
The Way Ahead for Bug-fix time Prediction

Meera Sharma
Department of Computer Science

University of Delhi

Delhi, India

meerakaushik@gmail.com

Madhu Kumari

Department of Computer Science

University of Delhi

Delhi, India

mesra.madhu@gmail.com

V.B.Singh

Delhi College of Arts & Commerce,

University of Delhi

Delhi, India

vbsinghdcacdu@gmail.com

Abstract— The bug-fix time i.e. the time to fix a bug after the

bug was introduced is an important factor for bug related

analysis, such as measuring software quality or coordinating

development effort during bug triaging. Previous work has

proposed many bug-fix time prediction models that use various

bug attributes (number of developers who participated in fixing

the bug, bug severity, bug-opener’s reputation, number of

patches) for predicting the fix time of a newly reported bug. In

this paper, we have investigated the associations between bug

attributes and the bug-fix time. We have proposed two

approaches to apply association rule mining. In the first

approach, we have used Apriori algorithm to predict the fix time

of a newly coming bug based on the bug’s severity, priority

summary terms and assignee. In second approach, we have used

k-means clustering method to get groups of correlated variables

followed by association rule mining inside each cluster. We have

collected 1,695 bug reports of three products namely

AddOnSDK, Thunderbird and Bugzilla of Mozilla open source

project to mine association rules. Results show that for given set

of bug attributes, we can predict the bug-fix time for newly

coming bugs which will help in software quality improvement. A

large number of association rules having high confidence and

support with higher severity and priority as antecedents and

short bug-fix time as consequent show that more important bugs

are fixed without any delay. This information is useful in

determining software quality. We also observe that our approach

for bug-fix time prediction will be helpful in bug triaging by

assigning a bug to the most potential and experienced assignee

who will solve the bug in minimum time period. This will again

help in software quality improvement. In nutshell, we can say

that association rule mining based bug-fix time prediction can

help managers to improve the software development process.

Keywords—Bug-fix time; Apriori algorithm; Association rule

mining; k-means Clustering

I. INTRODUCTION

Bug-fix time prediction is useful in software quality
prediction [1] or in coordinating effort during bug triaging to
maintain the software systems effectively [2]. In literature
efforts have been made to construct many bug-fix time
prediction models, based on machine learning algorithms, on
both open source and commercial projects [3-5].

A bug report is characterized by many attributes like
summary, priority, severity and assignee. The textual
description of a bug reported by users is known as its
summary. Bug priority tells about the importance and order of
bug fixing in comparison of other bugs with P1 as the highest
and P5 as the lowest priority. The bug severity can be defined
as: (i) the impact of bugs on the functionality of the software
(business point of view) (ii) the impact of bugs on developer
means how much time a bug will take in fixing. In this paper,

we consider the bug severity from the business point of view.
It is measured according to different levels from 1(blocker) to
7(trivial). These levels are defined in repositories as 1 for
highest and 7 for lowest. Assignee is a person to whom the
bug is assigned to work on.

To the best of our knowledge, no approach has been
proposed till now to mine association rules among different
bug attributes for bug-fix time prediction. In software
development this can help the managers to improve the
process in terms of cost and resources. We have proposed an
approach for bug fix time prediction based on other bug
attributes namely summary terms, priority, severity and
assignee. We have applied association rule mining by using
Apriori algorithm and k-means clustering followed by Apriori
algorithm. For experiment of the proposed approach we have
used 1,695 bug reports of AddOnSDK, Thunderbird and
Bugzilla products of Mozilla open source project. Association
rule mining was first explored by [7] which is the base of our
prediction method.

In a database, the interesting correlations, frequent
patterns, associations or casual structures among the attributes
can be discovered by using association rule mining. Let C is a
database of transactions and each transaction T is a set of
items. An association rule is an expression A⇒ D, where A is
called antecedent and D is called consequent. A⇒ D reveals
that whenever a transaction T contains A, then T also contains
D with a specified confidence and support. The confidence of
a rule is defined as percentage/fraction of the number of
transactions that contain A∪D to the total number of
transactions that contain A. It is a measure of the rule’s
strength or certainty [8]. Support of a rule is defined as the
percentage/fraction of transactions that contain A∪D to the
total number of transactions in the database. It corresponds to
statistical significance or usefulness of the rule. Minimum
support count is defined as the number of transactions required
for an item set to satisfy minimum support. Association rule
mining generates all association rules that have a support
greater than minimum support min.Supp(A⇒D), in the
database, i.e., the rules are frequent. The rules must also have
confidence greater than minimum confidence min.Conf(A⇒
D), i.e., the rules are strong.

In a wide range of science and business areas association
rule mining can be applied successfully. Several performance
studies have resulted in better accuracy for associative
classification than state-of-the-art classification methods [9-
18].

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 31

Clustering is a partitioning method in which a group of
data points is partitioned into a small number of clusters. In k-
means clustering algorithm, the function k-means partitions
data into k mutually exclusive clusters, and returns the index
of the cluster to which it has assigned each observation.
Unlike hierarchical clustering, k-means clustering operates on
actual observations (rather than the larger set of dissimilarity
measures), and creates a single level of clusters. The
distinctions mean that k-means clustering is often more
suitable than hierarchical clustering for large amount of data.

The successful use of association rule mining in various
fields motivates us to apply it to the open source software bug
data set [9-18].

The organization of rest of the paper is as follows. Section
2 gives the description and preprocessing of data. Section 3
describes the model building. Section 4 presents the results.
Section 5 discusses about related work. Section 6 tells about
the threats to validity and finally section 7 concludes the paper
with future research directions.

II. DATA SETS DESCRIPTION AND DATA PREPROCESSING

We collected bug reports from Bugzilla bug tracking
system with status “verified”, “resolved” and “closed” and
resolution “fixed” because only these types of bug reports
contain the consistent information for the experiment. We
have compared and validated the collected bug reports against
general change data (i.e. CVS or SVN records). Number of
bug reports collected in the observed period is given in table I.

TABLE I. PRODUCTWISE NUMBER OF BUG REPORTS

Product Bug reports Observation period

Bugzilla 964 Sept. 1994-June 2013

Thunderbird 115 Apr. 2000-Mar. 2013

Add-on SDK 616 May 2009-Aug. 2013

In order to apply association rule mining, we have
quantified different bug attributes namely severity, priority,
summary, assignee and fix time.

We have preprocessed the bug summary attribute to
extract terms in RapidMiner tool [19] with the help of
following steps:

Tokenization: the process of breaking a stream of text into

words, phrases, symbols, or other meaningful elements called

tokens is called ‘tokenization’. We have considered a word or

a term as a token.

Stop Word Removal: words which are commonly used in

the text but do not carry useful meaning like prepositions,

conjunctions, articles, verbs, nouns, pronouns, adverbs,

adjectives are called stop words. We have removed all the stop

words from bug summary.

Stemming to base stem: the process of converting derived

words to their base word (stem) is known as stemming.

Standard Porter stemming algorithm can be utilized for

stemming [20].

Feature Reduction: tokens of minimum 3 and maximum
40 occurrences have been considered because most of the data
mining algorithm may not be able to handle large feature sets.

Weight by Information Gain or InfoGain: it is helpful in
determining the importance or relevance of the term. It helps
in selection of top few terms in the data set.

We have made a workflow in RapidMiner to extract a set
of terms from bug summary attribute. We have taken tokenize
mode as non-letters and in filter tokens parameter we have set
min chars value as 3 and max chars value as 50. We used
English dictionary to filter the stop words.

III. MODEL BUILDING

Our study consists of following steps:

1. Data Extraction

a. From CVS repository:
https://bugzilla.mozilla.org/, downloaded bug
reports for 3 products of Mozilla open source
project.

b. Store the downloaded bug reports in excel file
for further processing.

2. Data Pre-processing

a. In RapidMiner developed a workflow to extract
individual terms of bug summary.

3. Data Preparation

a. For different severity and preiority levels, we

have taken numeric values from 1 to 7 and from

8 to 12.

b. Assigned a numeric value from 13 to 43 to top

30 terms based on InfoGain.

c. For each assignee take a unique numeric value.

d. Filtered bug-fix time for 0 to 99 days as

maximum number of bugs has fix time in this

range only. Define three bug-fix time ranges: 0

to19 days, 20 to 64 days and 65 to 99 days.

Assign a numeric value from 1 to 3 to these three

ranges.

4. Association Rule Mining and Clustering

a. ARMADA (Association Rule Miner And

Deduction Analysis) is a Data Mining tool of

MATLAB software that extracts Association

Rules from numerical data files using a variety

of selectable techniques and criteria [21]. We

have applied Apriori algorithm by using

ARMADA tool. As a result we get association

rules for bug-fix time prediction with severity,

priority, summary terms and assignee as

antecedents.

b. We have applied k-means clustering algorithm in

SPSS(Statistical Package for Social Sciences)

software followed by Apriori algorithm for each

resulting cluster by using MATLAB software

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 32

with minimum confidence 20% and minimum

support 7%.

5. Testing and Validation

Assess the resulting association rules in terms of different
performance measures namely support and confidence.

IV. RESULTS AND DISCUSSION

In this paper, we have proposed two approaches to apply
association mining. In first approach, we have mined the
association rules for bug-fix time prediction with bug severity,
priority, summary terms and assignee as antecedents by
applying Apriori algorithm of ARMADA tool in MATLAB
software. We have considered association rules with minimum
confidence 20% and minimum support 7% for AddOnSDK
and Bugzilla products. In thunderbird product we have very
less number of bug reports as a result of which we get
association rules with minimum confidence 20% and support
3%. All the 3 datasets have more than 100 rules. For this
reason, we do not list them all, but instead we present top 5
rules based on the highest confidence. In table II we have
presented top five association rules of AddOnSDK product for
three defined ranges.

TABLE II. TOP FIVE ASSOCIATION RULES FOR ADDONSDK

Association Rules (minimum support=7%, minimum

confidence=20%)

Bug-fix time 0-19 days

1. Priority {P1} ᴧ Assignee { Alexandre Poirot} ᴧ Term {con} ᴧ
Term {test} ᴧ Term {content} ᴧ Term{fail}

⇒ Bug-fix time {0-19 days} @ (10%, 100%)

2. Severity {Major} ᴧ Priority {P1} ᴧ Term {con} ᴧ Term {test} ᴧ

Term {content} ᴧ Term {fail}

⇒ Bug-fix time {0-19 days} @ (8%, 100%)

3. Severity {Major} ᴧ Priority {P1} ᴧ Assignee {Alexandre Poirot}

ᴧ Term {con} ᴧ Term{content} ᴧ Term{fail}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

4. Priority{P1} ᴧ Assignee { Alexandre Poirot } ᴧ Term {con} ᴧ
Term{content} ᴧ Term{fail}

⇒ Bug-fix time {0-19 days} @ (11%, 100%)

5. Severity{Major} ᴧ Priority {P1} ᴧ Term{con} ᴧ Term {content}

ᴧ Term {fail}

⇒ Bug-fix time {0-19 days} @ (9%, 100%)

Bug-fix time 20-64 days

1. Severity {Major} ᴧ Priority {P1} ᴧ Term {win} ᴧ Term
{window} ᴧ Term {updat} ᴧ Term {privat}

⇒ Bug-fix time {20-64 days} @ (7%, 100%)

2. Severity {Major} ᴧ Assignee {Will Bamberg} ᴧ Term {doc} ᴧ

Term {document} ᴧ Term {page}

⇒ Bug-fix time {20-64 days} @ (7%, 100%)

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {mod} ᴧ Term {modul}

ᴧ Term {privat}

⇒ Bug-fix time {20-64 days} @ (7%, 100%)

4. Severity {Major} ᴧ Term {mod} ᴧ Term {modul} ᴧ Term
{privat}

⇒ Bug-fix time {20-64 days} @ (8%, 100%)

5. Severity {Major} ᴧ Term {modul} ᴧ Term {privat}

⇒ Bug-fix time {20-64 days} @ (8%, 100%)

Bug-fix time 65-99 days

1. Severity {Major} ᴧ Term {text}

 ⇒ Bug-fix time {65-99 days} @ (9%, 31%)

2. Term {text}

 ⇒ Bug-fix time {65-99 days} @ (9%, 29%)

3. Severity {Major} ᴧ Term {con} ᴧ Term {text}

 ⇒ Bug-fix time {65-99 days} @ (7%, 27%)

4. Term {con} ᴧ Term {text}

 ⇒ Bug-fix time {65-99 days} @ (7%, 25%)

5. Priority {P1} ᴧ Term {tab}

 ⇒ Bug-fix time {65-99 days} @ (8%, 23%)

The first association rule is a six antecedent rule, which
reveals that a bug with priority P1, assignee Alexander Poirot
and summary containing terms con, test, content and fail can
have a fix time of 0 to 19 days with a significance of 10
percent and a certainty of 100 percent. Second association rule
means that a bug with severity Major, priority P1, and
summary containing terms con, test, content and fail can have
a fix time of 0 to 19 days with a significance of 8 percent and
a certainty of 100 percent. Third rule shows that a bug with
severity Major, priority P1 and summary containing terms
con, content and fail can have a fix time of 0 to 19 days with a
significance of 7 percent and a certainty of 100 percent. Rule
four reveals that 11 percent of the bugs in the bug data set
have priority P1, assignee Alexandre Poirot, summary
containing terms con, content, fail and bug-fix time of 0 to 19
days. 100 percent of the bugs in the bug data set that have
priority P1, assignee Alexandre Poirot, summary containing
terms con, content, fail also have bug-fix time of 0-19 days.
The fifth rule shows that the bug having severity Major,
priority P1 and summary containing terms con, content and
fail can have bug-fix time of 0 to 19 days with a significance
of 9 percent and a certainty of 100 percent. Similarly we have
interpreted association rules of other bug-fix time ranges.

We have shown top five association rules to predict bug-
fix time for Thunderbird product in table III.

TABLE III. TOP FIVE ASSOCIATION RULES FOR THUNDERBIRD

Association Rules (minimum support=3%, minimum

confidence=20%)

Bug-fix time 0-19 days

1. Severity {Major} ᴧ Term {add} ᴧ Term {icon} ᴧ Term
{address}

 ⇒ Bug-fix time {0-19 days} @ (3%, 100%)

2. Severity {Major} ᴧ Priority {P3} ᴧ Term {text} ᴧ Term {box}

 ⇒ Bug-fix time {0-19 days} @ (3%, 100%)

3. Severity {Major} ᴧ Priority {P3} ᴧ Term {window} ᴧ Assignee

{Andreas Nilsson}

 ⇒ Bug-fix time {0-19 days} @ (3%, 100%)

4. Term {tool} ᴧ Term {toolbar} ᴧ Assignee {Blake Winton}

 ⇒ Bug-fix time {0-19 days} @ (3%, 100%)

5. Term {config} ᴧ Term {auto} ᴧ Assignee {Blake Winton}

 ⇒ Bug-fix time {0-19 days} @ (3%, 100%)

Bug-fix time 20-64 days

1. Severity {Major} ᴧ Assignee {David} ᴧ Term {move} ᴧ Term

{remov}

 ⇒ Bug-fix time {20-64 days} @ (3%, 100%)

2. Term {add} ᴧ Term {pre}

 ⇒ Bug-fix time {20-64 days} @ (3%, 100%)

3. Term {mail} ᴧ Term {move} ᴧ Term {remov}

 ⇒ Bug-fix time {20-64 days} @ (3%, 75%)

4. Assignee {David} ᴧ Term {move}

 ⇒ Bug-fix time {20-64 days} @ (3%, 75%)

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 33

5. Assignee {David} ᴧ Term {messag}

⇒ Bug-fix time {20-64 days} @ (3%, 75%)

Bug-fix time 65-99 days

1. Priority {P1} ᴧ Term {mail}

⇒ Bug-fix time {65-99 days} @ (5%, 63%)

2. Severity {Major} ᴧ Term {thunderbird} ᴧ Assignee {Mark

Banner}

⇒ Bug-fix time {65-99 days} @ (3%, 60%)

3. Severity {Major} ᴧ Assignee {Mark Banner}

⇒ Bug-fix time {65-99 days} @ (4%, 50%)

4. Assignee {Mark Banner}

⇒ Bug-fix time {65-99 days} @ (5%, 38%)

5. Severity {Major} ᴧ Term {mail}

⇒ Bug-fix time {65-99 days} @ (3%, 38%)

The first association rule is a four antecedent rule, which
reveals that a bug with severity Major, and summary
containing terms add, icon and address can have a fix time of
0 to 19 days with a significance of 3 percent and a certainty of
100 percent. Second association rule means that a bug with
severity Major, priority P3, and summary containing terms
text and box can have a fix time of 0 to 19 days with a
significance of 3 percent and a certainty of 100 percent. Third
rule shows that a bug with severity Major, priority P3 and
summary containing terms window and assignee Andreas
Nilssson can have a fix time of 0 to 19 days with a
significance of 3 percent and a certainty of 100 percent. Rule
four reveals that 3 percent of the bugs in the bug data set have
summary containing terms tool, toolbar, assignee Blake
Winton and bug-fix time of 0 to 19 days. 100 percent of the
bugs in the bug data set that have summary containing terms
tool, toolbar and assignee Blake Winton also have bug-fix
time of 0-19 days. The fifth rule shows that the bug with
summary containing terms config, auto and assignee Blake
Winton can have bug-fix time of 0 to 19 days with a
significance of 3 percent and a certainty of 100 percent.
Similarly we have interpreted association rules of other bug-
fix time ranges.

We have shown top five association rules to predict bug-
fix time for Bugzilla product in table IV.

TABLE IV. TOP FIVE ASSOCIATION RULES FOR BUGZILLA

Association Rules (minimum support=7%, minimum

confidence=20%)

Bug-fix time 0-19 days

1. Severity {Major} ᴧ Priority {P1} ᴧ Term {check} ᴧ Term {set}

ᴧ Term { setup } ᴧ Term { checksetup}

⇒ Bug-fix time {0-19 days} @ (11%, 100%)

2. Priority {P1} ᴧ Term {ing} ᴧ Term {check} ᴧ Term {set} ᴧ
Term {setup} ᴧ Term {checksetup}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

3. Assignee {Daniel Buchner} ᴧ Term{bug} ᴧ Term{hang} ᴧ

Term{chang}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

4. Priority{P3} ᴧ Term{bug} ᴧ Term{ing} ᴧ Term{bugzilla}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

5. Priority{P3} ᴧ Assignee {Daniel Buchner} ᴧ Term{hang} ᴧ

Term {chang}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

Bug-fix time 20-64 days

1. Priority {P3} ᴧ Term {cgi} ᴧ Term {edit}

⇒ Bug-fix time {20-64 days} (8%, 100%)

2. Priority {P3} ᴧ Term {edit}

 ⇒ Bug-fix time {20-64 days} @ (10%, 67%)

3. Severity {Major} ᴧ Term {temp} ᴧ Term {templat}

⇒ Bug-fix time {20-64 days} @ (8%, 62%)

4. Priority {P3} ᴧ Term {user}

⇒ Bug-fix time {20-64 days} @ (8%, 57%)

5. Severity {Major} ᴧ Term {temp}

⇒ Bug-fix time {20-64 days} @ (8%, 57%)

Bug-fix time 65-99 days

1. Assignee {Gervase Markham} ᴧ Term{temp} ᴧ Term{templat}

⇒ Bug-fix time {65-99 days} @ (7%, 39%)

2. Assignee {Gervase Markham} ᴧ Term{cgi}

⇒ Bug-fix time {65-99 days} @ (7%, 39%)

3. Assignee {Matthew Barnson}

⇒ Bug-fix time {65-99 days} @ (10%, 38%)

4. Assignee {Max Kanat-Alexander} ᴧ Term{ing}

⇒ Bug-fix time {65-99 days} @ (9%, 31%)

5. Assignee {Dawn Endico}

⇒ Bug-fix time {65-99 days} @ (7%, 30%)

The first association rule is a six antecedent rule, which
reveals that a bug with severity Major, priority P1and
summary containing terms check, set, setup and checksetup
can have a fix time of 0 to 19 days with a significance of 11
percent and a certainty of 100 percent. Second association rule
means that a bug with priority P1, and summary containing
terms check, set, setup and checksetup can have a fix time of 0
to 19 days with a significance of 7 percent and a certainty of
100 percent. Third rule shows that a bug with assignee Daniel
Buchner and summary containing terms bug, hang and chang
can have a fix time of 0 to 19 days with a significance of 7
percent and a certainty of 100 percent. Rule four reveals that
7 percent of the bugs in the bug data set have priority P3,
summary containing terms bug, ing, bugzilla and bug-fix time
of 0 to 19 days. 100 percent of the bugs in the bug data set
that have priority P3 and summary containing terms bug, ing
and Bugzilla also have bug-fix time of 0-19 days. The fifth
rule shows that a bug with priority P3, assignee Daniel
Buchner and summary containing terms hang and chang can
have bug-fix time of 0 to 19 days with a significance of 7
percent and a certainty of 100 percent. Similarly we have
interpreted association rules of other bug-fix time ranges.

In order to analyze the rule length (number of antecedents)
of association rules, we draw the distribution of association
rules across all the datasets (Fig. 1 to 3).

Fig. 1. AddOnSdk association rules (min.supp=7% and min.conf=20%)with

different rule length

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 34

Fig. 2. Thunderbird association rules (min.supp=3% and min.conf=20%)with

different rule length

Fig. 3. Bugzilla association rules (min.supp=7% and min.conf=20%)with

different rule length

Figure 1 to 3 show that we have maximum association
rules with two antecedents (length 2) across all the datasets.

We observe that in all products, we have some rules with
same antecedents and consequent except assignee. These rules
reveal that for different assignee we have same bug-fix time
for same values of other attributes. In this case we will prefer
an assignee with higher confidence value to whom we can
assign the bug as he is more potential and experienced in
fixing such type of bugs. In this way the proposed approach
will help in bug triaging which will help in software quality
improvement.

We have observed following rules from AddOnSDK
product.

1. Severity {Major} ᴧ Term {test} ᴧ Assignee {Alexandre

Poirot}

⇒ Bug-fix time {0-19 days} @ (16%, 89%)

2. Severity {Major} ᴧ Term {test} ᴧ Assignee {Dave

Townsend}

⇒ Bug-fix time {0-19 days} @ (12%, 71%)

3. Severity {Major} ᴧ Term {test} ᴧ Assignee {Erik Vold}

⇒ Bug-fix time {0-19 days} @ (8%, 50%)

4. Severity {Major} ᴧ Priority {P1} ᴧ Term {con} ᴧ

Assignee {Will Bamberg}

⇒ Bug-fix time {20-64 days} @ (11%, 65%)

5. Severity {Major} ᴧ Priority {P1} ᴧ Term {con} ᴧ

Assignee {Alexandre Poirot}

⇒ Bug-fix time {20-64 days} @ (9%, 35%)
First three rules reveals that bugs with severity Major and

summary containing term test have three choices of assignee

i.e. Alexandre Poirot or Dave Townsend or Erik Vold to get
fixed in 0 to 19 days with certainty of 89, 71 and 50 percent
respectively. We observe that the bug should be assigned to
Alexandre Poirot as the rule with this assignee gives highest
certainty. Similarly we can infer from last two rules that we
should assign the bug to Will Bamberg as the rule with this
assignee gives higher certainty. Similar inference we can draw
for other two datasets also.

We observe that in all products we have some rules with
same antecedents except assignee. These rules reveal that
different assignee will fix same bugs with same attributes with
different bug-fix time. In this case, we will prefer an assignee
with lower fix time in fixing such type of bugs. In this way the
proposed approach will help in choosing assignee which can
fix the bug in shortest time.

We have observed following rules from Bugzilla product.

1. Severity {Major} ᴧ Assignee {Terry Weissman}

⇒ Bug-fix time {0-19 days} @ (67%, 80%)

2. Severity {Major} ᴧ Assignee {Bradley Baetz}

⇒ Bug-fix time {20-64 days} @ (7%, 44%)

3. Severity {Major} ᴧ Assignee {Max Kanat-Alexander}

⇒ Bug-fix time {65-99 days} @ (8%, 22%)

4. Priority{P1} ᴧ Assignee {Dave Miller}

⇒ Bug-fix time {0-19 days} @ (7%, 78%)

5. Priority{P1} ᴧ Assignee {Max Kanat-Alexander}

⇒ Bug-fix time {20-64 days} @ (11%, 42%)
First three rules reveals that bugs with severity Major can

be assigned to three different assignee: Terry Weissman,
Bradley Baetz and Max Kanat-Alexander. All the three
assignee will fix the same bug with severity Major with
different fix time ranges. We will preferably assign the bug to
an assignee who will fix it in minimum time and i.e. Terry
Weissman. Similarly we can infer from last two rules that we
should assign the bug to Dave Miller as he will solve the bug
earliest. Similar inference we can draw for other two datasets
also.

In second approach, we have presented clustering based
association rule mining for bug-fix time prediction. We have
partitioned the AddOnSDK dataset into 5 clusters using k-
means clustering method. In cluster 1, there is only one data.
Cluster 2 contains 93 data, cluster 3 contains 379 data, cluster
4 contains 115 data and cluster 5 contains 28 data. After
portioning, we have applied Apriori algorithm on each cluster
with minimum confidence 20% and minimum support 2%.

Table V presents top five association rules from five
clusters formed by k-means clustering for AddOnSDK
product.

TABLE V. TOP FIVE ASSOCIATION RULES FOR ADDONSDK

Association Rules (minimum support=2%, minimum

confidence=20%)

Bug-fix time 0-19 days

Cluster 2

1. Term {con} ᴧ Term {test} ᴧ Term{fail}

⇒ Bug-fix time {0-19 days} @ (5%, 100%)

2. Priority {P1} ᴧ Term {con} ᴧ Term {test}

⇒ Bug-fix time {0-19 days} @ (5%, 100%)

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 35

3. Assignee {Alexandre Poirot} ᴧ Term {test} ᴧ Term{fail}

⇒ Bug-fix time {0-19 days} @ (5%, 100%)

4. Priority{P1} ᴧ Assignee { Alexandre Poirot } ᴧ Term {test}

 ⇒ Bug-fix time {0-19 days} @ (5%, 100%)

5. Priority {P1} ᴧ Term{con} ᴧ Term {test} ᴧ Term {fail}

 ⇒ Bug-fix time {0-19 days} @ (5%, 100%)

Cluster 3

1. Priority {P1} ᴧ Term {fire} ᴧ Term {test} ᴧ Term{firefox}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

2. Priority {P1} ᴧ Assignee {Alexandre Poirot} ᴧ Term {fail} ᴧ

Term {test}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {test} ᴧ
Term{firefox}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

4. Severity {Major} ᴧ Priority{P1} ᴧ Term {test} ᴧ Term {fire}

 ⇒ Bug-fix time {0-19 days} @ (7%, 100%)

5. Severity {Major} ᴧ Priority{P1} ᴧ Term {test} ᴧ Term {fire}

ᴧ Term{firefox}

⇒ Bug-fix time {0-19 days} @ (7%, 100%)

Cluster 4

1. Severity {Major} ᴧ Priority{P2} ᴧ Term {cfx}

⇒ Bug-fix time {0-19 days} @ (2%, 100%)

2. Severity {Major} ᴧ Priority{P1} ᴧ Term {get}

⇒ Bug-fix time {0-19 days} @ (2%, 100%)

3. Severity {Major} ᴧ Priority{P2} ᴧ Term {get}

⇒ Bug-fix time {0-19 days} @ (2%, 100%)

4. Severity {Major} ᴧ Priority{P2} ᴧ Assignee {Alexandre
Poirot} ᴧ Term {get}

⇒ Bug-fix time {0-19 days} @ (2%, 100%)

5. Severity {Major} ᴧ Priority{P3} ᴧ Term {fail}

⇒ Bug-fix time {0-19 days} @ (2%, 100%)

Cluster 5

1. Severity {Major} ᴧ Assignee {Alexandre Poirot} ᴧ Term

{con} ᴧ Term {content}

⇒ Bug-fix time {0-19 days} @ (5%, 83%)

2. Severity {Major} ᴧ Term {con} ᴧ Term {content}

⇒ Bug-fix time {0-19 days} @ (5%, 71%)

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {fail}

⇒ Bug-fix time {0-19 days} @ (6%, 67%)

4. Priority{P1} ᴧ Term {fail} ᴧ Term {win} ᴧ Term {window}

⇒ Bug-fix time {0-19 days} @ (5%, 63%)

5. Severity {Major} ᴧ Priority{P1} ᴧ Term {fail} ᴧ Term {test}

⇒ Bug-fix time {0-19 days} @ (5%, 63%)

Bug-fix time 20-64 days

Cluster 2

1. Severity {Major} ᴧ Priority {P4} ᴧ Assignee {Will Bamberg}

ᴧ Term {con} ᴧ Term {doc}

⇒ Bug-fix time {20-64 days} @ (5%, 100%)

2. Severity {Major} ᴧ Priority {P3} ᴧ Assignee {Will Bamberg}

ᴧ Term {updat} ᴧ Term {doc}

 ⇒ Bug-fix time {20-64 days} @ (5%, 100%)

3. Severity {Major} ᴧ Priority {P1} ᴧ Assignee {Will Bamberg}
ᴧ Term {document} ᴧ Term {doc}

 ⇒ Bug-fix time {20-64 days} @ (6%, 100%)

4. Severity {Major} ᴧ Assignee {Will Bamberg} ᴧ Term {con}

ᴧ Term {doc}

 ⇒ Bug-fix time {20-64 days} @ (5%, 100%)

5. Priority {P3} ᴧ Assignee {Will Bamberg} ᴧ Term {con} ᴧ

Term {doc}

 ⇒ Bug-fix time {20-64 days} @ (5%, 100%)

Cluster 3

1. Severity {Major} ᴧ Priority {P1} ᴧ Assignee {Will Bamberg}

ᴧ Term {doc} ᴧ Term {document}

⇒ Bug-fix time {20-64 days} @ (8%, 62%)

2. Severity {Major} ᴧ Priority{P1} ᴧ Term {page}

 ⇒ Bug-fix time {20-64 days} @ (9%, 60%)

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {tab}

 ⇒ Bug-fix time {20-64 days} @ (10%, 59%)

4. Severity {Major} ᴧ Priority {P2} Term {mod}

⇒ Bug-fix time {20-64 days} @ (7%, 54%)

5. Assignee {Will Bamberg} ᴧ Term {document}

⇒ Bug-fix time {20-64 days} @ (16%, 53%)

Cluster 4

1. Severity {Major} ᴧ Priority{P1} ᴧ Assignee {Will Bamberg}

ᴧ Term {doc}

 ⇒ Bug-fix time {20-64 days} @ (2%, 100%)

2. Severity {Major} ᴧ Assignee {Will Bamberg} ᴧ Term {doc}

 ⇒ Bug-fix time {20-64 days} @ (3%, 100%)

3. Severity {Major} ᴧ Priority {P1} ᴧ Term {doc}

⇒ Bug-fix time {20-64 days} @ (3%, 100%)

4. Priority {P1} ᴧ Assignee {Will Bamberg} ᴧ Term {doc}

 ⇒ Bug-fix time {20-64 days} @ (2%, 100%)

5. Severity {Major} ᴧ Assignee {Will Bamberg} ᴧ Term {updat}

 ⇒ Bug-fix time {20-64 days} @ (2%, 100%)

Cluster 5

1. Severity {Major} ᴧ Term {win} ᴧ Term {window} ᴧ Term
{updat} ᴧ Term {private}

 ⇒ Bug-fix time {20-64 days} @ (5%, 100%)

2. Severity {Major} ᴧ Priority{P1} ᴧ Term {window} ᴧ Term

{updat} ᴧ Term {private}

 ⇒ Bug-fix time {20-64 days} @ (5%, 100%)

3. Severity {Major} ᴧ Priority{P1} ᴧ Term {win} ᴧ Term

{updat} ᴧ Term {private}

⇒ Bug-fix time {20-64 days} @ (5%, 100%)

4. Severity {Major} ᴧ Priority{P1} ᴧ Term {mod} ᴧ Term
{modul} ᴧ Term {private}

 ⇒ Bug-fix time {20-64 days} @ (5%, 100%)

5. Severity {Major} ᴧ Priority{P1} ᴧ Term {win} ᴧ Term

{window} ᴧ Term {updat} ᴧ Term {private}

 ⇒ Bug-fix time {20-64 days} @ (5%, 100%)

Bug-fix time 65-99 days

Cluster 2

1. Severity {Major} ᴧ Term {tab }

 ⇒ Bug-fix time {65-99 days} @ (6%, 35%)

2. Term {tab}

 ⇒ Bug-fix time {65-99 days} @ (6%, 33%)

3. Severity {Major} ᴧ Term {window}

 ⇒ Bug-fix time {65-99 days} @ (5%, 25%)

4. Severity {Major} ᴧ Term {win} ᴧ Term {window}

 ⇒ Bug-fix time {65-99 days} @ (5%, 25%)

5. Term {window}

 ⇒ Bug-fix time {65-99 days} @ (5%, 24%)

Cluster 3

1. Priority{P1} ᴧ Term {modul}

 ⇒ Bug-fix time {65-99 days} @ (7%, 25%)

2. Severity {Major} ᴧ Priority{P1} ᴧ Term {modul}

 ⇒ Bug-fix time {65-99 days} @ (7%, 27%)

3. Priority{P1} ᴧ Term {mod} ᴧ Term {modul}

 ⇒ Bug-fix time {65-99 days} @ (7%, 25%)

4. Severity {Major} ᴧ Priority{P1} ᴧ Term {mod}

 ⇒ Bug-fix time {65-99 days} @ (7%, 21%)

5. Severity {Major} ᴧ Priority{P1} ᴧ Term {mod} ᴧ Term

{modul}

 ⇒ Bug-fix time {65-99 days} @ (7%, 27%)

Cluster 4

1. Severity {Enhancement} ᴧ Priority{P3}

 ⇒ Bug-fix time {65-99 days} @ (2%, 67%)

2. Severity {Major} ᴧ Term {text}

 ⇒ Bug-fix time {65-99 days} @ (2%, 67%)

3. Severity {Major} ᴧ Term {sdk}

 ⇒ Bug-fix time {65-99 days} @ (2%, 40%)

4. Severity {Major} ᴧ Priority{P1} ᴧ Term {text}

 ⇒ Bug-fix time {65-99 days} @ (2%, 67%)

5. Priority{P1} ᴧ Term {text}

⇒ Bug-fix time {65-99 days} @ (2%, 67%)

Cluster 5

1. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend

} ᴧ Term {con} ᴧ Term {add} ᴧ Term {text}

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 36

⇒ Bug-fix time {65-99 days} @ (2%, 100%)

2. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend

} ᴧ Term {con} ᴧ Term {test} ᴧ Term {text}

⇒ Bug-fix time {65-99 days} @ (2%, 100%)

3. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend

} ᴧ Term {con} ᴧ Term {test} ᴧ Term {add}

⇒ Bug-fix time {65-99 days} @ (2%, 100%)

4. Priority{P1} ᴧ Term {test} ᴧ Term {add} ᴧ Term {fail} ᴧ
Term {error} ᴧ Term {addon}

⇒ Bug-fix time {65-99 days} @ (2%, 67%)

5. Severity {Major} ᴧ Priority{P1} ᴧ Assignee { Dave Townsend

} ᴧ Term {con} ᴧ Term {test} ᴧ Term {add} ᴧ Term {text}

⇒ Bug-fix time {65-99 days} @ (2%, 100%)

We observe that, if we apply association mining after
clustering, we get different association rules. As we are
partitioning the datasets into clusters, we get association rules
with decreased support count i.e. 2%. Results also show that,
the confidence count lies in the range of 21 to 100%.

We get the similar results for other datasets.

V. RELATED WORK

In last few years, a number of valuable studies have been
conducted to address the problem of bug-fix time prediction.
A study on 72,482 bug reports from nine versions of Linux
software named Ubuntu has been conducted by [3]. Results
show that people participating in groups of size ranging from
1 to 8 users fixed 95% bug reports. The study results in 92%
linear relationship between the number of people participating
in fixing a bug report and bug-fix time. The applied linear
regression model resulted in R

2
 up to 0.98. At attempt has

been made on 512,474 bug reports of five open source projects
–Eclipse, Chrome and three products of Mozilla project –
Thunderbird, Firefox and Seamonkey to test the prediction
performance of existing models by using multivariate and
univariate regression [4]. As a result it was found that existing
models have predictive power between 30% and 49% and
more independent attributes can be included. No correlation
was found between bug-fix likelihood, bug-opener’s
reputation and the time it takes to fix a bug. A model has been
proposed for six projects: Eclipse JDT, Eclipse Platform,
Mozilla Core, Mozilla Firefox, Gnome GStreamer and Gnome
Evolution to predict that how promptly a new bug report will
receive attention [5]. Results show an improvement in bug-fix
time prediction accuracy if number of developers and number
of comments are included. An attempt has been made to show
the bug-fix time trends in Mozilla and Apache projects [22].
It was found that on average resolution time for bugs of
priority levels 4 and 5 exceeds 100 days, bugs of the priority
level 2 are resolved in 80 days or less and bugs of the priority
level 1 or 3 are resolved in 30 days or less. An attempt has
been made to focus on the delays incurred by developers
during bug fixing [25]. A study has been conducted to filter
out the data sets by identifying the potential outliers in the
distribution of the fix-time attribute. Results showed that
filtering these outliers can improve the accuracy of the
prediction models [26].

An attempt has been made to present an application of
association rule mining to predict software defect associations
and defect correction effort with SEL defect data [23]. The

results show that for the defect association prediction, the
minimum accuracy is 95.38 percent, and the false negative
rate is just 2.84 percent; and for the defect correction effort
prediction, the accuracy is 93.80 percent for defect isolation
effort prediction and 94.69 percent for defect correction effort
prediction. Recently, a study discussed the application of
association mining in bug triaging. Authors have used Apriori
algorithm to predict the right developer to work on the bug by
taking bug’s severity, priority and summary terms as the
antecedents [24]

To best of our knowledge, no approach has been proposed
till now to mine association rules among different bug
attributes to predict bug-fix time. Managers can use
association rules to improve development process by doing a
bug-fix time prediction for a given set of bug attributes.
Several performance studies have resulted in better accuracy
for associative classification than state-of-the-art classification
methods [9-18]. Our work has been motivated by the
successful application of association rule mining in various
fields.

VI. THREATS TO VALIDITY

Factors that can affect the validity of our study are as
follow:

Construct Validity: We have not empirically validated the
independent attributes taken in our study.

Internal Validity: Except the four attributes namely severity,
priority, summary terms and assignee taken in our study,
developer’s reputation can also be considered as it is an
important attribute which can contribute in bug-fix time
prediction.

External Validity: We have considered only open source
Mozilla products. The study can be extended for other open
source and closed source software.

Reliability: RapidMiner, SPSS and MATLAB software have
been used in this paper for model building and testing. The
increasing use of these software confirms the reliability of the
experiments. Errors in performance measures such as accuracy
of these tools has not been considered and handled.

VII. CONCLUSION

The time to fix a bug after the bug was introduced is called
bug-fix time. It is an important factor for bug related analysis,
such as measuring software quality or coordinating
development effort during bug triaging. Prior work has
proposed many bug-fix time prediction models based on
various bug attributes (number of developers who participated
in fixing the bug, bug severity, bug-opener’s reputation,
number of patches) for predicting the fix time of a newly
reported bug. Several studies have been conducted by using
classification and regression models. We have proposed an
approach for bug-fix time prediction based on other bug
attributes namely summary terms, priority, severity and
assignee by using Apriori algorithm and k-means clustering
followed by Apriori algorithm. We have also used k-means
clustering method to get groups of correlated variables

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 37

followed by association rules mining inside each cluster. We
have validated our results on 1,695 bug reports of
AddOnSDK, Thunderbird and Bugzilla products of Mozilla
open source project. We have presented top five association
rules for 20% minimum confidence and 3% and 7% minimum
support. We observe that, if we apply association mining after
clustering, we get different association rules. As we are
partitioning the datasets into clusters, we get association rules
with decreased support count i.e. 2%. Results show that, the
confidence count lies in the range of 21 to 100%.

By using these rules we can predict the bug-fix time for a
newly coming bug. We also observe that our approach for
bug-fix time prediction will be helpful in bug triaging by
assigning a bug to the most potential and experienced assignee
that will solve the bug in minimum time period. Prediction of
bug-fix time will help the managers in measuring software
quality and in software development process. From results, we
can observe the number of association rules having high
confidence and support with higher severity and priority as
antecedents and short bug-fix time as consequent. A large
number for such rules show that more important bugs are
fixed with out any delay. This information is useful in
determining software quality during software evolution
process. Further, for bugs with long predicted fix time we
need to pay more attention to the related source files to make
sure that the files remain stable during fixing process. This
will again help in determining software quality. We will
extend our work with other association mining algorithms to
empirically validate the results.

References
[1] S. Kim and J. E. Whitehead, “How long did it take to fix bugs?,” Int.

Workshop Mining Software Repositories. New York, NY, USA, ACM,
pp. 173–174, 2006

[2] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” ASE
2007.

[3] P. Anbalagan and M. Vouk, “On predicting the time taken to correct bug
reports in open source projects,” Int. Conf. Software Management
(Edmonton, AB). IEEE, pp. 523-526, September 20-26, 2009, DOI=
http://ieeexplore.ieee.org/10.1109/ICSM.2009.5306337.

[4] P. Bhattacharya and I. Neamtiu, “Bug-fix Time Prediction Models: Can
We Do Better?,” 8th Working Conf. Mining Software Repositories
(New York, NY, USA). ACM, pp. 207-210, 2012, DOI=
http://dl.acm.org/10.1145/1985441.1985472.

[5] E. Giger, M. Pinzger and H. Gall, “Predicting the fix time of bugs,” Int.
Workshop Recommendation Systems on Software Enginnering (New
York, NY, USA), ACM, pp. 52-56, 2010.

[6] M. Sharma, M. Kumari and V.B. Singh, “Understanding the Meaning of
Bug Attributes and Prediction Models,” 5th IBM Collaborative
Academia Research Exchange Workshop, I-CARE, Article No. 15,
ACM, 2013.

[7] R. Agrawal, T. Imielinski and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” SIGMOD Conf.
Management of Data, ACM, May 1993.

[8] Q. Song, M. Shepperd, M. Cartwright and C. Mair, “Software defect
association mining and defect correction effort prediction,” IEEE
Transactions on Software Engineering, Vol. 32(2) pp. 69 – 82, 2006.

[9] K. Ali, S. Manganaris and R. Srikant, “Partial Classification Using
Association Rules,” Int. Conf. Knowledge Discovery and Data Mining.,
pp. 115-118, 1997

[10] G. Dong, X. Zhang, L. Wong, and J. Li, “CAEP: Classification by
Aggregating Emerging Patterns,” Int. Conf. Discovery Science, pp.
30-42, 1999.

[11] B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and Association
Rule Mining,” Int. Conf. Knowledge Discovery and Data Mining, pp.
80-86, 1998.

[12] R. She, F. Chen, K. Wang, M. Ester, J.L. Gardy and F.L. Brinkman,
“Frequent-Subsequence-Based Prediction of Outer Membrane Proteins,”
ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
2003.

[13] K. Wang, S.Q. Zhou and S.C. Liew, “Building Hierarchical Classifiers
Using Class Proximity,” Int. Conf. Very Large Data Bases, pp. 363-374,
1999.

[14] K. Wang, S. Zhou and Y. He, “Growing Decision Tree on Support-Less
Association Rules.” Int. Conf. Knowledge Discovery and Data Mining,
2000.

[15] Q. Yang, H.H. Zhang and T. Li, “Mining Web Logs for Prediction
Models in WWW Caching and Prefetching,” ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, 2001.

[16] X. Yin and J. Han, “CPAR: Classification Based on Predictive
Association Rules,” SIAM Int. Conf. Data Mining, 2003.

[17] A.T.T. Ying, C.G. Murphy, R. Ng and M.C. Chu-Carroll,. “Predicting
Source Code Changes by Mining Revision History,” Int. Workshop
Mining Software Repositories, 2004.

[18] T. Zimmermann, P. Weigerber, S. Diehl and A. Zeller, “Mining Version
Histories to Guide Software Changes,” Int. Conf. Software Engineering,
2004.

[19] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz and T. Euler, “YALE:
Rapid Prototyping for Complex Data Mining Tasks,” ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining (KDD-06), 2006
(http://www.rapid-i.com).

[20] M. Porter, “An algorithm for suffix stripping,” Program.Vol. 14 (3), pp.
130–137, 2008.

[21] “http://in.mathworks.com/.../3016-armada-data-mining-tool-version-1-
4”, 2015, URL: http://in.mathworks.com/[accessed:2015-07-24].

[22] A. Mockus, R. T. Fielding and J. D. Herbsleb, “Two case studies of
open source software development: Apache and Mozilla,” ACM Trans.
on Software Eng. Vol. (11)3, 2002.

[23] M. Plassea, N. Nianga, G. Saportaa, A. Villeminotb and L. Leblondb,
“Combined use of association rules mining and clustering methods to
find relevant links between binary rare attributes in a large data set,”
Computational Statistics & Data Analysis, ELSEVIER, 2007.

[24] M. Sharma, M. Kumari and V.B. Singh, “Bug Assignee Prediction
Using Association Rule Mining,” ICCSA 2015, Part IV, LNCS 9158,
pp.444–457, 2015.

[25] F. Zhang , F. Khomh , Y. Zou and A. E. Hassan, “An Empirical Study
on Factors Impacting Bug Fixing Time,” 19th Working Conference on
Reverse Engineering (WCRE), pp. 225-234, 15-18 Oct 2012.

[26] W. AbdelMoez, M. Kholief and F. M. Elsalmy, “Improving bug fix-
time prediction model by filtering out outliers,” International Conference
on Technological Advances in Electrical, Electronics and Computer
Engineering (TAEECE), 2013 , pp.359-364, 9-11 May 2013.

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 38

