
Optimising Performance of Object-Oriented and
Object-Relational Systems

by Dynamic Method Materialisation

Mariusz Masewicz, Robert Wrembel, and Juliusz Jezierski

Poznań University of Technology, Institute of Computing Science
Poznań, Poland

{Mariusz.Masewicz,Robert.Wrembel,Juliusz.Jezierski}
@cs.put.poznan.pl

Abstract. Efficient executions of object methods have a great impact on
application response times. Optimising access to data returned by methods is
an important issue in object-oriented programs, object-oriented and object-
relational systems, as well as in distributed object environments. Since methods
are written in high-level programming languages, optimising their executions is
difficult. In this paper we present a technique of reducing access time to data
returned by methods by means of materialising method results. We have
developed a prototype system where the software module, called the method
analyser and optimiser is responsible for monitoring method access and
gathering execution statistics. Based on the statistics, the module selects
appropriate methods for materialisation. The experiments that we have
conducted show that the overall system's response time decreases while using
our optimisation technique.

1 Introduction

Object–oriented (OO) technologies [14] and systems have been developed in order to
support storing and processing complex data and ease software development. OO
applications usually take advantage of methods as a mean of accessing objects [2]. A
method can be a very complex program, that accesses a large number of objects and
whose computation may last long. Therefore the efficient execution of a method has a
great impact on an application's response time. Optimising method executions is
difficult since methods are expressed in an object-oriented language taking advantage
of inheritance, overloading and late binding. Moreover, the codes of methods are
usually complex using loops, conditional expressions, and calls to other methods.

The systems that profited from OO technologies include among others: Computer
Aided Design, Computer Aided Manufacturing, Computer Aided Software
Engineering, Geographical Information Systems [13], Computer Supported Co–
operative Work, Office Information Systems, various multimedia applications, and
distributed computing systems (e.g. CORBA [15]). Since a few years, one can
observe a trend towards the integration and analysis of complex data stored in various

1

 2

systems. To this end, object-relational [5, 6, 7], XML [16], or even multimedia data
warehouses [17] are being investigated and developed.

The application of a data warehousing technology to the integration of complex
data implies combining object–oriented technology with the technology of data
warehousing. In the process of integrating and warehousing complex data,
materialised object–oriented views play an important role, e.g. [9, 18]. The
materialisation of an OO view includes the materialisation of its structure as well as
methods. Moreover, in traditional OO systems, method caching, precomputing, and
materialising techniques appeared to be promising, e.g. [1, 8, 10, 20].

A method materialisation consists in computing the result of a method once, store
it persistently in a database and then use the persistent value when the method is
invoked. On the one hand, the materialisation of a method reduces time necessary for
accessing a method's result, especially when its execution takes long time. But on the
other hand, materialised results of methods have to be kept up to date when data used
to compute the results change. Therefore, in order to improve a system's performance,
only the right set of methods should be materialised.

The goal and contribution of this work is the development of a framework for
increasing a system's performance by applying method materialisation. The
performance is increased by selectively materialising only the chosen methods, i.e.
those whose computation is costly and whose materialised results can be maintained
at low costs. The goal is achieved by applying the dynamic method materialisation
technique. In this technique, a software module, called method analyser and
optimiser, is responsible for monitoring access to methods and gathering execution
statistics. Based on the statistics, the module automatically selects appropriate
methods for materialisation. The statistics are gathered for every method considered
for materialisation. When an object used for the materialisation of a method result is
updated, the result is invalidated and recomputed. When the number of updates
invalidating a materialised result increased beyond a threshold, our system
automatically dematerialises a given method. The experimental evaluation of our
prototype shows that the overall system's performance increases while using our
optimisation technique.

This paper is organised as follows: Section 2 discusses related approaches to
method materialisation. Section 3 overviews basic issues on method materialisation.
Sections 4 and 5 present the hierarchical method materialisation and the dynamic
method materialisation techniques, respectively. Experimental evaluation of our
dynamic materialisation technique is discussed in Section 6. Finally, Section 7
summarises the paper.

2 Related Work

Method materialisation (precomputation, caching) was proposed in [7, 1, 10, 11, 4,
19, 20] in the context of indexing techniques and query optimisation. The work of [7]
sets up the analytical framework for estimating costs of caching complex objects.
Two data representations are considered, i.e. a procedural representation and an
object identity based representation. In the analysis, the author has assumed that

 3

procedures are independent on each other, i.e. they do not call each other. Moreover,
the maintenance of cached objects was not taken into consideration either.

In the approach of [1], the results of materialised methods are stored in an index
structure based on B–tree, called method–index. While executing queries that use
materialised method M, the system searches the method–index for the value of M
before executing it. If the appropriate entry is found the already precomputed value is
used. Otherwise, M is executed for an object. The application of method
materialisation proposed in [1] is limited to methods that: (1) do not have input
arguments, (2) use only atomic type attributes to compute their values, and (3) do not
modify values of objects. Otherwise, a method is left as non–materialised.

The concept of [10, 11] uses the so called Reverse Reference Relation, which
stores an information on: an object used to materialise method M, the name of a
materialised method, and the set of objects passed to M as arguments. Furthermore,
this approach maintains also an information about the attributes, called relevant
attributes, whose values were used for the materialisation of M. For the purpose of
methods invalidation, every object has appended the set of those method identifiers
that used the object. The limitations of this approach are as follows. Firstly, the
proposed method materialisation technique does not consider method dependencies.
Secondly, a system's designer has to explicitly define in advance data structures for
storing the set of method identifiers appended to every object. The defined data
structures may never be used when methods are not materialised.

A concept of so called inverse methods was discussed in [4]. When an inverse
method is used in a query, it is computed once, instead of computing it for each
object returned by the query. The result of an inverse method is cached in memory
only within a query duration time and it is accessible only by the current query that
computed it.

In [20] the authors propose temporarily storing results of method executions in
memory in a hash table. In order to increase the usage of cached results, complex
functions are decomposed to simple ones, whose results are cached. The approach
supports caching methods with constant input values only, i.e. various calls of the
same method have to provide the same value of input arguments that strongly limits
the application of the approach.

Optimisation of OO queries using methods is discussed in [19]. The work
contributes by developing a cost model for method executions. This model includes
the number of O/I operations and CPU time, but it does not consider method
materialisation.

3 Method Materialisation - Overview

A method whose execution time is long can be materialised, i.e. the result of its
execution for a given object and with a given set of input argument values can be
stored persistently on a disk. Every subsequent invocation of the same method for the
same object and with the same set of input argument values will be handled by
reading the already materialised value. A drawback of method materialisation is that
values of materialised methods become invalid when objects used for computing

 4

them change. Objects used for computing method values will further be called base
objects. In a consequence of base object updates, materialised results of methods
have to be deleted or set invalid, and then recomputed.

Two important issues arise while working with materialised methods, namely: (1)
what technique to use for method materialisation, and (2) which methods to
materialise? In our approach, we use the hierarchical method materialisation
technique. In this technique, not only the method mi being called is materialised but
also other methods called by mi are materialised.

The second issue concerns selecting right methods for materialisation, as not every
method can be materialised and maintained at low costs. First of all, methods having
many input arguments with wide domains may not be good ones for materialisation,
as materialised results would require huge storage space. Moreover, one would have
to implement additional storage structures for efficient searching large sets of
materialised results. Second of all, methods whose base objects are being frequently
modified should be carefully considered for materialisation. Frequently modified base
objects cause that materialised results would have to be invalidated too frequently,
deteriorating a system's performance. In our approach we use the dynamic
materialisation technique. In this technique, a system monitors method usages
(method reads and updates of base objects). Based on the gathered statistics, the
system decides whether to materialise a given method or not.

4 Hierarchical Method Materialisation

4.1 Concept

In [8, 12] we proposed a novel technique of method materialisation, called the
hierarchical materialisation. When hierarchical materialisation is applied to method
mi, then not only the result of mi but also the results of other methods called from mi
are stored persistently. The result of the first invocation of mi for a given object oi and
with a given set of input argument values is stored persistently. Each subsequent
invocation of mi for the same object oi and with the same set of input argument values
uses the already materialised value. When an object oi, used to materialise the result
of method mi, is updated or deleted, then mi has to be recomputed. This
recomputation can use unaffected intermediate materialised results, thus reducing the
recomputation time overhead.

4.2 Example

In order to illustrate the idea behind the hierarchical materialisation let us consider a
simplified CAD design of a personal digital assistant (PDA), as shown in Figure 1. A
PDA is modelled as the PDA class composed of the MainBoard, SoundCard, and
Display class. MainBoard, in turn, is composed of CPU. SoundCard is further
composed of Speaker, whereas Display is composed of HighlightUnit.

 5

Fig. 1. An example CAD design of a PDA

Each of these classes has method power() that computes and returns power
consumption of a certain object. A collaboration diagram between the instances of the
above classes is shown in Figure 2. The value of power() for object m515 (the
instance of PDA) is computed as follows: mb100->power() + sc100->power()
+ dsp100->power(). mb100->power() is computed as follows: self->
power_cons + cpu33->power(int v_frequency), where power_cons is an
attribute that stores power consumption of a main board itself. sc100->power()
and dsp100->power() are computed similarly as for a main board.

Let us further assume that the power() method was invoked for object m515 and
materialised hierarchically. In our example, the hierarchical materialisation results in
materialising also mb100.power(), sc100.power(), and dsp100.power().

Fig. 2. An example collaboration diagram between class instances of a PDA design

Having materialised the methods, let us assume that the component object cpu33
was replaced with another central processing unit using 133MHz clock, instead of
33MHz. This change results in higher power consumption of main board mb100 and
of the whole PDA m515. In a consequence, the materialised values of m515.power()
and mb100.power() have to be invalidated and recomputed during next invocation.
However, during the recomputation of m515.power(), the unaffected materialised
results of sc100.power() and dsp100.power() can be used.

 6

4.3 Storage Structures

In order to materialise methods, maintain the materialised results, and use
materialised values, we developed five data structures. These structures, which are
described below, are called Materialised Methods Dictionary, Materialised Method
Results Structure, Graph of Method Calls, Inverse References Index, and Method
Value Index.

Materialised Methods Dictionary (MMD) makes available a data dictionary
information about all methods, that among others include: a method name and class,
the array of input arguments, a method return type, a method implementation, and a
flag indicating if a method was materialised.

Materialised Method Results Structure (MMRS) stores the following information
about every materialised method: (1) the identifier of a method, (2) an object
identifier the method was invoked for, (3) the array of input argument values a
method was invoked with, (4) the value returned by a method while executed for a
given object and for a given array of input argument values.

When materialised method mi is invoked for a given object oi and with a given
array of input argument values, then MMRS is searched in order to get the result of
mi. If it is not found then, the value of mi is computed and stored in MMRS.
Otherwise, the materialised result of mi is fetched from MMRS. When an object used
to compute the materialised value of mi is updated or deleted, then the materialised
value becomes invalid and is removed from MMRS.

Dependencies between methods, where one calls another one, is called Graph of
Method Calls (GMC). GMC is used by the procedure that maintains the materialised
results of methods. When materialised method mj becomes invalid all the materialised
methods that use the value of mj also become invalid. In order to invalidate those
methods the content of GMC is used. GMC stores pairs of values: the identifier of a
calling method and the identifier of a method being called.

In order to invalidate dependent methods the system must be able to find also
inverse references in object composition hierarchy. In order to ease the traversal of a
composition hierarchy in an inverse direction we use so called inverse references for
each object. An inverse reference for object oj is the reference from oj to other objects
that reference oj. The references are maintained in a data structure called Inverse
References Index (IRI). For example, an inverse reference for object cpu33 (cf.
Figure 2) contains one reference to object mb100. At the implementation level, a
separated IRI is created for every, but a root class in a composition hierarchy.

Method Value Index (MVI) is an index defined on results of methods. Every
method of a class has its own MVI. The index stores the following: (1) the value of a
method input argument, (2) a method result, and (3) an object identifier a method was
invoked for. By using this index, the system is able to quickly find answers to queries
that use methods, e.g. show all PDAs with power consumption lower than 1W. The
content of MVI is filled in with data when methods are materialised.

 7

5 Dynamic Method Materialisation

Finding the right set of methods for materialisation is difficult as one have to take into
account for each method mi its execution/response time as well as the number of
reads of a materialised method and the number of invalidations of this method, i.e. the
number of updates of its base objects.

The best performance is achieved when there are only reads of materialised
method values in a system. The worst performance is achieved when there are in the
system only updates of base objects, but methods are rematerialised after every
update. In this case, however, there is no sense in materialising methods. Scenarios
between the best and the worst cases are the subjects of detailed analysis. In real
systems one may expect a mixture of reads and updates addressing a given
materialised method. In a consequence, the system will profit from materialisation for
read transactions. Whereas, for update transactions a system will spend some time on
rematerialising previously invalidated method results.

The goal of this work is to increase a system's performance for transactions
reading method values. Materialising only those methods whose computation is
costly and whose base objects are not frequently updated increases the performance.
The goal achieved by applying the dynamic method materialisation technique. In our
approach methods are materialised hierarchically, (cf. Section 4) since it was proved
to be a promising and efficient technique for some types of methods [8]. However,
the dynamic materialisation can be applied to any other materialisation technique.

5.1 System Tuning with Dynamic Method Materialisation

The dynamic method materialisation technique consists in: (1) gathering method
usage statistics and based on the statistics (2) finding methods whose materialisation
increases system's performance and methods whose materialisation deteriorates
system's performance. A software module, called the method analyser and optimiser
does the final selection of methods for materialisation. It also monitors method access
patterns and gathers execution statistics.

For a given method mi the execution statistics include:
• method execution times and the number of disk accesses for every object and

every set of input argument values,
• the number of base object updates,
• the number of reads of mi materialised values,
• method invalidation times and the number of disk accesses for every object

and every set of input argument values,
• method recomputation times and the number of disk accesses for every object

and every set of input argument values,
• time and the number of disk accesses required for finding an already

materialised value.
Tuning of a system is performed in two following steps.

 8

Step 1
A system administrator selects the set SM of methods for materialisation. After that,

first calls of these methods materialise their results. Having materialised the methods
in SM, the method analyser and optimiser is constantly monitoring the usage of the
methods and is gathering execution statistics. It is so called sampling cycle.

The set of transactions using mi and its materialised values will further be called
the batch transaction set. The size of the batch transaction set is parameterised by a
system administrator. For every method mi in SM a sampling period lasts until a given
number of transactions in the batch transaction set is reached. After that, the system
enters the second step.
Step 2

In this step, the method analyser and optimiser identifies methods whose
materialisation increases system's performance and methods whose materialisation
deteriorates the performance. To this end, the execution statistics are used. Methods
from the second category are automatically dematerialised. After that, the module
enters the sampling cycle (cf. Step 1) for the remained materialised methods.

5.2 Selecting Methods for Materialisation - Cost Model

The decision taken by the method analyser and optimiser whether to keep a
method as materialised or not is based on the below formula. Let r be the number of
transactions reading the materialised value v of method mi. Let u be the number of
transactions updating a base object of mi. The sum of r and u yield the number of
transactions in the batch transaction set.

Let tR
MAT represent the time of reading a materialised value of mi. This value is red

from MMRS (cf. Section 4.3). Let tEXEC be the execution time of non-materialised
method mi. Let tREMAT be the time of rematerialising value v of mi, after its base object
was updated. All the discussed times include I/O as well as CPU times.

The materialisation of method mi will reduce query response time if the following
holds: the overall time spent on reading materialised value v of mi by the number r of
reading transactions plus the overall time spent on rematerialising the value of mi by
the number of u update transactions is lower than the overall time spent on computing
the result of non-materialised mi for every reading transaction (cf. Formula 1). ∆
represents a coefficient by which an overall system's response time is to be reduced. It
takes its value from the range of (0, 1) and it is considered as a tuning parameter set
up by an administrator.

∆∗∗<∗+∗ EXECREMAT
R
MAT trtutr (Formula 1)

In the worst case, i.e. when all branches in the GMC have to be invalidated, the
rematerialisation time (tREMAT) includes: the invalidation time of a materialised result
(tINV), computation of a method result from scratch (tEXEC), and writing the
materialised result on disk (tW

MAT). Thus can be expressed as follows:
W
MATEXECINVREMAT tttt ++= (Formula 2)

After replacing tREMAT in Formula 1 by tREMAT from Formula 2, we obtained
Formula 3 expressing the number of updates to the number of reads. If for a given
method mi and a given batch transaction set the inequality is true, then it is profitable

 9

to materialise mi as it will increase system's performance. Otherwise, mi has to be
dematerialised.

R
MATEXEC

W
MATEXECINV

tt
ttt

u
r

−∗∆
++

> (Formula 3)

6 Experimental Evaluation of Dynamic Materialisation

The described dynamic method materialisation combined with the hierarchical
materialisation has been implemented in Java, on top of the FastObjects t7 (ver. 9.0)
object–oriented database system, which was used as a storage system for our data
structures and test objects. The prototype and the experiments were run on a PC with
the Pentium III (1.13GHz) processor and 128 MB of RAM, under Windows2000.
The goal of the experiments was to evaluate our dynamic materialisation technique,
i.e. to compare an overall system's response time for three cases where: (1) methods
were not materialised at all, (2) methods were kept materialised all the time, (3)
methods were materialised dynamically.

The graph of method calls (cf. Section 4.3) was composed of 4 levels, each of
which having 10 sublevels, as shown in Figure 3. Method m1 was calling 10 methods
m1-1 to m1-10 for objects o1-1 to o1-10, respectively. Every method from the lower level
was calling 10 other methods. The size of base objects was constant and equalled to
100 kB. The total size of our test database equalled to 1.1GB.

Fig. 3. A test GMC

The carried out experiments present overall system's response time for a given
batch transaction set of 1000 transactions. The number of read (r) and update (u)
transactions in the set was parameterised from 0 to 1000, so that r+u remained
constant and equalled to 1000. The execution time of every method was also
parameterised and ranged from 10 ms to 100000 ms. However, the results presented
in this paper (due to space limitations) are for methods whose execution times
equalled to 100 ms. The obtained overall system's response times were measured for
root method m1, cf. Figure 3. Every update transaction modified based objects at the
lowest level that caused the invalidation of one branch.

Figure 4 presents overall system's response times of method m1 in a function of the
number of reading transactions in the test batch transaction set.

• t: NM - represents the execution time of a non materialised method;

 10

• t: 1 branch NM - represents an execution time when a frequently invalidated
branch was never materialised;

• t: MAT select - represents an execution time when previously invalidated
branch was rematerialised just before reading the value of m1;

• t: dynamic - represents an execution time when the dynamic materialisation
was applied;

• t: error cost - represents the estimated cost of wrong decision made by our
method analyser and optimiser. This cost is expressed by additional time spent
on computing the value of m1 if its branch was not materialised although it was
supposed to be materialised.

Fig. 4. Overall system's response time for method execution times equalled to 100 ms

As we can observe from the chart, the system with methods being hierarchically
materialised, cf. the "t: MAT select" time, is much more efficient than without
materialised methods, cf. the "t: NM" time. Additional efficiency improvement is
achieved by the dynamic materialisation, i.e. an overall response time of a system
with dynamically materialised methods is lower (cf. "t: dynamic") than an overall
system's response time with materialisation (cf. "t: MAT select").

Within the range of reads between 500 and 680 (i.e. 320 to 500 updates) the
system may leave a given method as materialised or dematerialise it. The cost of
taking a wrong decision is represented by "t: error cost". When the number of
reading transactions exceed 680 the method analyser and optimiser decides to keep
method mi materialised and rematerialises it just after its base object update. Thus,
from a user's point of view, the value of mi is available immediately when required.

In our prototype system we have experimented also with methods having 10 ms,
100 ms, and 100000 ms execution times. Similar performance improvement was
achieved as for the cases presented in Figure 4.

 11

Although in the presented experiments one branch of GMC was invalidated, our
hierarchical materialisation improves system's performance also when more branches
have to be invalidated, cf. [8].

7 Conclusions

In this paper we discussed our approach to optimising access to data returned by
methods. To this end, we proposed applying the hierarchical materialisation technique
as it appeared to be promising for accessing data returned by methods [8]. The
process of selecting the right methods for materialisation is based on the dynamic
materialisation. To the best of our knowledge, it is the first approach to automatic
optimisation of method executions by using materialised methods. The dynamic
materialisation can be applicable to every system that uses methods and to other
materialisation and caching techniques, as discussed in Section 2.

As our experiments show, by using the dynamic materialisation, the overall
system's performance can be substantially improved. Moreover, the lower number of
update transactions the shortest system's response time for a given dynamically
materialised method mi.

In the current implementation of the prototype system, the body of method mi
being materialised may not contain OQL commands as it would cause difficulties in
registering in MMRS the used object identifiers and values of the method. Future
work will focus on removing this limitation.

References

1. Bertino, E.: Method precomputation in object–oriented databases. SIGOS Bulletin, 12 (2,
3) (1991)

2. Cattell, R., Barry, D., Berler, M., Eastman, J., Jordan, D., Russel, C., Shadow, O.,
Stanienda, T., Velez, F.: Object Database Standard: ODMG 3.0, Morgan Kaufmann
Publishers (2000)

3. Czejdo, B., Eder, J., Morzy, T., Wrembel, R.: Design of a Data Warehouse over Object–
Oriented and Dynamically Evolving Data Sources. Proc. of the DEXA'01 Workshop
Parallel and Distributed Databases, Munich, Germany (2001)

4. Eder, J., Frank, H., Liebhart, W.: Optimization of Object–Oriented Queries by Inverse
Methods. Proc. of East/West Database Workshop, Austria (1994)

5. Gopalkrishnan, V., Li, Q., Karlapalem, K.: Efficient Query Processing with Associated
Horizontal Class Partitioning in an Object Relational Data Warehousing Environment. In
Proc. of DMDW'2000, Sweden (2000)

6. Huynh, T.N., Mangisengi, O., Tjoa, A.M.: Metadata for Object–Relational Data
Warehouse. In Proc. of DMDW'2000, Sweden (2000)

7. Jhingran, A.: Precomputation in a Complex Object Environment. Proc of the IEEE Data
Engineering Conference, Japan(1991)

8. Jezierski, J., Masewicz, M., Wrembel, R.: Prototype System for Method Materialisation
and Maintenance in Object-Oriented Databases. Proc. of the ACM Symposium on Applied
Computing (SAC), Nicosia, Cyprus (2004)

 12

9. Dobrovnik, M., Eder, J.: Logical data independence and modularity through views in
OODBMS. Proc. of Engineering Systems Design and Analysis Conference, Vol. 2 (1996)

10. Kemper, A., Kilger, C., Moerkotte, G.: Function Materialization in Object Bases. Proc. of
the SIGMOD Conference (1991)

11. Kemper, A., Kilger, C., Moerkotte, G.: Function Materialization in Object Bases: Design,
Realization, and Evaluation. IEEE Transactions on Knowledge and Data Engineering, Vol.
6, No. 4 (1994)

12. Morzy, T., Wrembel, R., Koszlajda, T.: Hierarchical materialisation of method results in
object–oriented views. Proc. of the ADBIS–DASFAA 2000 Conference, Czech Republic,
LNCS 1874 (2000)

13. Loomis, M.E., Chaudhri, A.B.: Object Databases in Practice. Prentice Hall PTR (1998)
14. Loomis, M.E.: Object Database the Essentials. Addison–Wesley Publishing Company

(1995)
15. Object Management Group. The Common Object Request Broker: Architecture and

Specification (1995)
16. Yin, X., Pedersen, T.: Evaluating XML-Extended OLAP Queries Based on a Physical

Algebra. Proc. of the DOLAP 2004 Conference, Washington, USA (2005)
17. Ben Messaoud, R., Boussaid, O., Rabaséda, S.: A New OLAP Aggregation Based on the

AHC Technique. Proc. of the DOLAP 2004 Conference, Washington, USA (2005)
18. Motschnig-Pitrik, R.: Requirements And Comparison of View Mechanisms for Object-

Oriented Databases. Information Systems, Vol. 21, No. 3 (1996)
19. Gardarin, G., Sha, F., Tang, Z. H.: Calibrating the Query Optimizer Cost Model of IRO-

DB, an Object-Oriented Federated Database System. Proc. of the 22nd VLDB Conference,
India (1996)

20. Pugh, W., Teitelbaum, T.: Incremental Computation via Function Caching. Proc. of the
Annual Symposium on Principles of Programming Languages, Texas, USA (1989)

