
Crowdsourcing for API documentation: A

Preliminary Investigation

Allahbaksh M. Asadullah
Infosys Labs, Infosys Ltd.

Bangalore, India

Email: allahbaksh.asadullah@infosys.com

Shilpi Jain
FORE School of Management

New Delhi, India

Email: shilpijain@fsm.ac.in

Abstract— Developers and researchers have been using

crowdsourcing in a variety of fields related to software

development and software engineering. Crowd based

documentation is another yield of crowdsourcing where the coder

community or workers document the software. In the present

work, we have analyzed how crowdsourcing can be used for an

API documentation. The study is based on the fact that good

programmers write descriptive variables and method names and

continue to do so for future references. A variety of tools such as

Amazon Mechanical Turk, ETurk and DocIt were evaluated for

the purpose. Among these, DocIt and ETurk were built in-house.

The evaluation of the documentation was performed by

experienced coders. This is a preliminary experiment which was

performed in a controlled environment. Results were encouraging

and help us to determine that in future crowd based

documentation might help to reduce time to market and improve

software quality.

Keywords: Crowdsourcing, API Documentation, Amazon

Mechanical, Turk, DocIt, E-Turk

I. INTRODUCTION

Development and maintenance of large software systems1

remains a difficult and daunting problem for any project team.

Based on the studies, the percentage of effort goes in

requirements phase is 15-20%, analysis and design is 15-20%,

development effort is 25-30%, system testing is 15-20%, and

maintenance effort across the software development life cycle

is typically 5-10%. Until early 90s, in a conventional software

development, the modification (adding or deleting a module or

functionality) of the code had been a great challenge. This

paradigm shifted with the emergence of object oriented

programming and open source software development that

supports modular programming and library reuse. By breaking

down the problem into multiple tasks, different developers2 can

work in parallel. Modular programming allows distributed

development that shorten the development and documentation

time. Moreover, individual modules are easier to design,

implement, and test.

1 At Infosys Ltd., any software project’s code that exceeds 50k

line of code (LOC) falls in the category of large software system (project).

Besides source code, several documents accompany a

software system, because there is a possibility that the source

code perhaps is not sufficient to convey the objective of the

project. Hence, moderate to large sized development projects,

irrespective of application, generate a large amount of

associated documentation such as documentation of code,

algorithms, application programming interface (API), UML

diagrams, sequence diagrams, class diagrams, design

documents etc. The set of these components are popularly

known as software artifacts or technical documents.

Usually, the process of documentation is elaborate and

requires a significant amount of effort. A substantiate

documentation reduces the maintenance work and further

improves the productivity and reusability of the code.

Many developers believe that the documentation doesn’t

require a high intelligent quotient and it is a waste of time and

effort. They consider that the code written by them is sufficient

and self-explanatory. On the other hand, another set of

programmers appreciate its importance but tend to avoid due to

paucity of time or limited resources. Segal [1] observed that

professional developers do not volunteer to produce code

documents. If necessary, they will write a page or two as a

formality. Brief and inappropriate documentation is a matter of

concern [2]. To overcome this limitation, new programmers

can leverage the abundant repository of unofficial API

documents generated by API users on community portals. This

unofficial documentation is popularly known as crowd

documentation because it is generated from crowdsourcing [3].

These documents have sufficient coverage for practical usages.

Blog post and ‘stack overflow’ are two types of crowd

documentation that have highest coverage ratios [4] . Latoza et

al. [5] describe the advantages of crowd based development in

their work. Crowdsourcing introduces agility in the component

development of large-scale industrial projects, especially when

dealing with changes in API.

Besides having several benefits of API documentation there

are not many tools available in the market which can perform

2 Please note that in the current study, words like developer,

coder, programmer, and worker are used as synonyms.

Workshop on Alternate Workforces for Software Engineering (WAWSE 2015) 43

mailto:allahbaksh.asadullah@infosys.com
mailto:shilpijain@fsm.ac.in
http://netbeans.org/project_downloads/usersguide/rcp-book-ch2.pdf
http://netbeans.org/project_downloads/usersguide/rcp-book-ch2.pdf

this task efficiently. Hence for the purpose, we have developed

two prototypes. In the current study we propose to evaluate and

compare the performance of Amazon Mechanical Turk (also

known as MTurk) with two in-house developed tools (ETurk

and DocIt). The other objective is to test whether they can

produce consumable APIs.

II. BACKGROUND LITERATURE

API documentation or Programmers documentation, is a

deliverable of technical writing in which a technical writer

develops instructions about how to effectively use a software

API, hardware (SCPIs) or web-API [6]. In addition to

established coders, it is even useful for new coders as it helps

them to understand and learn best practices and

implementation details. Among many, API documentation is a

subset of software documentation. It is often embedded within

the source code like Javadoc comments in Java. API

documentation is written in plain language which requires a

thorough understanding of the API, its arguments, its return

type and the languages and interface it supports. The text is

often supported by images or hyperlink to other elements of the

source code. API usability is important because of the spread

of APIs in almost every application domain [7]. Among the

factors that affect API usability, is the lack of diverse API

documents [8].

The extant literature noticed that unlike open source projects,

API documents are rarely updated in industrial setting. In open

source development, API documentation for deprecated code

is taken seriously and this task is mandatory before they release

candidate of the library. A set of specialized tools are available

for source code documentation, but rarely used [5]. Typically,

software engineers decide on their own what kind of

documentation is worthwhile to produce and maintain, and

adopt selective tools which help them for the purpose [9] [10]

[11]. This has been reported that software engineers tend to

ignore complex and time-consuming documentation [11].

Literature shows that scientific documentation does not follow

recommended standards proposed by SEBoK

(www.sebokwiki.org)

Previous studies have shown that a majority of Java

developers prefer to use Javadoc [2] [1] instead of APIs. In

another research, Latoza et al. [5] explained how a complex

task can be decomposed into set of smaller tasks in crowd

development. However, they did not discuss or refer any

specific case studies for the same. Kittur et al. [12] showcased

how an article writing can be achieved by crowdsourcing. Jiau

and Yang [13] studied the API documentation of few open

source project like GWT, SWT and Swing. They found that the

quality of documentation produced in open source forums was

of better quality. To the best of our knowledge, we could not

find any research study that specifically talks about the

development of API documents through crowdsourcing.

A variety of web platforms are available for software

crowdsourcing such as Amazon Mechanical Turk (also known

as MTurk). MTurk is one of the sites of Amazon Web Services.

It is a crowdsourcing Internet marketplace that enables

individuals and businesses to collaborate and perform complex

tasks that computers are unable to conclude. A user of

Mechanical Turk can be either a "Worker" (employee) or a

"Requester" (employer). MTurk is one of the sites of Amazon

Web Services. Employers post jobs known as HITs (Human

Intelligence Tasks), such as choosing the best among several

photographs of a storefront, writing product descriptions, or

identifying performers on music CDs. Workers can then

browse among existing jobs and complete them for a monetary

payment set by the employer. On the basis of jobs performed,

Turk creates qualification profile for the workers.

MTurk encounter certain limitations. In MTurk, it was

difficult for coders to highlight the syntax and due to which

code comprehension was a challenge. Second limitation, the

tool is limited to open source applications and doesn’t support

proprietary software. Therefore, for internal enterprise

applications, we developed a similar tool named as E-Turk

with enhanced features. The tool was tested with a team of Java

coders and it was observed that many developers were still

finding it difficult to associate the source code with required

class file (which might me parent class, implementations etc.).

They suggested that it would be helpful to give information

about methods and classes that are doing similar nature of

work. Hence we added a feature that can develop a connection

between similar classes & methods semantically. The new

version was renamed as DociT. To confirm the utility of DociT

and E-Turk over MTurk we performed an experiment based

study in industrial setting.

III. RESEARCH DESIGN

The research was conducted in two main phases:

Phase1: Preliminary investigation using surveys with

software programmers.

Phase 2: Experiment study where software developers wrote

API documentation on MTurk and customized prototypes.

Limited time, dynamic requirements, confined research

group, and small user base are some of the reasons cited for the

absence of documentation [10] [2] [1]. Several researchers

raised this concern but how to achieve the goal remain

unanswered. To estimate the root cause, in phase I of the

research, we conducted a preliminary survey with developer’s

community in the Silicon Valley of India, i.e. Bangalore, India.

The objective was to understand how frequently and precisely

our coders document the code, which is the preferred tool for

the purpose. The survey was designed by experts which had 15

questions to capture the responses. The survey was sent to

Workshop on Alternate Workforces for Software Engineering (WAWSE 2015) 44

http://www.sebokwiki.org/
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Marketplace
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/Amazon_Web_Services

approximately 127 Java coders with a minimum coding

experience of 3 years and maximum of 5 years. Out of 127,

only 95 responded, 2 responses were dropped because of

incompleteness and finally 93 responses (63 males and 30

females) constituted the final sample size.

A. Phase I Findings

The results indicated that 46.4% of respondents are in habit

to include comments before defining any function, method,

class or a variable, while 34.7% do it only when they feel it is

needed (when writing a complex algorithm or function), and

rest i.e. Approximately 19% do it rarely as they consider that

their code is self-explanatory and documenting it is a waste of

time. In response to another question, 86% developers reported

that they follow proper naming conventions and give

meaningful names. These findings led the foundation of our

research as our research is based on the fact that programmers

write descriptive method and variable names. Further, 83% of

developers deliberated that appropriately documented source

code facilitate in understanding of the code and leads to

reduction in code comprehension time, 33% think

documentation writing is a dull & boring job, and 16% of

developers think that API documentation is not needed. Since

projects have stricter deadlines, their focus remains on adding

features and deliver. Almost every coder reported that

documentation is a time consuming process and in most of the

cases hard deadlines doesn’t provide any room for it. Another

culprit is ‘frequent changes in requirements’ which completely

shifts the focus of a programmer from documentation.

B. Experiment Study

Mechanical Turk: Mechanical Turk (also known as MTurk)

is a decent platform but generic in nature. It lack certain special

features. In MTurk, the task submitted as a single HIT is

difficult to comprehend because of the code dependency. The

HIT is an independent work unit. The main advantage of

MTurk is that it offers insights into how one should design the

platform, what are the key problem that needs to be addressed

which a developer may face.

A CSV file from an open source project, Apache Drill3 was

selected to upload in MTurk. The worker had to pass the Java

programming test before getting assigned to any live project.

Once passed, they attempt to HIT. Every HIT included a fully

qualified name of the class, a method and to be documented,

and class body. The workers were expected to write the API

documentation (java doc) of the method in the text area

provided. We have included these three fields so that the

workers can understand the package hierarchy from the class

name, document the method from the method body provided

and use the class body as a reference to identify the relationship

of the method from other methods present in the class. Each

time the HIT is answered by a specified number of users, the

HIT list is updated dynamically with the pool of pending hits.

HITs are exhibited to users in random fashion.

Enterprise Turk (E-Turk): E-Turk was designed by

mimicking the MTurk and has several modules such as user

registration, user modules etc. The user interface of E-Turk is

easy to use and almost similar to Mechanical Turk with an

exception. Unlike MTurk, in E-Turk, the users were allowed to

view all HITs, the source code was rendered with highlighted

syntax which makes it easier to comprehend, and submission

of the task is easy in comparison to Amazon Mechanical Turk.

In MTurk we faced difficulties in posting of certain tasks

(HITs) where the code snippet had special characters.

DocIt: This tool was superset of E-Turk. The tool can

browse, search and navigate the source code online. Also the

tool featured semantic search and gives information on related

method and classes. This resembled Eclipse in many aspects.

The UI for DocIt was borrowed from another API explorer

tool. When a developer clicks on any previously documented

method it gives the latest document which the developer could

edit to improve. If there is no documentation for the method

then the developer may add the same.

The experiment study with the second platform gave us more

insights into the problems faced by the crowd while

documenting the source code. For examples, developer could

frequently observe the related classes / interfaces. They

experienced different patterns in the source code to find out

how an object could have created (in case of Factory, Abstract

Factory or Prototype Design pattern). These features are fairly

common and available in other IDEs. Hence, DocIt was

designed to address those key issues.

Prior to the initiation of experiment, certain preparations

were made. We followed systems approach and developed a

process flow diagram (see Figure 1).

Fig. 1. System Diagram

Version Control Plugin (VCP) – We designed a VCP that

extracts latest source code from the version control system.

Since Team Foundation Server (TFS) is widely used in the

organizations, we designed VCP for the TFS. It is important to

note here that one can design or extend VCP for any other

version control system by using appropriate libraries such as

JHG, JGit etc. This plugin pulls the source code from the

Workshop on Alternate Workforces for Software Engineering (WAWSE 2015) 45

Version Control System which is then be acted by different

components of the system.

Source Code Parser – The source code which is pulled from

Version Control System is input to the Source Code Parser. The

source code parser can parse the elements of the source code.

For example, in Java it can tell about the various methods in

the class, field variables and their initial values etc. The source

code parser analyzes the source code which is a .java file and

create an Abstract Syntax Tree (AST). The AST provides

detailed view of the source code. The necessary information

from AST is then extracted and is saved as Comma Separated

File (CSV file) and an index file.

Each .java file created more than 1 row in the CSV file. A

row in a CSV file contains details of method. The column

attributes are method body, class body, class full name

(Package Name +Class Name), which means that for each

method (in .java file), we will have a row entry in the CSV file.

The CSV file and the index is input to the systems like

Mechanical Turk, E-Turk and DocIt. Each row in the CSV file

correspond to one unit of work which is called as HIT (in

Amazon Mechanical Turk).

Each HIT is independent of the other HIT and the tasks can

be completed without any further detailed knowledge. There is

no navigation facility available in Amazon Mechanical Turk

and E-Turk. Based on our knowledge and other results, it was

realized that navigation plays important role in source code

comprehension. Consequently, this limitation was addressed in

DocIt. Besides navigability, DocIt has additional functionality.

It has rich interface that can browse and explore the source

code effectively. DocIt uses two inputs: CSV file and Index.

The index feature facilitates navigation.

Below is step by Step process

1. We first extracted the source code elements and related

artifacts from version control system (VCS).

2. The source code is then parsed and a CSV File and

Index file is prepared.

3. These artifacts are provided to the crowd developers

via Mechanical Turk, ETurk, and DocIt.

4. Based on the available source code and other

information, developers wrote API documents.

5. The API documents were evaluated by a handful of

experienced system architects.

6. Once the API document for particular method is

approved, the source code was updated and committed

to the version control.

IV. FINDINGS

In case of E-Turk and DocIt we did not conduct any test to

check the knowledge of the developer, instead we handpicked

a team of coders (Java) from Infosys. These programmers had

scored more than 65% of marks in an internal Java exam. An

Enterprise Java application was given for the documentation.

They were free to choose their tool from the available 3

options. We advertised about these tools through several

internal media channels. Nevertheless, MTurk wasn’t the

preferred choice for documentation. Merely 30% of the HITs

were resolved from the given list, and only 23 out of 237

(approx.10%) coders participated in the exercise. These

findings were quite surprising hence, we asked the rest for the

reasons through a semi structured questionnaire. Their

responses are summarized in Table 1.

TABLE I. PHASE I RESPONSES
 Percentage of Responses

1 Lack of experience with MTurk 65%

2 Tool Usability (issues with UI and

framework).

72%

3 Complicated HITs 57%

4 Non-challenging HITs / Ambiguous

HITs

77%

In case of Mechanical Turk, the workers had no other

alternative to visualize additional methods which they can use

to document the same class. This means that the person

documenting the method will be given a random method mij

from a class Ci where mij in Ci. Hence the worker has to read

the new class and understand it which was time consuming.

The HITs were independent of each other, therefore, there are

chances that for every HIT worker may probably get a new

class, which leads to waste of time of the worker writing the

documentation. HITs are released in certain batches, hence

there is no guarantee that all the methods of a single class will

be released one at a time. About 60% of coders reported that

the HITs did not interest them or motivate to respond.

In E-Turk, the results were comparatively better that MTurk.

This could be because of two reasons: a. the coder community,

tool, and application were internal resources (i.e. available

within the organization setup), b. Since these applications were

developed for the client, they were well written and followed

industry standards of coding and formatting. All developers

were experienced Java coders.

In case of DocIt, a cross reference to the classes and methods

was available. This helped the developers in accessing more

information about the methods and the classes. They could

navigate easily to other classes and methods resulting in

improved documentation. DocIt was used by 15 developers.

We observed that the developers did navigate the source code

and read related classes and methods before documenting the

method. Many of the developers looked at the other artifacts

which were presented in the tool based on the class the

developer was browsing in the tool. For example, for a class

called HousingLoan, the developers paid attention towards the

related documents and look over the threaded discussions on

AutomobileLoan. Almost 45% of the developers resorted to

reading these descriptions and found them useful in API

document preparations. From the logs of the tool, we found that

developers spent a considerable amount of time towards

Workshop on Alternate Workforces for Software Engineering (WAWSE 2015) 46

understanding the classes like ILoan (interface), IInterest etc.

which were related to the Loan class before writing the API

document.

A. Validation of API Documents

Post experiment, a team of system architects and authors of

the class files reviewed API documents. The documents were

checked for completeness, context and precision. On an

average coders wrote 6 lines per method in the API document

and reviewers’ added 2.5 lines to the submitted API

documentation. Three out of four reviewers did spend time to

check whether the documentation conveyed intended meaning

and relevant to the context. The average time per method spent

for review was 7 to 8 minutes. These metrics are decent as

successful open source projects follow the same metrics before

their source code is committed to any VCS (Version Control

System).

Our study was based on the fact that the available tools are

insufficient to perform accurate API documentation. For

validation, two other source code documentation tools (e.g.,

TwinText and Doc-O-Matic) were used which comprehend the

source code and generates the API documentation. These tools

doesn’t require any human intervention.

TwinText3 uses code comments with source code analysis to

generate the API documentation. One can define the style of

API documentation in TwinText. This tool has a limitation,

API documentation produced here embed originator’s

comments. Some of these comments were generic and written

merely for understanding purposes (e.g. the code comments

written by the developer merely to understand the internal code

structure) which might not be worthwhile for code reader or

developer who might use these API in future. The tool does not

provide any consumable APIs.

Doc-O-Matic 4 uses the source code as primary artifact and

add additional information based on the domain through

external inputs. This tools uses Java language semantics to

identify the package name, member variables, and method

names and then generates the API documentation. We used

Doc-O-Matic on the Apache Drill project, and the output (API

documentation) was inappropriate. The descriptions had

random words and control characters. Our guess is that

probably their NLP (Natural language Processor) was unable

to generate meaningful sentences.

The objective of current study was to evaluate and compare

the performance of DocIt with other similar tools available in

the market and whether they can produce consumable APIs.

We found that none of the available options could solve the

purpose. Manually generated API documents were better and

meaningful over automatic API documentation tools. Below

3http://www.ptlogica.com/TwinText/

4 http://www.doc-o-matic.com/

are some of the metrics which we picked to check how much

time and effort it takes to create API documentation.

V. CONCLUSION AND FUTURE WORK

Our preliminary investigation showed that software API

documentation can be achieved by crowdsourcing. A variety of

developers review API documentation and prepare the final

output through code review system. Prior research confirms

that the crowd documentation is dependent upon the paradigm

of the programming language. The person writing the

documentation should have the knowledge of programming

paradigm and the domain of the project. Comparatively,

developers spent lesser amount of time and effort in

documenting a code where modules are interacting using APIs.

We conclude by making an observation that the development

of API documentation by crowd sourcing saves time and effort.

It further helps the software industry and academia to evolve

and generate new software systems and innovate rapidly. We

are further exploring additional artifacts that could be helpful

in documentation. During the time of writing this paper, we are

experimenting with unit test cases and version commit

messages. These studies are still in progress.

REFERENCES

[1] J. Segal, "Models of scientific software development," in 1st International

Workshop on Software Engineering for Computational Science and

Engineering, 2008.

[2] R. Sanders and D. Kelly, "Dealing with Risk in Software Development,"

Software-IEEE, vol. 25, no. 4, pp. 21-28, 2008.

[3] J. Howe, "The Rise of Crowdsourcing. Wired," The Wired, vol. 14, no. 6, 2006.

[4] C. Parnin and C. Treude, "Measuring API Documentation on the Web. , pages

25–30, May 2011.," in In Proceeding of the 2nd International Workshop on

Web 2.0 for Software Engineering, 2011.

[5] T. D. LaToza, B. W. Towne, A. V. D. Hoek and J. D. Herbsleb, "Crowd

Development," in 6th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), 2013.

[6] G. Singh, "What is API Documentation?," 27 March 2012. [Online]. Available:

http://technicalwritingtoolbox.com/2012/03/27/what_is_API_documentation,

[Accessed 22 February 2015].

[7] J. M. Daughtry, U. Farooq, J. Stylos and B. A. Myers, "API Usability," in In

Proceedings of the 27th International Conference on Human Factors in

Computing Systems: CHI’2009 Special Interest Group Meeting, 2009.

[8] M. P. Robillard, "What Makes APIs Hard to Learn? Answers from

Developers," IEEE Software, vol. 26, no. 6, pp. 27-34, 2009.

[9] T. C. Lethbridge, J. Singer and A. Forward, "How Software Engineers use

Documentation: The State of Practice," Software, IEEE, vol. 20, no. 6, pp. 35-

39, 2003.

[10] L. Nguyen-Hoan, S. Flint and R. Sankaranarayana, "A Survey of Scientific

Software Development," in International Symposium on Empirical Software

Engineering and Measurement, 2010.

Workshop on Alternate Workforces for Software Engineering (WAWSE 2015) 47

[11] A. Pawlik, J. Segal and M. Petre, "Documentation Practices in Scientific

Software Development," in 5th International Workshop on Cooperative and

Human Aspects of Software Engineering (CHASE), 2012.

[12] A. Kittur, B. Smus, S. Khamkar and R. E. C. Kraut, "Crowdforge:

Crowdsourcing Complex Work.," in 24th Annual ACM Symposium on User

Interface Software and Technology, 2011.

[13] H. C. Jiau and F. P. Yang, "Facing up to the inequality of crowdsourced API

documentation," in Sigsoft Software Enfgineering Notes, 2012.

[14] B. Dagenias and M. P. Robillard, "Creating and evolving developer

documentation: Understanding the decisions of open source contributors," in

18th ACM Sigsoft International Symposium on Foundations of Software

Engineering, 2010.

[15] A. Forward and T. C. Lethbridge, "The relevance of software documentation,

tools and technologies: A Survey," in ACM symposium on Document

Engineering, 2002.

[16] D. Kramer, "API Documentation from Source Code Comments" A Case Study

of Javadoc.," in 17th Annual International Conference on Computer

Documentation, 1999.

[17] K. T. Stolee and S. Elbaum, "Exploring the Use of Crowdsourcing to Support

Empirical Studies in Software Engineering," in International Symposium on

Empirical Software Engineering and Measurement, 2010.

Workshop on Alternate Workforces for Software Engineering (WAWSE 2015) 48

