project.

 Use case diagram

It represents the summary level scenario of all the

features in a project. It consists of actors, preconditions

involved in the scenario.

 Class diagram

It represents various classes, its attributes and methods,

association between the classes for the actors considered

in the use cases.

 Sequence diagram

It represents the dynamic behaviour of the system or

software with respect to the objects of the classes and its

functions.

At the end of this phase, the team will be able to identify the

modules that can be implemented. The modules can be identified

based on the class diagrams and the sequence diagrams.

A software project involves risks such as personnel shortfalls,

wrong software function implementation and so on. The next

phase involved risk analysis and mitigation using risk

management toolkit [12]. A risk matrix was prepared with XLS

sheet with common fields as shown in the table 3 with an example

of risk Personnel shortfalls. Once the risks are listed down, the

priority and the rank of the risks is maintained with mitigation

steps to control it.

Table 3. Risk template

Risk

no

Risk

name

Probability

of

occurence

Severity Risk mitigation

1 Personnel

shortfalls

85% H Provide necessary

training on the

required

implementation

language (C,

Java)

Implementation or Coding was carried out in the next phase.

During coding, we also followed unit testing approach where the

students carried out unit testing with JUnit framework [13].

Cyclomatic complexity of a module was calculated using the

McCabe formula, V(G)=e-n+p by representing unit tested

modules as a graph G with n nodes and e edeges [14]. Depending

on the range of the cyclomatic complexity, those modules were

further broken down if needed. Finally, during testing phase, we

followed manual testing approach where test cases were designed

with a template as shown in the table. These test cases were run

against the features designed during the first phase and test report

was generated.

To keep track of their activities the team had to submit the

Weekly Status Report as shown in the fig 1, which has the

information about their role and tasks accomplished, major

decision that were part of the plan and the milestones achieved.

The activities carried out in each week are summarized in the

table 4 and tools used for each phase and tasks carried out as

described above are shown in the table 5.

Table 4. Activities in each week

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

1st International Workshop on Case Method for Computing Education (CMCE 2015) 80

Problem

Statement,

Objectives,

and Goals

Features and

Requirements

Project

planning and

scheduling

Effort estimation

using COCOMO

model

Software

Design

Risk analysis

and

mitigation

Coding

and Unit

Testing

Cyclomatic

complexity

Testing

Table 5. Tools used for phases

Tool Phase Tasks carried out

OSRMT Requirements and

Analysis

It provides a GUI for providing the requirements in a list with dependencies between them.

Project Libre Planning and

scheduling

A gantt chart is prepared using this tool, that gives the overall schedule and resource planning

for the project

COCOMO

(online)

Effort estimation Using this tool, effort in terms of person months is estimated with staffing profile required for

each phase as shown in the fig.

Star UML Design Different sequence and collaboration diagrams, use case diagrams are drawn based on the

features and requirements enlisted using OSRMT.

Risk matrix

chart

Risk analysis and

mitigation

A risk matrix of different risks and their probabilities, severity and mitigation steps to control

the risk is prepared

JUnit Unit Testing A unit test for each module is designed and executed.

Fig 1.Weekly Status Reports

4. COURSE SURVEYS AND RESULTS
In this course of Software Engineering, we conducted surveys by

designing course outcomes that can be satisfied by the students

after learning this course. The main aim of these surveys is to

improve the curriculum of Software Engineering course using the

feedback from the students. The analysis and the results are as

shown in the table 6 and table 7. Table 6 lists the course outcomes

and their results. Table 7 lists the survey questions formed and its

results. From these survey results and feedback from the students

we infer the following results.

 A consistent SRS is prepared using the principles of

requirement management.

 Ability to plan, schedule and estimate the effort for

various activities in the project to accomplish its goals

and objectives.

 Design and identify the modules of the system for

problem using different UML diagrams.

 Implement the specification and testing effectively.

1st International Workshop on Case Method for Computing Education (CMCE 2015) 81

 Inculcate project management principles in a team and as an individual efficiently.

Table 6. Course outcomes and results

Sl.no Course Outcome Results of Survey

1 Identify a problem

statement, trace

the requirements

and write

unambiguous,

correct and

consistent SRS

2 Prepare a project

plan and estimate

effort required for

the project

3 Identify, analyze

and develop a risk

management plan

for the potential

risks in the project

4 To create a

specification of

a software artifact

intended to

accomplish goals

1st International Workshop on Case Method for Computing Education (CMCE 2015) 82

5 To perform

testing of the code

using Junit testing

and test cases

Table 7. Survey and results

Sl.no Survey questions Results

1 Use of Tools and

practical approach

to understand the

Software

principles and

development

process

2 Quality of Course

Content

3 Course workload

for the number of

credits

1st International Workshop on Case Method for Computing Education (CMCE 2015) 83

4 Organization of

Lectures and

lessons for the

course

5 Class sessions and

lectures stimulate

and helpful in

understanding the

course

5. COMPARISON WITH VIRTUAL LABS
The similar approach has been adopted in virtual lab developed

for teaching software engineering at IIT Kharagpur [15], The

main difference with our approach and virtual labs is we are using

exhaustive open source tools. We have aligned our complete

theory course structure mapping to the tasks they perform during

SDLC. The team based learning and role based learning are also

exploited during this course delivery.

While calculating the metrics in planning phase ie, LOC, Effort,

Schedule and COST in virtual labs they have used the

COCOMO model, using the cost drivers they estimated the

metrics in virtual labs. In our practical approach, we have

estimated effort using COCOMO Model II tool and we have

estimated the schedule using Gnatt Chart and Pert Chart using the

ProjectLibre tool. In the next phase, designing their problem

statement using Use-case, Collaboration and Sequence diagram in

virtual labs, but we have designed our problem statement using

Use-case diagram, The class diagram to identify the classes and

modules, identifying the aggregation and association. The

dynamic behavior using sequence diagram using StarUML tool.

During the process of identifying the cyclomatic complexity we

have assigned them to implement the prime modules and to

identify the cyclomatic complexity metrics for the implemented

modules. Finally, in virtual labs they developed the test cases for

the modules, but in our practical approach we have we generated

the automated unit test cases using Junit Testframework and

manual testing for the different modules.

6. CONCLUSION
Software engineering education plays a key role for the students

to understand the principles of software development and its

practices in software industry. The practical tool based approach

for Software engineering followed helps the students to

understand practically about the principles, phases and practices

about software development in real time environment. The

approach we have introduced in the course is in par with virtual

labs introduced in [15]. The mapping of categories of the

experiments followed in the virtual labs is same as the different

tasks carried out in our approach as shown in the table 4.

Initially, the course was designed with only lectures based on the

contents in the syllabus. Based on the students opinion to improve

the course content through a practical approach, the course was

modified with new syllabi and lab. Since, the project was carried

out in a team, the students learned about principles of

management by participating individually and collaborating with

each other in the team. The proposed Case based approach for

1st International Workshop on Case Method for Computing Education (CMCE 2015) 84

Software Engineering made students aware of the course contents

and the principles and techniques of the course.

7. REFERENCES
[1] Jalote, P. (2008). A concise introduction to software

engineering. Springer.

[2] Pressman, R. S., & Jawadekar, W. S. (1987). Software

engineering. New York 1992.

[3] Pankaj Jalote: A Concise Introduction to Software

Engineering , Springer, 2008 (Chapters: 1-4, 6-8)

[4] David Gustafson: Software Engineering, Schaum's

Outline Series, McGraw Hill, 2002 (Chapters: 6)

[5] Emilia Mendes, Nile Mosley: Web Engineering,

Springer, 2006 (Chapter: 1)

[6] Roger S. Pressman: Software Engineering A

Practitioner's Approach, 7th Edition, McGraw Hill, 2010

[7] ACM, IEEE. (2008). Computer science curriculum 2008, An

interim revision of CS 2001. Retrieved March 14, 2012 from

http://www.acm.org/education/curricula/ComputerScience2008.p

df

[8] http://sourceforge.net/projects/osrmt/

[9] http://www.projectlibre.org/

[10] http://csse.usc.edu/tools/COCOMOII.php

[11] http://staruml.io/

[12]

http://www2.mitre.org/work/sepo/toolkits/risk/ToolsTechniques/R

iskNav.html

[13] http://junit.org/

[14] McCabe, T. J. (1976). A complexity measure. Software

Engineering, IEEE Transactions on, (4), 308-320.

[15] http://virtual-labs.ac.in/cse08/

Appendix

Course Title: Software Engineering Course Code: CS515

Credits (L:T:P): 3:0:0 Core/ Elective: Core

Type of Course: Lecture Total Contact Hours: 42 hrs

Prerequisites: Nil

Course Objectives

Objectives of the course are to:

1. Provide an understanding of the principles of software engineering in a broader system context and the notions of

software engineering process and management.

2. Identify the processes, techniques and deliverables that are associated with requirement engineering including system

requirement and system modeling

3. Analyze the various steps involved in the design process and the different design approaches which include function-

oriented design and object-oriented design

4. Identify the importance of testing in assuring the quality of software with an understanding of managing risks during

the progress of the project

5. Appreciate the need for web engineering

The Software Problem & Processes: Cost, Schedule & Quality, Scale & Change, Software Processes: Process & Project,

Component Software Processes, Software Development Process Models, Project Management Process

Requirements Analysis & Project Planning: Requirements Analysis & Specification: Value of a Good SRS, Requirements

Process, Requirements Specification, Functional Specification with Use Cases, Other Approaches for Analysis, Planning a

Software Project: Effort Estimation, Project Schedule & Staffing, Quality Planning, Risk Management Planning, Project

Monitoring Plan

Design, Coding & Unit Testing: Design: Design Concepts, Function-oriented Design, Object-oriented Design, Detailed

Design, Metrics, Coding & Unit Testing: Programming Principles & Guidelines, Incrementally Developing Code, Managing

Evolving Code, Unit Testing, Code Inspection, Metrics

Testing & Risk Management: Testing Concepts, Testing Process, Black-box Testing, White-box Testing, Metrics, Risk

Analysis & Management: Introduction, Risk Identification, Risk Estimation, Risk Exposure, Risk Mitigation, Risk

Management Plans

Web Engineering: The Need for Web Engineering: Introduction, Web Applications vs Conventional Software, The Need for

an Engineering Approach, Empirical Assessment, Conclusions

1st International Workshop on Case Method for Computing Education (CMCE 2015) 85

http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://sourceforge.net/projects/osrmt/
http://www.projectlibre.org/
http://csse.usc.edu/tools/COCOMOII.php
http://staruml.io/
http://www2.mitre.org/work/sepo/toolkits/risk/ToolsTechniques/RiskNav.html
http://www2.mitre.org/work/sepo/toolkits/risk/ToolsTechniques/RiskNav.html

Textbooks

1. Pankaj Jalote: A Concise Introduction to Software Engineering , Springer, 2008 (Chapters: 1-4, 6-8)

2. David Gustafson: Software Engineering, Schaum's Outline Series, McGraw Hill, 2002 (Chapters: 6)

3. Emilia Mendes, Nile Mosley: Web Engineering, Springer, 2006 (Chapter: 1)

Reference Books

1. Roger S. Pressman: Software Engineering A Practitioner's Approach, 7th Edition, McGraw Hill, 2010

Course Delivery

The course will be delivered through task and role based team learning concepts

Course Assessment and Evaluation

What
To

Whom

When/ Where

(Frequency in the

course)

Max

Marks

Evidence

Collected

Contribution to Course

Outcomes

D
ir

e
ct

A
ss

es
sm

en
t

M
et

h
o

d
s CIE

Internal

Assessment

Test
Students

Thrice (Average of

the best two will be

computed)

30 Blue Books 1, 2, 3, 4 & 5

SEE
Standard

Examination

End of Course

(Answering

5 of 10 questions)

100 Answer scripts 1,2,3,4 & 5

In
d

ir
ec

t

A
ss

es
sm

en
t

M
et

h
o

d

Students

Feedback

Students

Middle of the

course
-

Feedback

forms

1, 2, 3

Delivery of the course

End of Course

Survey
End of the course - Questionnaire

1, 2, 3, 4 & 5

Effectiveness of Delivery

of instructions &

Assessment Methods

Course Outcomes

At the end of the course the students should be able to:

1. Demonstrate an understanding of the principles and techniques of Software Engineering

2. Understand the activities in project management, requirement engineering process and to identify the different types

of system models

3. Apply the knowledge of design engineering in software development

4. Formulate different testing methods and tools

5. Recognize the need for web engineering

Mapping Course Outcomes with Programme Outcomes

Course Outcomes
Programme Outcomes

1 2 3 4 5 6 7 8 9 10 11 12

1. Demonstrate an understanding of the principles and techniques of

Software Engineering
X X

2. Understand the activities in project management, requirement

engineering process and to identify the different types of system

models

X X X X X X X

3. Apply the knowledge of design engineering in software

development
X X

4. Formulate different testing methods and tools X X X X X

5. Recognize the need for web engineering X X

1st International Workshop on Case Method for Computing Education (CMCE 2015) 86

Course Title: Software Engineering Lab Course Code: CSL515

Credits (L:T:P) 0:0:1 Core/ Elective: Core

Type of Course: Practical sessions Total Contact Hours: 28 hrs

Prerequisites: Nil

Course Objectives

Objectives of the course are to:

1. Study and apply principles of engineering to the design, development, and maintenance of software

2. Implement the processes, techniques and deliverables that are associated with requirement engineering including

system requirement and system modeling

3. Apply the knowledge, skills and techniques of project management to execute projects effectively and efficiently

4. Provide an objective, independent view of the software to allow the business to appreciate and understand the risks

of software implementation

Course Contents

1. Introduction

2. Requirements Engineering

3. Project Management

4. Metrics

5. Risk Management

6. Analysis & Design

7. Testing

8. Quality Assurance

Textbooks

1. Pankaj Jalote: A Concise Introduction to Software Engineering , Springer, 2008

2. David Gustafson: Software Engineering, Schaum's Outline Series, McGraw Hill, 2002

3. Emilia Mendes, Nile Mosley: Web Engineering, Springer, 2006

Reference Books

1. Roger S. Pressman: Software Engineering A Practitioner's Approach, 7th Edition, McGraw Hill, 2010

Course Delivery

The course will be delivered through practical sessions in the laboratory.

Course Assessment and Evaluation

What
To

Whom

When/ Where

(Frequency in the

course)

Max

Marks

Evidence

Collected

Contribution to Course

Outcomes

D
ir

e
ct

 A
ss

es
sm

en
t

M
et

h
o

d
s

CIE

Internal

assessment

test

Students

Lab test: Once
30 Data sheets 1, 2, 3

Mini project

Demonstration of

techniques learnt:

Once

20 Document 1,2, 3, 4, 5

SEE
Standard

Examination

End of the course:

Once
100 Answer scripts 1,2, 3, 4, 5

In
d

ir
ec

t

A
ss

es
sm

en
t

M
et

h
o

d

Students

Feedback

Students

Middle of the

course
-

Feedback

forms

1, 2, 3

Delivery of the course

End of Course

Survey
End of the course - Questionnaire

1, 2, 3, 4 & 5

Effectiveness of Delivery

of instructions &

Assessment Methods

1st International Workshop on Case Method for Computing Education (CMCE 2015) 87

Course Outcomes

At the end of the course the students should be able to

1. Identify a problem statement, trace the requirements and write unambiguous, correct and consistent SRS

2. Prepare a project plan and estimate effort required for the project

3. Identify, analyze and develop a risk management plan for the potential risks in the project

4. To create a specification of a software artifact intended to accomplish goals

5. To perform exhaustive testing of the code

Mapping Course Outcomes with Programme Outcomes

Course Outcomes
Programme Outcomes

1 2 3 4 5 6 7 8 9 10 11 12

1. Identify a problem statement, trace the requirements and write

unambiguous, correct and consistent SRS
X X X X X X X

2. Prepare a project plan and estimate effort required for the project X X X

3. Identify, analyze and develop a risk management plan for the

potential risks in the project
X X

4. To create a specification of a software artifact intended to

accomplish goals
X X X X X

5. To perform exhaustive testing of the code X X

1st International Workshop on Case Method for Computing Education (CMCE 2015) 88

