
Computer Cooking Contest

Workshop at the
Twenty-Third International Conference on

Case-Based Reasoning
(ICCBR 2015)

Frankfurt, Germany
September 2015

Emmanuel Nauer and David C. Wilson (Editors)

205

Program Chairs

Emmanuel Nauer Loria, Université de Lorraine, France
David C. Wilson University of North Carolina at Charlotte, USA

Technical Chair

Emmanuelle Gaillard Loria, Université de Lorraine, France

Program Committee

David Aha Naval Research Laboratory, USA
Klaus-Dieter Althoff University of Hildesheim, Germany
Ralph Bergmann University of Trier, Germany
Isabelle Bichindaritz State University of New York at Oswego, USA
Ichiro Ide Nagoya University, Japan
Luc Lamontagne Université Laval, Canada
David Leake Indiana University, USA
Jean Lieber LORIA, Université de Lorraine, France
Mirjam Minor Goethe University, Germany
Santiago Ontañón Drexel University, USA
Miltos Petridis Brighton University, UK
Ralph Traphöner empolis GmbH, Germany
Nicolas Valance Groupe SEB, France

206

Preface

We are happy to present the contributions of four teams that have been accepted
to the Computer Cooking Contest 2015. The Computer Cooking Contest (CCC)
is an open competition. All individuals (e.g., students, professionals), research
groups, and others are invited to submit software that creates recipes. The pri-
mary knowledge source is a database of basic recipes from which appropriate
recipes can be selected, modified, or even combined. The queries to the system
will include the desired and undesired ingredients. For most of the queries there
is no single correct or best answer. That is, many different solutions are possi-
ble, depending on the creativity of the software. There is no restriction on the
technology that may be used; all are welcome. The only restriction is that the
given database of recipes must be used as a starting point.

The 8th Computer Cooking Contest will be held in conjunction with the
2015 International Conference on Case-Based Reasoning in Frankfurt, Germany.
A web site with detailed information is online at: computercookingcontest.net.
There are three challenges:

1. Cocktail challenge on making real cocktails
In this challenge, the system should be able to suggest a tasty cocktail recipe
that matches a user query including a set of desired ingredients from a limited
set of available ingredients and avoiding unwanted ones (not necessarily from
the limited set of ingredients). In addition, the system should adapt the
ingredient quantities. Without information on the ingredient quantities, the
original quantities will be used to prepare the cocktail.

– Evaluation criteria: scientific quality, culinary quality
– Assessment procedure: paper evaluation and comparison of the results

of the systems on a same set of queries by the jury (cocktail jury prize)
and public vote after tasting in real the recipes of all the system on a
same query chosen by the jury (cocktail public prize).

– Material provided by the organizers (see resources section): the cock-
tail case base of 109 cocktail recipes, semantically annotated according
to the Wikitaaable ontology; access to the WikiTaaable ontology (wiki-
taaable.loria.fr); specified basic set of ingredients available to prepare a
cocktail.

2. Sandwich challenge on making real sandwiches
In this challenge, the system should be able to suggest a tasty cold sandwich
recipe that matches a user query including a set of desired ingredients and
avoiding unwanted ones. In addition, the system should adapt the recipe
preparation, at least the order in which ingredient will be put in the sand-
wich. Without information on the ingredient quantities, the original input
procedure will be used to prepare the sandwich in real. The recipe will be
interpreted by a chef, to correct some usual missing preparation step, for
example, put the tomatoes without mentioning that the tomatoes must be
sliced.

– Evaluation criteria: scientific quality, culinary quality

207

– Assessment procedure: paper evaluation and comparison of the results of
the systems on a same set of queries by the jury (sandwich jury prize),
and public vote after tasting in real the recipes of all the system on a
same query chosen by the jury (sandwich public prize).

– Material provided by the organizers: the sandwich case base - a set of 21
sandwich recipes, semantically annotated according to the Wikitaaable
ontology; access to the WikiTaaable ontology (wikitaaable.loria.fr); an
additional database containing 9507 sandwich recipes crawled from the
web.

3. Open challenge on adapting cooking recipes
In this challenge, you may propose whatever you want about the adaptation
of cooking recipes, e.g. workflow adaptation, text adaptation, community-
based adaptation, recipes combination, explanations, similarity computa-
tion, recipe personalized recommendation, etc. The evaluation will take into
account the originality aspect and the scientific aspect of the work. A running
system implementing the work is optional.

– Evaluation criteria: scientific quality, originality, culinary quality
– Assessment procedure: usual scientific review process; program commit-

tee vote

We would like to thank all contributors, reviewers, local organizers, the jury,
and our sponsors: Empolis, INRIA Nancy Grand Est, and LORIA, who kindly
provided financial support for the CCC. We are looking forward to try some
excellent sandwiches and fascinating, novel cocktails in Frankfurt.

September 2015
Frankfurt

Emmanuel Nauer
David C. Wilson

208

Improving Ingredient Substitution using Formal
Concept Analysis and Adaptation of Ingredient
Quantities with Mixed Linear Optimization

Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

Université de Lorraine, LORIA — 54506 Vandœuvre-lès-Nancy, France
CNRS — 54506 Vandœuvre-lès-Nancy, France

Inria — 54602 Villers-lès-Nancy, France
firstname.lastname@loria.fr

Abstract. This paper presents the participation of the Taaable team
to the 2015 Computer Cooking Contest. The Taaable system addresses
the mixology and the sandwich challenges. For the mixology challenge,
the 2014 Taaable system was extended in two ways. First, a formal
concept analysis approach is used to improve the ingredient substitution,
which must take into account a limited set of available foods. Second, the
adaptation of the ingredient quantities has also been improved in order
to be more realistic with a real cooking setting. The adaptation of the
ingredient quantities is based on a mixed linear optimization. The team
also applied Taaable to the sandwich challenge.

Keywords: case-based reasoning, formal concept analysis, adaptation
of ingredient quantities, mixed linear optimization.

1 Introduction

This paper presents the participation of the Taaable team to the mixology and
to the sandwich challenges of the 2015 Computer Cooking Contest (CCC). The
Taaable system is based on many methods and techniques in the area of knowl-
edge representation, knowledge management and natural language processing [1].
Currently, it is built over Tuuurbine (http://tuuurbine.loria.fr), a generic
case-based reasoning (CBR) system over RDFS [2] which allows reasoning over
knowledge stored in a RDF store, as the one provided by the contest.

For this edition of the CCC, Taaable has been extended in order to improve
the ingredient substitution procedure which must manage unavailable foods. An
approach based on formal concept analysis (FCA) allows improving ingredient
substitutions. Moreover, the adaptation of the ingredient quantities has also
been improved in order to be more realistic with a real cooking setting. The
adaptation of the ingredient quantities is based on mixed linear optimization.
This adaptation takes into account the preference unit given in the source recipe
and proposes quantities which are usual. For example, when the ingredient is
a lemon, its quantity will take the form of a human easy understandable value
(i.e. a quarter, a half, etc. instead of 54 g, which corresponds to a half lemon).

Copyright © 2015 for this paper by its authors. Copying permitted for private and
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.

209

Liquid

FruitJuice Syrup
Alcohol

Citrus
Fruit
Juice

Apple
Juice

Pineapple
Juice

Fruit
Syrup

SugarCane
Syrup

Vodka Whiskey Curacao

StrawberrySyrup GrenadineOrangeJuice LemonJuice

0.08 0.080.02 0.14 0.14
0.13 0.10 0.19

0.01 0.010.10 0.11

0.60 0.62
0.68

Fig. 1. The hierarchy forming the domain knowledge used in the running example with
the generalization costs used as retrieval knowledge.

Section 2 introduces the core of the Taaable system. Section 3 details the
new approaches developed specially for the mixology challenge. Section 4 ex-
plains the system submitted for the sandwich challenge.

2 The TAAABLE system
The challenges, proposed by the CCC since its first edition consists in proposing,
according to a set of initial recipes, one or more recipes matching a user query
composed of a set of wanted ingredients and a set of unwanted ingredients. The
Taaable system addresses this issue through an instantiation of the generic
CBR Tuuurbine system [3], which implements a generic CBR mechanism
in which adaptation consists in retrieving similar cases and in replacing some
features of these cases in order to adapt them as a solution to a query.

2.1 TUUURBINE founding principles

Tuuurbine is a generic CBR system over RDFS . The domain knowledge
is represented by an RDFS base DK consisting of a set of triples of the form
〈C subClassOf D〉 where C and D are classes which belong to a same hier-
archy (e.g, the food hierachy). Fig. 1 represents the domain knowledge for the

running examples by a hierarchy whose edges C
x−→ D represent the triples

〈C subClassOf D〉. The retrieval knowledge is encoded by a cost function:

cost(〈C subClassOf D〉) = x for an edge C
x−→ D. This cost can be under-

stood intuitively as the measure of “the generalization effort” from C to D. How
this cost is computed is detailed in [1].

A Tuuurbine case case is described by a set of triples of the form
〈URIcase prop val〉, where URIcase is the URI of case, val is either a resource
representing a class of the ontology or a value and prop is an RDFproperty link-
ing case to a hierarchy class or to the value. For simplification, in this paper, we
represent a case by a conjunction of expressions only of the form prop : val. For
example, the “Rainbow” recipe is represented by the following index R, which
means that “Rainbow” is a cocktail recipe made from vodka, orange juice, grena-
dine and curacao (ing stands for ingredient).

R = dishType : CocktailDish

∧ ing : Vodka ∧ ing : OrangeJuice ∧ ing : Grenadine ∧ ing : Curacao
(1)

210

For instance, the first conjunct of this expression means that the triple
〈URIR dishType CocktailDish〉 belongs to the knowledge base.

2.2 TUUURBINE query
A Tuuurbine query is a conjunction of expressions of the form sign prop : val
where sign ∈ {ε,+, !,−}, val is a resource representing a class of the ontology
and prop is an RDF property belonging to the set of properties used to represent
cases. For example,

Q = +dishType : CocktailDish

∧ ing : Vodka ∧ ing : Grenadine ∧ !ing : Whiskey
(2)

is a query to search “a cocktail with vodka and grenadine syrup but without
whiskey”.

The signs ε (empty sign) and + are “positive signs”: they prefix features
that the requested case must have. + indicates that this feature must also occur
in the source case whereas ε indicates that the source case may not have this
feature, thus the adaptation phase has to make it appear in the final case.

The signs ! and − are “negative signs”: they prefix features that the requested
case must not have. − indicates that this feature must not occur in the source
case whereas ! indicates that the source case may have this feature, and, if so,
that the adaptation phase has to remove it.

2.3 TUUURBINE retrieval process
The retrieval process consists in searching for cases that best match the query.
If an exact match exists, the corresponding cases are returned. For the query Q

given in (2), the “Rainbow” recipe is retrieved without adaptation. Otherwise,
the query is relaxed using a generalization function composed of one-step gen-
eralizations, which transforms Q (with a minimal cost) until at least one recipe
of the case base matches Γ (Q).

A one step-generalization is denoted by γ = prop : A prop : B, where A

and B are classes belonging to the same hierarchy with A v B, and prop is a
property used in the case definition. This one step-generalization can be applied
only if A is prefixed by ε or ! in Q. If A is prefixed by !, thus B is necessarily
the top class of the hierarchy. For example, the generalization of !ing : Rum is
εing : Food, meaning that if rum is not wanted, it has to be replaced by some
other food. Classes of the query prefixed by + and − cannot be generalized.

Each one-step generalization is associated with a cost denoted by cost(A
B). The generalization Γ of Q is a composition of one-step generalizations γ1,
. . . γn: Γ = γn ◦ . . . ◦ γ1, with cost(Γ) =

∑n
i=1 cost(γi). For example, for:

Q = +dishType : CocktailDish

∧ ing : Vodka ∧ ing : PineappleJuice ∧ ing : Grenadine ∧ !ing : Whiskey
(3)

PineappleJuice is relaxed to FruitJuice according to the domain
knowledge of Fig. 1. At this first step of generalization, Γ (Q) =

211

dishType : CocktailDish∧ing : Vodka∧ing : FruitJuice∧!ing : Whiskey, which
matches the recipe described in (1), indexed by OrangeJuice, a FruitJuice.

2.4 TUUURBINE adaptation process

When the initial query does not match existing cases, the cases retrieved after
generalization have to be adapted. The adaptation consists of a specialization
of the generalized query produced by the retrieval step. According to Γ (Q),
to R, and to DK, the ingredient OrangeJuice is replaced with the ingredient
PineappleJuice in R because FruitJuice of Γ (Q) subsumes both OrangeJuice

and PineappleJuice. Tuuurbine implements also an adaptation based on
rules where some ingredients are replaced with others in a given context [4].
For example, in cocktail recipes, replacing OrangeJuice and StrawberrySyrup

with PineappleJuice and Grenadine is an example of an adaptation rule. This
rule-based adaptation is directly integrated in the retrieval process by search-
ing cases indexed by the substituted ingredients for a query about the replac-
ing ingredients, for example by searching recipes containing OrangeJuice and
StrawberrySyrup for a query about PineappleJuice and Grenadine.

2.5 TAAABLE as a TUUURBINE instantiation

The Taaable knowledge base is WikiTaaable (http://wikitaaable.loria.
fr/), the knowledge base made available for this CCC edition. WikiTaaable is
composed of the four classical knowledge containers: (1) the domain knowledge
contains an ontology of the cooking domain which includes several hierarchies
(about food, dish types, etc.), (2) the case base contains recipes described by
their titles, the dish type they produce, the ingredients that are required, the
preparation steps, etc., (3) the adaptation knowledge takes the form of adap-
tation rules as introduced previously, and (4) the retrieval knowledge, which is
stored as cost values on subclass-of relations and adaptation rules.

In WikiTaaable, all the knowledge (cases, domain knowledge, costs, adap-
tation rules) is encoded in a triple store, because WikiTaaable uses Semantic
Media Wiki, where semantic data is stored into a triple store. So, plugging Tu-
uurbine over the WikiTaaable triple store is quite easy because it requires
only to configure Tuuurbine by giving the case base root URI, the ontology
root URI and the set of properties on which reasoning may be applied.

3 Mixology challenge
The mixology challenge consists in retrieving a cocktail that matches a user
query according to a set of available foods given by the CCC organizers (white
rum, whiskey, vodka, orange juice, pineapple juice, sparkling water, coca-cola,
beer grenadine syrup, lemon juice, mint leaves, lime, ice cube, brown sugar, salt,
and pepper). Tuuurbine queries can express this kind of request using the ε
and ! prefixes. Section 3.1 explains how the user query is transformed to take
into account only the available foods, before being submitted to Tuuurbine .
Two additionnal processes have been implemented to improve the Tuuurbine
adaptation result. The first process searches, when some ingredients of the source

212

recipe are not available, the best way to replace them, or in some cases, to remove
them (see Section 3.2). The second process uses Revisor/CLC (see Section 3.4)
to adapt quantities. A new formalization of the quantity adaptation problem is
proposed to obtain more realistic quantity values, taking into account the type
of unit given in the source case (see Section 3.4).

3.1 Query building

For the mixology challenge, where an answer must only contain the available
food, the query may be built by adding to the initial user query the minimal
set of classes of the food hierarchy that subsume the set of foods which are not
available, each class being negatively prefixed by !. For example, let us assume
that OrangeJuice and PineappleJuice are the only available fruit juices, that
Vodka and Whiskey are the only available alcohols, that SugarCaneSyrup and
Grenadine are the only available syrups, and that the user wants a cocktail
recipe with Vodka but without SugarCaneSyrup. The initial user query will be
Q = +dishType : CocktailDish ∧ εing : Vodka ∧ !ing : SugarCane. According to
Fig. 1, LemonJuice, AppleJuice, Curacao, and StrawberrySyrup will be added
to this initial query with a ! for expressing that the result cannot contain one of
these non available classes of food, which includes their descendant classes. The
extended query EQ submitted to Tuuurbine will be:

EQ = Q ∧ !ing : LemonJuice ∧ !ing : AppleJuice

∧ !ing : StrawberrySyrup ∧ !ing : Curacao

For this example, Tuuurbine retrieves the “Rainbow” recipe with the adap-
tation “replace Curacao with Food”, due to !ing : Curacao.

In order to replace Curacao by something more specific than Food, a new
approach based on FCA is proposed.

3.2 Using FCA to search the best ingredient substitution

When ingredients of the source case must be replaced because these pieces of
food are not available, we choose FCA to exploit ingredient combination in
cocktail recipes in order to search which ingredient(s) is/are the most used with
the ones already used in the recipe that must be adapted. FCA is a classification
method allowing object grouping according to the properties they share [5]. FCA
takes as input a binary context, i.e. a table in which objects are described by
properties. Table 1 shows an example of binary context with 7 objects (which
are cocktails), described by two kinds of properties: the ingredients they use,
and some more generic ingredient classes: Alcohol, the generic class of recipes
with at least one alcohol, and Sugar, the generic class of recipes with at least
one sweet ingredient, like sugar or syrup. These generic classes are prefixed by

to be distinguished from the concrete ingredients. For example, the object
Screwdriver has the properties Vodka and Orange juice (the ingredients used
in this cocktail), and Alcohol, because Vodka is an alcohol.

FCA produces formal concepts as output. A formal concept is a pair (I, E)
where I is a set of properties, E is a set of objects, respectively called the intent

213

Al
co
ho
l

Vo
dk
a

Wh
it
e
ru
m

Te
qu
il
a

Ca
ch
a c
a

Bl
ue

cu
ca
ca
o

Or
an
ge

ju
ic
e

Co
ca
-c
ol
a

Li
me Su

ga
r

Wh
it
e
su
ga
r

Ca
ne

su
ga
r
sy
ru
p

Gr
en
ad
in
e

Screwdriver × × ×
Rainbow × × × × × ×
Tequila sunrise × × × × ×
Ti′Punch × × × × ×
Daiquiri × × × × ×
Caipirinha × × × × ×
Cuba libre × × × ×

Table 1. A binary context for cocktails, described by their ingredients and two generic
food classes (Alcohol and Sugar).

Fig. 2. Concept lattice organizing cocktails according to their ingredients.

and the extent of the formal concept, such that (1) I is the set of all properties
shared by the objects of E and (2) E is the set of all objects sharing proper-
ties in I. The formal concepts can be ordered by extent inclusion, also called
specialisation between concepts, into what is called a concept lattice. Fig. 2 illus-
trates the lattice corresponding to the binary context given in Table 1. On this
figure, the extents E are given through a reduced form (noted Er): the objects
appear in the most specific concepts, the complete extent can be computed by
the union of objects belonging to the subconcepts. So, the top concept (#1, in
the figure) contains all the objects. In our example, its intent is Alcohol, a
property shared by all the objects. By contrast, the bottom concept is defined
by the set of all properties. In our example, its extent is empty as none of the
objects are described by all the properties.

To search a replacing ingredient in a given recipe or in a recipe according to
pieces of food that will be kept, the idea is to exploit the lattice which captures
concept similarities and organization. For example, concept #7, which intent is
{ Alcohol, Lime, Sugar}, allows an access to 3 cocktails containing at least one
alcohol, at least one sugar, and lime. Adapting a cocktail can be based on the
closeness between concepts. For example, when a replacing ingredient is searched

214

Fig. 3. Part of the concept lattice built from recipes using PineappleJuice, Vodka,
and Grenadine (the ingredients that will be used in the resulting cocktail).

for Cachaça in the Caipirinha cocktail (in the intent of concept #11), some
similar concepts (i.e. sharing a same super-concept) can be used. In the lattice
given in example, concept #11 can be generalized to concept number #7, which
extent contains cocktails with some alcohol, lime and some sugar. The cocktails
in the extent of concept #12 are similar to the one of concept #11, because they
share the Alcohol, Lime, and Sugar properties. When removing“Cachaça”
from the Caipirinha, a possible ingredient for substitution, given by the lattice,
could be White rum.

The approach exploiting the link between the concepts is used in many works
using FCA for information retrieval. In Carpineto and Romano [6], the docu-
ments which are good answers to a query are searched in the lattice built from
the document properties and from the query, around the concept representing
the query. The same authors use this neighbour relation between concepts in a
lattice for ordering documents returned by an information retrieval system [7].

Let CR be the formal concept such that Er(CR) = {R}. A formal concept
C close to CR is searched according the following procedure. C is such that
its intent I(C) does not contain the substituting ingredient (Curacao in the
example) and maximizes |Er(C)|. First, C is searched in the ascendants of CR,
then in its siblings, and finally in the descendants of the siblings. The ingredient
to be substituted is replaced by I(C) \ I(CR).

3.3 Real example of food substitution using FCA

To implement our approach, data about ingredient combinations in cocktail
recipes has been collected. For this, we queried Yummly (http://www.yummly.
com/). 16 queries were submitted; each query was composed of one ingredient
(one available food) and was parametered to return all the Yummly cocktails
and beverage recipes containing this ingredient. 9791 recipes have been collected.
Unfortunately, the Yummly search engine does not necessarily return answers
satisfying the query. So, the results are filtered, only to keep recipes that use
at least one available food. Afterwards, the remaining recipes are deduplicated.
After filtering and deduplicating, 6114 recipes are available, but only 1327 of
them combine at least 2 available foods.

215

We show now, with query (3), how, after proposing to replace OrangeJuice

with PineappleJuice and StrawberrySyrup with Grenadine in R, Taaable
searches to replace Curacao which is not in the set of available foods. A
part of the lattice resulting from the binary table containing recipes with
PineappleJuice, Grenadine and Vodka is given in Fig. 3. Concept #6 corre-
sponds to R, the recipe that must be adapted, and which has been added in the
binary table to appear in the lattice. The most similar ingredient combination
which includes PineappleJuice, Grenadine and Vodka is given by concept #7.
Indeed, concept #8 cannot be used to produce a substitution because its intent
contains Amaretto which is not an available food. Concept #5 intent contains
OrangeJuice, an available food, but concept #5 is less close to concept #6 than
concept #7, according to the selection procedure based on the maximal number
of objects of Er.

3.4 Adaptation of quantities with mixed integer linear optimization

Let us consider the following adaptation problem:

Source =
Recipe “Eggnog” (10 glasses)
10 c` of armagnac, 25 c` of rum, half a liter of milk,
5 eggs, 125 g of granulated sugar, 25 c` of fresh cream

Q = “I want a cocktail recipe with cream but without egg or armagnac.”

for which Tuuurbine produces the following ingredient substitution:

substitute egg and armagnac with banana and kirsch (4)

It must be noticed that this example does not comply with the constraints of
the cocktail challenge (banana is not an available food), but has been chosen in
order to illustrate various ideas related to adaptation of quantities. The approach
to ingredient quantity adaptation is based on belief revision [8], applied to a
formalization suited to adaptation of quantities. First, the adaptation problem
(Source, Q) and the domain knowledge DK are formalized. Then, this adaptation
process is described.

Formalization. Numerical variables are introduced to represent the ingredient
quantities in a recipe. For the example, the following variables are introduced,
for each food class C: alcoholC, massC, numberC, sugarC and volumeC, which
represent, respectively, the quantity (in grams) of alcohol in the ingredient C of
the recipe, its mass (in grams), its number, its quantity (in grams) of sugar and
its volume (in centiliters).1 Therefore, the retrieved recipe can be expressed in
this formalism by:

Source = (volumeArmagnac = 10) ∧ (volumeRum = 25) ∧ (volumeMilk = 50)

∧ (numberEgg = 5) ∧ (massGranulatedSugar = 125)

∧ (volumeFreshCream = 25)

(5)

1 One could consider other variables, e.g., the calories of ingredients, which would
make possible to add constraints on the total number of calories in a dish.

216

In theory, all the variables could be continuous (represented by floating-point
numbers). However, this can lead to adapted cases with, e.g., numberEgg = 1.7,
which is avoided in most recipe books! For this reason, some variables v are
declared as integer (denoted by τ(v) = integer), the other ones as real numbers
(denoted by τ(v) = real).

The domain knowledge DK consists of a conjunction of conversion equations,
conservation equations and sign constraints. The following conversion equations
state that one egg without its shell has (on the average) a mass of 50 g, a volume
of 5.2 c`, a quantity of sugar of 0.77 g and no alcohol:

massEgg = 50× numberEgg volumeEgg = 5.2× numberEgg
sugarEgg = 0.77× numberEgg alcoholEgg = 0.

(6)

with τ(massEgg) = τ(volumeEgg) = τ(sugarEgg) = τ(alcoholEgg) = real and
τ(numberEgg) = integer.

The following equations are also conjuncts of DK and represent the conserva-
tion of masses, volumes, etc.:

massEggOrEquivalent = massEgg + massBanana (7)

volumeFood = volumeLiquid + volumeSolidFood

volumeLiquid = volumeBrandy + volumeRum + volumeFreshCream + . . .

volumeBrandy = volumeArmagnac + volumeKirsch + . . .

where Food is the class of the food (any ingredient of a recipe is an instance
of Food) and, e.g., alcoholRum is related to volumeRum thanks to the conversion
equation alcoholRum = 0.4 × volumeRum. Actually, equation (7) corresponds to
the substitution of eggs by bananas.

Such conservation equations can be acquired using parts of the food hierar-
chy, thanks to some additional information. For instance, if C is a class of the
hierarchy and {D1, D2, . . . , Dp} is a set of subclasses of C forming a partition
of C (i.e., for each individual x of C, there is exactly one i ∈ {1, 2, . . . , p} such
that x belongs to Di), then massC (resp., volumeC , numberC , etc.) is equal to
the sum of the massDi

’s (resp., of the volumeDi
’s, of the numberDi

’s, etc.).
Finally, each variable v is assumed to satisfy the sign constraint v > 0.
The substitution (4) indicates that there should be neither egg nor armagnac

in the adapted recipe. By contrast, there should be some bananas and kirsch
but this piece of information can be entailed by the conservation equations.
Therefore, the query is simply modeled by:

Q = (massEgg = 0) ∧ (massArmagnac = 0) (8)

The adaptation problem is now formalized: the source case is formalized
by (5); the query is formalized by (8) and the domain knowledge is given by
the conversion and conservation equations, and the sign constraints. Since the
source case and the query are to be understood wrt the domain knowledge, the
formulas for them are, respectively, DK ∧ Source and DK ∧ Q. The result of the
adaptation will be denoted by AdaptedCase.

217

Description of the adaptation process. Let {v1, v2, . . . , vn} be the set of
the variables used in Source, Q and DK. In the representation space based on
the formalism used above, a particular recipe is represented by a tuple x =
(x1, x2, . . . , xn) ∈ Ω, where Ω = Ω1×Ω2× . . .×Ωn such that Ωi = Z if τ(vi) =
integer and Ωi = R otherwise (R: set of real numbers, Z: set of integers). Given
ϕ, a conjunction of linear constraints, let M(ϕ) be the set of x ∈ Ω such that
x verifies all the constraints of ϕ. The function ϕ 7→ M(ϕ) provides a model-
theoretical semantics to the logic of the conjunction of linear constraints: ϕ1

entails ϕ2 if M(ϕ1) ⊆M(ϕ2).
The principle of revision-based adaptation consists in a minimal modifica-

tion of DK ∧ Source so that it becomes consistent with DK ∧ Q. Such a minimal
modification can be computed thanks to a belief revision operator based on a
distance function d on Ω, meaning that the modification from an x ∈ Ω to an
y ∈ Ω is measured by d(x, y). Let S =M(DK∧Source) and Q =M(DK∧Q). The
minimal modification from the source case to the query is therefore measured
by d∗ = d(S,Q) = infx∈S,y∈Q d(x, y). Thus, AdaptedCase is such that

M(AdaptedCase) = {y ∈ Q | d(S, y) = d∗}

where d(S, y) = infx∈S d(x, y).
Now, d is assumed to be a Manhattan distance function:

d(x, y) =

n∑
i=1

wi|yi − xi|

where wi > 0 is a weight associated to the variable vi. Such a weight captures the
effort of change for this variable. For example, if vi = volumeLemonJuice and vj =
volumeVodka, then wi < wj means that the adaptation process is less “reluctant”
to change the volume of lemon juice than to change the volume of vodka.

Under this assumption, M(AdaptedCase) is the solution of the following
optimization problem in y:

x ∈M(DK ∧ Source) y ∈M(DK ∧ Q) (9)

minimize d(x, y) (10)

The conjunctions of constraints (9) are linear but the objective function (10) is
not. Now, it can be shown that the set of solutions to this problem coincides
with the set of solutions to the following optimization problem in y:

x ∈M(DK ∧ Source) y ∈M(DK ∧ Q)
n∧

i=1

zi ≥ yi − xi
n∧

i=1

zi ≥ xi − yi

minimize

n∑
i=1

wizi

218

which is linear, and thus can be solved with classical operational research tech-
niques. It is noteworthy that if every variable is continuous, then this optimiza-
tion problem is polynomial, otherwise, it is a mixed integer linear optimization,
known to be an NP-hard problem. In practice, the more variables are integers,
the more it will require computing time; thus, if a variable range is big enough,
it may be more appropriate to consider it as real. The heuristic we have chosen
is as follows. If, for a type of food F , it appears in all the recipes of the case base
as units, then τ(numberF) = integer.

When this linear problem is solved, this gives a solution to the query, ex-
pressed with all the n variables. From a human-interface viewpoint, some of
these variables should not be displayed. For example, if an ingredient is given
by its volume in the source recipe, then it should not be given as a mass in the
adapted case. Since DK relates masses to volumes, there is no loss of information.

With the example presented above, the result is as follows:

AdaptedCase ≡ DK

∧ (volumeKirsch = 9) ∧ (volumeRum = 25) ∧ (volumeMilk = 50)

∧ (numberBanana = 2) ∧ (massGranulatedSugar = 96)

∧ (volumeFreshCream = 290)

It can be noticed that AdaptedCase entails DK∧ Q, which was expected. For this
example, the following weights have been chosen assuming that more a variable
correponds to a general concept more its associated weight has to be large:

wvolumeFood = 100 wsugarFood
= 50 walcoholFood = 50

wvolumeBrandy = 5 wmassEggOrEquivalent = 10

and wv = 1 for any other variable v

Translated back in an informal way, this gives:

AdaptedCase =
Recipe “Eggnog” (10 glasses) after adaptation
9 c` of kirsch, 25 c` of rum, half a liter of milk,
2 bananas, 96 g of sugar, 290 c` of fresh cream

This result illustrates the quantity compensations done by the adaptation: the
quantity of sugar has been lowered because bananas are sweeter than eggs and
the volume of kirsch is higher than the volume of armagnac in the source recipe,
because the degree of alcohol is lower for armagnac than for kirsch.

4 Sandwich challenge
The sandwich challenge is addressed with the 2014 Taaable system [9], which
is efficient for the ingredient susbtitution step. The preparation procedure of
the adapted recipe uses, in the same order, the steps used in the source recipe,
because the ontology-based substitution procedure of Taaable favors the sub-
stitution of ingredients of the same type (e.g., a sauce by a sauce). So, the order
of the ingredients in the adapted recipe will be the same as in the source recipe.

219

To adapt the textual preparation of the recipe, the text occurrences of the re-
placed ingredients are substituted with the replacing ingredients. A set of rules
allows to identify plurals of the removed ingredient in the text, and replace them
with the plural form of the replacing ingredients. For example, when replacing
mayo with mustard, “Apply mayo on one slice, tomato sauce on the other.” is
adapted to “Apply mustard on one slice, tomato sauce on the other.”

5 Conclusion
This paper has presented the two systems developed by the Taaable team for
its participation to the 2015 CCC. The two systems are based on the previ-
ous version of Taaable, extended with two new approaches: a FCA approach
to guide ingredient substitution, and an adaptation of the ingredient quantities
based on a mixed linear optimization. The work presented here still needs a thor-
ough evaluation: ongoing work addresses this issue, following the methodology
introduced in [2].

References

1. A. Cordier, V. Dufour-Lussier, J. Lieber, E. Nauer, F. Badra, J. Cojan, E. Gaillard,
L. Infante-Blanco, P. Molli, A. Napoli, and H. Skaf-Molli. Taaable: a Case-Based
System for personalized Cooking. In S. Montani and L. C. Jain, editors, Success-
ful Case-based Reasoning Applications-2, volume 494 of Studies in Computational
Intelligence, pages 121–162. Springer, 2014.

2. E. Gaillard, J. Lieber, E. Nauer, and A. Cordier. How Case-Based Reasoning on
e-Community Knowledge Can Be Improved Thanks to Knowledge Reliability. In
Case-Based Reasoning Research and Development, volume 8765, pages 155 – 169,
Cork, Ireland, Ireland, September 2014. L. Lamontagne and E. Plaza.

3. E. Gaillard, L. Infante-Blanco, J. Lieber, and E. Nauer. Tuuurbine: A Generic CBR
Engine over RDFS. In Case-Based Reasoning Research and Development, volume
8765, pages 140 – 154, Cork, Ireland, September 2014.

4. E. Gaillard, J. Lieber, and E. Nauer. Adaptation knowledge discovery for cooking
using closed itemset extraction. In The Eighth International Conference on Concept
Lattices and their Applications - CLA 2011, pages 87–99, 2011.

5. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin, 1999.

6. C. Carpineto and G. Romano. Effective Reformulation of Boolean Queries with
Concept Lattices. In T. Andreasen, H. Christiansen, and H. Legind Larsen, editors,
Flexible Query Answering Systems, Third International Conference (FQAS’98), vol-
ume 1495 of LNCS, pages 83–94. Springer, 1998.

7. C. Carpineto and G. Romano. Order-Theoretical Ranking. Journal of the American
Society for Information Science, 51(7):587–601, 2000.

8. J. Cojan and J. Lieber. Applying Belief Revision to Case-Based Reasoning. In
H. Prade and G. Richard, editors, Computational Approaches to Analogical Rea-
soning: Current Trends, volume 548 of Studies in Computational Intelligence, pages
133 – 161. Springer, 2014.

9. E. Gaillard, J. Lieber, and E. Nauer. Case-Based Cooking with Generic Computer
Utensils: Taaable Next Generation. In Proceedings of the ICCBR 2014 Workshops,
number pp 89-100, page 254, Cork, Ireland, 2014. D. B. Leake and J. Lieber.

220

CookingCAKE: A Framework for the adaptation of
cooking recipes represented as workflows

Gilbert Müller and Ralph Bergmann

Business Information Systems II
University of Trier

54286 Trier, Germany
[muellerg][bergmann]@uni-trier.de,

www.wi2.uni-trier.de

Abstract. This paper presents CookingCAKE, a framework for the adaptation of
cooking recipes represented as workflows. CookingCAKE integrates and com-
bines several workflow adaptation approaches applied in process-oriented case
based reasoning (POCBR) in a single adaptation framework, thus providing a
capable tool for the adaptation of cooking recipes. The available case base of
cooking workflows is analyzed to generate adaptation knowledge which is used
to adapt a recipe regarding restrictions and resources, which the user may define
for the preparation of a dish.

Keywords: recipe adaptation, workflow adaptation, workflows, process-oriented
case based reasoning

1 Introduction

Even after more than 30 years of research in CBR, adaptation is still a major chal-
lenge. This also applies to the adaptation of cooking recipes. Direct processing of tex-
tual recipes is however almost not feasible. Thus, they are usually transformed to struc-
tured cases, e.g., workflows [18]. In Process-Oriented Case-Based Reasoning (POCBR)
[11], workflow adaptation is also an important research topic.

Existing methods for adaptation in CBR can be roughly classified into transforma-
tional, compositional, and generative adaptation [21,9]. While transformational adapta-
tion relies on adaptations executed in a kind of a rule-based manner, generative adap-
tation demands general domain knowledge appropriate for an automated from scratch
problem solver. An approach for transformational adaptation of workflows was pre-
sented by Minor et al. [10]. Compositional adaptation usually means that several cases
are used during adaptation, incorporating transformational or generative adaptation
methods involving adaptation knowledge. Dufour-Lussier et al. [4], for example, pre-
sented such a compositional adaptation approach. However, the different adaptation
approaches come along with respective advantages and disadvantages. Thus, we expect
that the integration and combination of several adaptation approaches can significantly
improve the overall adaptation capability of a CBR system by overcoming some of the
disadvantages of each individual approach.

Copyright © 2015 for this paper by its authors. Copying permitted for private and
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.

221

In this paper, we present the next evolutionary step of your CookingCAKE system,
which is the integration of three adaptation approaches developed within our previ-
ous research. In particular, we present a novel integration of adaptation by general-
ization and specialization, compositional adaptation, and transformational adaptation
in POCBR. To achieve this, CookingCAKE analyzes the case base of cooking work-
flows generating an extensive adaptation knowledge base using several adaptation ap-
proaches. This knowledge is then used to adapt workflows according to the require-
ments and resources given in a current adaptation scenario. While this paper presents
novel ideas and positions on adaptation, the open challenge is addressed. In addition, we
present our examples as well as a comprehensive use case from the sandwich challenge,
thus this challenge is addressed as well.

The next section introduces cooking workflows followed by a summary section
sketching the used adaptation approaches from our previous research (see Sect. 3). Sec-
tion 4 describes the novel integration of the approaches, including the generation of
adaptation knowledge as well as the integrated adaptation itself. Next, Sect. 5 provides
details on how the Computer Cooking Contest 2015 sandwich challenge is addressed.
Finally, the paper wraps up by discussing potential future work.

2 Cooking Workflows

In our approach a cooking recipe is represented as a workflow describing the process
to prepare a particular dish [18] (see Fig. 1). Cooking workflows consist of a set of
preparation steps (also called tasks) and a set of ingredients (also called data items)
shared between its tasks. Further, control-flow blocks may be used that represent ei-
ther sequences, parallel (AND), alternative (XOR), or repeated execution (LOOPs) of
preparation steps. These control-flow blocks may be nested but not interleaved, thus
we consider block-oriented workflows only. This ensures the syntactic correctness of
the workflow following the correctness-by-construction principle [17,3], e.g., that the
workflow has one start node and one end node. Such workflows are referred to as consis-
tent workflows. Tasks and control-flow blocks are linked by control-flow edges defining

mix add

spread addgrate sprinkle bake

mayonaise
italian

seasoning mustard sauce

baguette salami

cheese

sandwich
dish

+ +

task nodedata nodecontrol-�ow edgedata-�ow edge control-�ow node

open

layer

slice

cucumber

Fig. 1. Example of a block-oriented cooking workflow

222

the execution order. This forms the control-flow. Tasks, data items, and relationships
(represented by data-flow edges) between the two of them form the data flow. An ex-
ample block-oriented cooking workflow for a sandwich recipe is illustrated in Fig. 1.

2.1 Semantic Workflows and Semantic Workflow Similarity

To support retrieval and adaptation of workflows, the individual workflow elements are
annotated with ontological information, thus leading to a semantic workflow [2]. Cook-
ingCAKE uses a taxonomy of ingredients to define the semantics of data items and
a taxonomy of preparation steps to define the semantics of tasks. These taxonomies
are employed for the similarity assessment between tasks and data items. An example
ingredient taxonomy is given in Fig. 2. A taxonomy is ordered by terms that are ei-
ther a generalization or a specialization of a specific other term within the taxonomy,
i.e., an inner node represents a generalized term that stands for the set of most spe-
cific terms below it. For example, the generalized term vegeterian stands for the set
{potatoes, rice, noodles}. Further on in the paper we use inner nodes in generalized
workflows to represent that an arbitrary ingredient from the set of its specializations can
be chosen.

ingredients
(ψ)

vegeterian non vegeterian

vegetables liquidsside dish

... ...

seafood meat

...

beef
(ψ)

pork
(ψ)

chicken
(ψ)

turkey
(ψ)

...

potatoes
(ψ)

rice
(ψ)

noodles
(ψ)

0.01

0.10.1

0.60.70.5 0.6 0.3

Fig. 2. Example of an ingredient taxonomy

In our previous work, we developed a semantic similarity measure for workflows
that enables the similarity assessment of a case workflow Wc w.r.t. a query workflow
Wq [2], i.e. sim(Wq,Wc). Each query workflow element xq ∈ Wq is mapped by the
function m : Wq →Wc to an element of the case workflow xc ∈Wc, i.e., xc = m(xq).
The mapping is used to estimate the similarity between the two workflow elements uti-
lizing the taxonomy, i.e., sim(xq, xc). The similarity of preparation steps or ingredients
reflects the closeness in the taxonomy and further regards the level of the taxonomic el-
ements. In general, the similarity is defined by the attached similarity value of the least
common anchestor, e.g., sim(beef, pork) = 0.6. If a more general query element such
as “meat” is compared with a specific element below it, such as “pork”, the similarity
value is 1. This ensures that if the query asks for a recipe containing meat, any recipe
workflow from the case base containing any kind of meat is considered highly similar.
All the similarity values of the mappings are then aggregated to estimate an overall
workflow similarity.

223

2.2 Querying Semantic Workflows

In order to guide the retrieval and adaptation of workflows a query is defined by the
user. CookingCAKE uses POQL (Query Language for Process-Oriented Case-Based
Reasoning) [16] to capture desired and undesired ingredients or preparation steps of a
cooking workflow as a query q. The definition of preparation steps is useful as certain
tools might not be available or their usage is desired (e.g. oven). Let qd = {x1, . . . , xn}
be a set of desired ingredients or preparation steps and qu = {y1, . . . , yn} be a set of
undesired ingredients or preparation steps. A query q is then defined as (x1∧ . . .∧x2)∧
¬y1∧. . .∧¬yn. POQL also enables to capture generalized terms, i.e., if a vegeterian dish
is desired, this can be defined by ¬meat. The query q is then used to guide retrieval,
i.e., to search for a workflow which at best does not contain any undesired element
and contains all desired elements. Based on the query q the unmatched elements can
be identified, enabling estimating the elements to be deleted or added to the retrieved
workflow during the subsequent adaptation stage. The similarity between the query
and a workflow W is defined as the similarity between the desired ingredients and the
workflow W and the number of undesired ingredients not contained in W according to
the semantic similarity measure [2] in relation to the size of the query:

sim(q,W) =

∑
x∈qd

sim(x,m(x)) + |{y ∈ qu|sim(y,m(y)) 6= 1}|
|qd|+ |qu|

(1)

Hence, please note that similar desired ingredients or preparation steps increase the
similarity while similar undesired ingredients or preparation steps do not reduce the
similarity between the POQL query and the workflow.

In general, POQL is even more expressive and can, for example, capture time re-
strictions on preparation steps or that a certain ingredient should or should not be pro-
cessed in a particular manner (e.g. do or do not bake vegetables). However, for the sake
of simplicity we assume a set of desired and undesired ingredients or preparation steps
only in the following sections.

3 Adaptation Approaches

This section summarizes the used adaptation approaches within the CookingCAKE
framework.

3.1 Adaptation by Generalization and Specialization of Workflows

A generalized workflow [14] is a workflow containing generalized terms from a taxon-
omy (see Sec. 2.1), each of them representing multiple specialized ingredients or prepa-
ration steps. Thus, the generalized workflow represents a set of specialized workflows.
Figure 3 illustrates an example for a generalization of the example workflow given in
Fig. 1. Here, any preparation step that chops the cheese and any sort of meat could
potentially be used. Such generalized workflows can be learned by comparing simi-
lar workflows from the case base. A workflow is generalized by generalizing terms if
similar workflows from the case base contain several specializations of this generalized

224

term. It is assumed that if similar workflows contain the terms {beef, chicken, pork},
for example, these workflows can be generalized to contain any kind of meat. Likewise
makesmall represents all possible cooking steps reducing ingredients to small pieces.

mix add

spread add<MAKESMALL> sprinkle bake

mayonaise
italian

seasoning mustard sauce

baguette <MEAT>

cheese

sandwich
dish

+ +
open

layer

slice

cucumber

Fig. 3. Example of a generalized workflow

Adaptation is supported by specializing a workflow according to the POQL query
q. Lets assume the generalized workflow contains the term meat and the query defines
that beef is desired, the generalized element can be specialized according to beef . Thus,
specialization enables adapting a workflow according to the POQL query.

3.2 Compositional Adaptation by Workflow Streams

The idea of compositional adaptation by workflow streams [13] is that each workflow
can be decomposed into meaningful sub-components or snippets [7]. A sandwich work-
flow, for example, prepares the sauce and the toppings in order to produce the entire
sandwich dish. These sub-components represented as partial workflows are referred to
as workflow streams. Workflow streams can be identified by collecting all data-flow
connected tasks1 until a new data item such as sandwich sauce is created. An exam-
ple for a workflow stream for the example workflow (see Fig. 1) is given in Figure 4
describing how to place toppings on the sandwich. To compute the adaptation knowl-
edge, all workflow streams that can be found in the workflows within the case base are
extracted.

The basic idea for compositional adaptation is, to adapt a workflow by using the
workflow streams of other workflows that produce the same data item in a different
manner, e.g., with other tasks or data. In the sandwich domain, for example, toppings,
sauces, or preparation steps can be replaced. However, only workflow streams are sub-
stitutable if they produce the same data and consume identical data nodes. This ensures
that replacing an arbitrary stream does not violate the semantic correctness of the work-
flow.

1 If a task consumes a data item produced by another one, both tasks are dataflow-connected.

225

addgrate sprinkle bake

salami cheese

sandwich
dish

layer

cucumber

slice

Fig. 4. Example of a workflow stream

3.3 Transformational Adaptation by Workflow Adaptation Operators

The workflow adaptation operators [15] are specified by two workflow sub-graphs
called streamlets, one representing a workflow fraction to be deleted and one represent-
ing a workflow fraction to be added. Such operators can be learned from the case base
by comparing two workflows and employ the difference between the two workflows in
order to generate workflow adaptation operators. The example adaptation operator in
Fig. 5 describes that mayonnaise can be replaced by tomatoes. This also enforces that
tasks have to be changed as well, because the combine task also has to be exchanged
for a chop task.

chop mix

italian
seasoningtomatos sauce

combine add

mustardmayonnaise sauce

deletion streamlet oD insertion streamlet oI

italian
seasoning

Fig. 5. Example of a workflow adaptation operator

The basic idea for operational adaptation is that chains of adaptation operators are
applied W

o1→ W1
o2→ . . .

on→ Wn to the retrieved workflow W , thereby transforming
the workflow W to an adapted workflow Wn. This process can be considered a search
process towards an optimal solution w.r.t. the query. Hence, streamlets are removed,
inserted, or replaced to transform the workflow according to the query.

4 CookingCAKE Framework

We now present the CookingCAKE framework which automatically generates adapta-
tion knowledge using various adaptation approaches applied in POCBR (see Sect. 4.1).
Based on this knowledge workflow adaptation is supported regarding a POQL query
defining the requirements and resources on the workflow adaptation (see Sect. 4.2).

226

4.1 Generation of adaptation knowledge

As the acquisition of adaptation knowledge is an instance of the traditional knowledge
acquisition bottleneck [5], CookingCAKE automatically generates adaptation knowl-
edge based on the workflows contained in the case base (see Fig. 6). First, the case base
and thus each workflow is generalized applying the method described in section 3.1.
From this generalized case base further adaptation knowledge, i.e., workflow streams
and adaptation rules (see Sect. 3), is automatically generated. As the adaptation knowl-
edge is acquired based on the generalized case base, the adaptation knowledge itself is
also generalized. This increases the adaptability for the entire adaptation procedure.

casebase generalized
casebase

generalization

work�ow
streams

adaptation
operators

adaptation knowledge

Fig. 6. Generation of adaptation knowledge

The generated adaptation knowledge can then be used to adapt a workflow whenever
a query occurs. Further details on this procedure are explained in the next section.

4.2 Workflow adaptation

Whenever a POQL query occurs CookingCAKE searches for the workflow that best
matches the given query within the generalized case base (see Fig. 7). However, it may
happen that not all resources or requirements defined in the query are fulfilled by this
workflow. Thus, workflow adaptation is required. For this purpose the workflow adapta-
tion approaches presented in Sect. 3 are subsequently applied, still regarding the defined
query. After this procedure, the adapted workflow still has to be specialized according
to the query if it contains generalized elements. Therefore, CookingCAKE uses the
specialization method presented in Sect. 3.1.

 POQL Query

generalized
casebase

work�ow
streams

adaptation
operators

adaptation specialization

adapted work�owwork�ow from
generalized casebase

adapted generalized work�ow

? retrieval

Fig. 7. Workflow adaptation

227

In order to ensure scalability of the presented approach for large case bases or large
sets of adaptation knowledge, CookingCAKE supports a cluster-based retrieval [12] for
workflows as well as for adaptation knowledge.

5 CCC Sandwich Challenge

In order to address the sandwich challenge a case base of 61 sandwich recipe work-
flows was created. The workflows were manually modelled based on sandwich recipes
found on WikiTaaable2 and further Internet sources. To enable similarity computations
between the workflows, a modified version of the ingredient and cooking step ontology
provided by WikiTaaable was employed. More precisely, multiple inheritance was re-
solved as CookingCAKE so far is only able to handle taxonomies (single inheritance).
Further, the generalized terms of the taxonomies have been manually annotated with
similarity values (see Sect. 2.1).

A running demo of CookingCAKE for the sandwich challenge is available under
http://cookingCAKE.wi2.uni-trier.de3 (see Fig. 8). The query of CookingCAKE con-
tains desired and undesired ingredients as well as desired and undesired preparation

2 http://wikitaaable.loria.fr
3 Please note that CookingCAKE is still under improvement until the CCC’15

Fig. 8. Cooking Cake interface

228

http://cookingCAKE.wi2.uni-trier.de

steps. An example query (http://cookingCAKE.wi2.uni-trier.de?d=cherry%20tomato|salmon&u=

cheese), generates a salmon and cherry tomato recipe without using any kind of cheese.
Please note, that CookingCAKE does not necessarily fulfill the given query, it rather
tries to fulfill the query as much as possible but does not execute any adaptations if no
adaptation knowledge is present in order to remain the quality of the sandwich recipe.
Consequently, if e.g. edam cheese is desired among other ingredients possibly a recipe
with gouda cheese is returned if that is more suitable concerning the other desired de-
sired ingredients. Further, undesired ingredients might be contained or a desired ingre-
dient might not be contained, if that seems to be inappropriate according to the remain-
ing ingredients given in the query. In general, cooking steps are adapted, if particular
changed ingredients may require a different preparation of the particular dish.

After the definition of a query, CookingCAKE searches for the workflow in the
case base that already best matches the given query based on the similarity value (see
Sect. 2.2). If the query can not be fulfilled, adaptation is required. In this case, the
entire adaptation procedure presented in Sect. 4.2 is used to adapt the sandwich recipe
according to a query.

As a result, CookingCAKE can also print a detailed XML-File describing the used
original case based recipe as well as the adapted recipe according to the query. Fur-
ther, information is provided on which ingredients are removed from and added to the
original workflow during adaptation.

Additionally, CookingCAKE also provides a textual view of the solution (see Fig.
9). For this purpose, the workflows are translated into a textual representation. Hence,
the block-oriented workflow structure is reduced to a single sequence. Based on this, the
required ingredients and the sequence of preparation steps (including the information
on which ingredients are required in every preparation step) are generated. Further, the
workflow itself is also illustrated in the process view.

CookingCAKE also features a name generator for the generated recipes. It accesses
the taxonomy of ingredients and combines several terms of sub-taxonomies contained
as ingredients in the workflow to assign a name to a recipe.

Based on the 61 recipes stored in CookingCAKE, generalization and specialization
enable to generate more than 9 · 1021 recipes. Further adaptations are supported by 197
workflow streams found and 7870 operators (1306 replace, 3903 insert, 2661 delete)
generated. As the streams and operators are also generalized (see Sect. 4.2) adaptability
is further increased. Hence, CookingCAKE provides a capable tool for the adaptation
of sandwich recipes.

6 Conclusions and Future Work

We presented CookingCAKE, a framework for the adaptation of cooking recipes repre-
sented as workflows integrating and combining various adaptation approaches applied
in Process-Oriented Case-Based Reasoning (POCBR). The available case base of cook-
ing workflows is analyzed to generate adaptation knowledge which is used to adapt a
recipe regarding a given query for the preparation of a dish.

In future work, we will investigate and integrate additional adaptation approaches
for workflows such as the abstraction of workflows containing abstract tasks (e.g., pre-

229

http://cookingCAKE.wi2.uni-trier.de?d=cherry%20tomato|salmon&u=cheese
http://cookingCAKE.wi2.uni-trier.de?d=cherry%20tomato|salmon&u=cheese

Fig. 9. Example recipe generated by CookingCAKE

pare sauce, place toppings on sandwich). Further, we will integrate the case-based adap-
tation approach of Minor et al. [10] in our framework. Moreover, CookingCAKE will
be extended to be able to handle more knowledge-intensive ontologies, e.g., ontologies
with multiple inheritance. Future work will also comprise the retrieval of adaptable
cases [19], i.e., we will investigate the adaptability of the workflows within the case
base as the workflow that best matches the given query is not necessarily the workflow
that can be at best adapted to the resources and requirements given. Consequently, a
better workflow as starting point for the adaptation can be chosen. Moreover, the re-
tainment of adaptation knowledge[6] will be addressed by gathering user feedback on
the adapted cooking recipes. This is important, as the quality of automatically learned

230

adaptation knowledge can not always be ensured. Thus, the quality of workflow adap-
tation is improved and the growth of adaptation knowledge can be controlled. Finally,
CookingCAKE will be extended by interactive adaptation [1,8,20]. This supports the
search of a suitable query by involving user interaction during adaptation which assist
the user to create more individual cooking recipes.

Acknowledgements. This work was funded by the German Research Foundation (DFG),
project number BE 1373/3-1.

References

1. Aha, D.W., Muñoz-Avila, H.: Introduction: Interactive case-based reasoning. Applied Intel-
ligence 14(1), 7–8 (2001)

2. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows.
Inf. Syst. 40, 115–127 (Mar 2014)

3. Dadam, P., Reichert, M., Rinderle-Ma, S., Göser, K., Kreher, U., Jurisch, M.: Von ADEPT
zur AristaFlow BPM Suite-Eine Vision wird Realität:” Correctness by Construction” und
flexible, robuste Ausführung von Unternehmensprozessen (2009)

4. Dufour-Lussier, V., Lieber, J., Nauer, E., Toussaint, Y.: Text adaptation using formal con-
cept analysis. In: Bichindaritz, I., Montani, S. (eds.) Case-Based Reasoning. Research and
Development, LNCS, vol. 6176, pp. 96–110. Springer (2010)

5. Hanney, K., Keane, M.: The adaptation knowledge bottleneck: How to ease it by learning
from cases. In: David Leake, E.P. (ed.) Case-Based Reasoning Research and Development
1997, pp. 179–192. LNAI 1266, Springer (1997)

6. Jalali, V., Leake, D.: On retention of adaptation rules. In: Lamontagne, L., Plaza, E. (eds.)
Case-Based Reasoning Research and Development, Lecture Notes in Computer Science, vol.
8765, pp. 200–214. Springer International Publishing (2014)

7. Kolodner, J.L. (ed.): Proceedings Case-Based Reasoning Workshop. Morgan Kaufmann Pub-
lishers, San Mateo, California (1988)

8. Leake, D.B., Wilson, D.C.: Combining CBR with interactive knowledge acquisition, ma-
nipulation and reuse. In: Case-Based Reasoning Research and Development, pp. 203–217.
Springer (1999)

9. Lopez Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B.,
Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse,
revision and retention in case-based reasoning. The Knowledge Engineering Review 20(03),
215–240 (2005)

10. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of workflows.
In: Case-Based Reasoning. Research and Development, pp. 421–435. Springer (2010)

11. Minor, M., Montani, S., Recio-Garca, J.A.: Process-oriented case-based reasoning. Informa-
tion Systems 40(0), 103 – 105 (2014)

12. Müller, G., Bergmann, R.: A cluster-based approach to improve similarity-based retrieval
for Process-Oriented Case-Based Reasoning. In: 20th European Conference on Artificial
Intelligence (ECAI 2014), IOS Press (2014)

13. Müller, G., Bergmann, R.: Workflow Streams: A Means for Compositional Adaptation in
Process-Oriented Case-Based Reasoning. In: Proceedings of ICCBR 2014. Cork, Ireland
(2014)

14. Müller, G., Bergmann, R.: Generalization of Workflows in Process-Oriented Case-Based
Reasoning. In: 28th International FLAIRS Conference. AAAI, Hollywood (Florida), USA
(2015)

231

15. Müller, G., Bergmann, R.: Learning and Applying Adaptation Operators in Process-Oriented
Case-Based Reasoning. In: Proceedings of ICCBR 2015. Frankfurt, Germany (2015)

16. Müller, G., Bergmann, R.: POQL: A New Query Language for Process-Oriented Case-Based
Reasoning. In: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB.
COER Workshop Proceedings, to appear (2015)

17. Reichert, M.: Dynamische Ablaufänderungen in Workflow-Management-Systemen (2000)
18. Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural knowledge

from the web. In: Workshop Proceedings: WWW’12. Lyon, France (2012)
19. Smyth, B., Keane, M.: Retrieving adaptable cases. In: Wess, S., Althoff, K.D., Richter, M.

(eds.) Topics in Case-Based Reasoning, Lecture Notes in Computer Science, vol. 837, pp.
209–220. Springer Berlin Heidelberg (1994)

20. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow management through
conversational case-based reasoning. In: Advances in Case-Based Reasoning, pp. 434–448.
Springer (2004)

21. Wilke, W., Bergmann, R.: Techniques and knowledge used for adaptation during case-based
problem solving. In: Tasks and Methods in Applied Artificial Intelligence, pp. 497–506.
Springer (1998)

232

�CooCo, what can I cook today? Surprise me.�

Karen Insa Wolf, Stefan Goetze, and Frank Wallhoff

Fraunhofer Institute for Digital Media Technology IDMT
Marie-Curie-Strasse 2, 26129 Oldenburg, Germany

{insa.wolf,stefan.goetze,frank.wallhoff}@idmt.fraunhofer.de

http://www.idmt.fraunhofer.de

Abstract. In this paper a heuristic computer-based approach is de-
scribed to vary cooking recipes by replacing ingredients. Conceptually,
the approach is integrated in a speech dialogue system. The approach is
based on a scoring system. The score value is used to rate different ingre-
dients as candidates to substitute a specific ingredient of a recipe. This
substitution score depends on different factors: 1) rating of the similar-
ity between the ingredient which has to be replaced and the substitution
candidate 2) rating how well the substitution candidate fits the recipe 3)
gustatory preferences of the user. The substitution candidate with the
highest score is proposed to the user.

Keywords: speech dialogue system, cooking coach, recipe variation

1 Motivation

The task in the open challenge of the Computer Cooking Contest [1] is a computer-
based adaptation of cooking recipes. The present contribution proposes an ap-
proach to substitute ingredients of recipes. The approach is integrated in a speech
dialogue system, called CooCo (Cooking Coach), introduced in [13]. CooCo is
currently being further developed. A speech dialogue system is a suitable frame-
work for this task:

– Speech input and output is a natural and convenient way to interact with
technical devices or systems.

– A speech dialogue system is particularly suitable in scenarios in which the
user cannot use his or her hands for interaction. Keyboard, mouse or touch-
screen are not convenient user interfaces while cooking.

– Assuming a flexible dialogue management, spontaneous utterance of the user
(like e.g. �Oops, I do not have ...�) can be processed.

– The user can be involved in a unobtrusive manner to improve the recipe
variation result and tailor the recipe to her/his personal gusto.

2 Concept of CooCo

CooCo is designed to assist users in different scenarios: The user can ask for
recipes while doing the dishes or can get reminders regarding timing and next

Copyright © 2015 for this paper by its authors. Copying permitted for private and
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.

233

steps while cooking. Both tasks require a context-based dialogue system includ-
ing modules for interpreting, planning and re-planning, as well as memorizing
and learning. Different approaches to realize a speech dialogue manager exist,
e.g. [9]. Lison distinguishes between hand-crafted and statistical approaches and
proposes the toolkit OpenDial to combine both [8]. The dialogue manager of
CooCo is based on OpenDial [10]. CooCo’s assistance while cooking is con-
ceptually based on a dynamic planning module to actively manage the cooking
process. This goes beyond simply reading out the cooking steps aloud when the
user asks for this [11]. CooCo formulates an action plan considering active and
passive time of the user (e.g. cutting vs. simmering) and dependencies of the
cooking steps [13]. The recipe advice mode includes generic models of gustatory
preferences (e.g. hot or sweet depending on typical amount of ingredients like
chili or sugar) which will be adapted based on the feedback of the user. A new
feature, presented in this paper, is the variation of the cooking recipes.

3 Computer-based variation of cooking recipes

The computer-based variations of cooking recipes addresses topics of artificial in-
telligence and machine learning approaches. The task to derive the consequences
of the substitution of an ingredient on the textual description of the preparation
steps requires techniques of natural language understanding, e.g. [2]. Other ap-
proaches aim at replacing ingredients, e.g. by randomizing recipe items [3], by
using cognitive super computing (based on IBM’s computer system WATSON,
[6]) or by just enlarging the database (by the help of a community) to find a
matching recipe for every combination of ingredients [12].

The approach presented here addresses the replacement of ingredients. There-
by, Idb is the set of all ingredients (I) of a specific database. A subset Irc ⊆ Idb
with ingredients, which belong to one recipe, is defined as Irc = {irc,1, . . . , irc,m}
with maximum number m of ingredients. The subset Isb = {isb,1, . . . , isb,h} with
h ≤ m and Isb ⊆ Irc comprises all ingredients which will be substituted. The food
items which are candidates (C) to substitute one element of Isb belong to the set
Csb = {csb,1, ..., csb,n} with maximum number n of known food items. The set of
the remaining ingredients of the recipe without the elements of Isb is defined as
Irm = Irc\Isb. The approach is based on the computation of a substitution score
s ranging from 0 to 120 indicating the fit of a specific substitution pair isb,j ∈ Isb
and csb,k ∈ Csb. The substitution score is based on statistical information derived
from a recipe database and general food knowledge. The approach can also be
regarded as one module of a case-based reasoning process of a recipe advisor, as
it is described e.g. in [7], to include the substitution of ingredients.

4 Use cases

The central task in the following two use cases is to propose a tasty recipe based
on the user’s input by replacing ingredients. The intention of the user differs in

234

the scenarios. Both use cases can be extended by including the question of unde-
sired ingredients. In order to enlarge the number of possible recipe candidates,
the proposed recipe variation approach can be applied in this case additionally
to substitute undesired ingredients. Users differ in their gustatory preferences,
one likes more traditional recipes, while the other is more open to new tastes. To
adjust these individual preferences, two user parameters are introduced referred
to as experimental levels. The experimental level ecd influences how common
or uncommon a substitution candidate should be. The level ecb regulates how
common or uncommon the combination of a substitution candidate and all el-
ements of Irm is. For both levels three adjustment steps can be chosen by the
user, ranging from 1 = very common to 3 = very uncommon.

4.1 Use case 1: �Suprise me.�

Based on one chosen recipe the user asks for a variation of this recipe. A similar
scenario would be that the user realizes that one ingredient is missing but s/he
still wants to cook the chosen recipe accepting variations. In both cases, CooCo
can choose freely possible substitution candidates. In the first case, the ingredient
isb,j is not defined by the user. In the second case, isb,j is the missing ingredient.

4.2 Use case 2: �Work with what I have.�

The user specifies some ingredients Ius, s/he wants to work with, but no recipe
can be found in the database which uses all desired ingredients. The task for
CooCo is now to propose one recipe which matches by replacing missing elements
(Ims) of Irc with those of Ius. For this scenario, a plausibility check is necessary
since not each combination of ingredients presents a suitable option for a recipe.

5 CooCo’s Recipe Variation Approach

The central aim of the approach is to compute substitution scores s for different
substitution candidates of Csb in relation to one element isb,j of Isb. The candi-
date csb,k with the highest score is finally proposed to the user. Considering the
abbreviations isb,j = i and csb,k = c the substitution score s(i, c) is derived as

s(i, c) = sb(i, c) + ssp(i, c) + sn(i, c) + scd(c) + scb(c, irm|irm ∈ Irm), (1)

with sb as basic substitution score, ssp as special substitution score, sn as sub-
stitution score based on nutrition facts, and scd and scb as substitution scores
derived from a statistical analysis of the ingredients and their combination fre-
quency based on the recipe database. The derivation of each summand of Eq. 1
is explained in the following. The substitution of more than one ingredient can
be done by repeating the algorithm, up to now without considering the results
of subsequent substitution steps. As starting point a recipe database with 1.222
recipes is chosen [5]. Additionally, a semantic net is created representing food

235

Fig. 1. Part of the semantic net with substitution scores sb and ssp.

items in a structured way, cf. Fig. 1. Each item is represented as class within a
relationship network of currently 120 classes starting from the level 0 up to 3.

Besides the parent-children constellation different properties of each food
class are stored. These properties are grouped in (a) those properties considering
only the class itself and (b) those properties related to other classes. For group
(a), the following properties are introduced:

nutrition facts ng, with g = {c, f, p, e}: Nutrition facts are stored for differ-
ent food classes of level 2 or higher. In the first version of CooCo, the variable
nc contains carbohydrates, nf fat,np protein, and ne energy per 100 g.

relative frequency fcd: For each food class its relative frequency is derived
based on the recipe database. The number of recipes in which the class occurs
as ingredient is divided by the total number of recipes. This frequency value
describes how common or uncommon a certain ingredient is.

substitution score scd: Based on the relative frequency fcd the score scd is
derived, considering the experimental level ecd. The relative frequencies fcd
are classified in five categories. The first category Dcd,1 contains rarely used
and the last category Dcd,5 frequently used ingredients, assuming Dcd :=
[0 . . . 0.005 . . . 0.01 . . . 0.03 . . . 0.08 . . . 1.0]. The index of the category in com-
bination with the experimental level ecd defines the magnitude of the sub-
stitution score scd. This is implemented using a weighting matrix

W =

w11 w12 w13 w14 w15

w21 w22 w23 w24 w25

w31 w32 w33 w34 w35

 =

−2 −1 0 1 2
0 0 0 0 0
2 1 0 −1 −2

 (2)

and by taking one of its elements to derive

scd = 10wecd,p, (3)

with row number ecd and column number p as index of Dcd,p.

The group (b) of properties considers the relation between two food classes
to indicate how good they can substitute each other or how good they can be
combined in one recipe.

236

basic substitution score sb: It is assumed that food classes at a low semantic
level (e.g. common mushrooms, morel or truffel in the class “mushrooms”,
level 2) are similar to each other. Therefore, the score sb is introduced de-
pending on the level of class in the semantic net, cf. Fig. 1.

special substitution score ssp: A few explicitly defined scores ssp are stored
(e.g. vegetables as substitution candidate for mushrooms or the milk product
“tofu” as good substitution candidate for children of the class “meat”).

substitution score based on nutrition facts sn: It is assumed that one food
class of level 2 or higher is a good substitution candidate for another food
class if they have similar nutrition facts. Therefore, the similarity factor fn
of two ingredients iA and iB is derived based on their nutrition facts ng as

fn,g(iA, iB) =
|ng(iA)− ng(iB)|
(ng(iA) + ng(iB))

, (4)

with g = {c, f, p, e}. The mean value µfn and the standard deviation σfn
derived from all fn,g is used as measure of the similarity of the nutrition
facts - being aware of the roughness and simplicity of this approach. The
substitution score based on nutrition facts is derived as

sn = min(2/µfn , 15) + min(2/σfn , 15). (5)

relative combination frequency fcb: The frequency value fcb(iA, iB) expres-
ses how often an ingredient iA is used in combination with a specific in-
gredient iB of Idb. Therefore, the number of recipes nA&B , in which both
ingredients iA and iB are included, is determined. This yields fcb(iA, iB) =
nA&B/nA. As the denominator usually differs numerically for fcb(iA, iB) and
fcb(iB , iA), the frequencies differ correspondingly. Following this approach,
it has to be considered that uncommon ingredients can get fcb values close
to 1.0 as nA is close to nA&B .

substitution score scb: The score scb is derived in a similar way as it is done
for scd, but now considering the relative frequency fcb and the experimental
level ecb. All frequencies fcb(c, i) of the substitution candidate c ∈ Csb and
the ingredients i ∈ Irem have to be calculated first. The mean value of all
these frequencies is then derived as fcb(c, Irm). This value is finally assigned
to one of the categories Bcb,1 up to Bcb,5, heuristically defined as Bcb :=
[0 . . . 0.30 . . . 0.35 . . . 0.40 . . . 0.50 . . . 1.0]. Using the weighting matrix W from
Eq. 2 the score is derived as

scb = 10wecb,q, (6)

with row number ecb and column number q as index of Bcb,q. The effect is,
that if the user wants uncommon combinations, expressed as ecb = 3, a set
of ingredients with a low fcb(c, Irm) get a high score.

6 Implementation

The knowledge base containing the recipe database and the semantic net are im-
plemented in Prolog. Standard request functions are implemented, so that recipes

237

including or excluding specific ingredients can be looked up. The approach de-
scribed above is conceptually tested, further implementation and evaluation is
on going work. The procedures to handle both use cases (cf. Section 4) are de-
scribed in the following based on one test example. The starting point is a simple
mushroom soup recipe:
250 g common mushrooms, 40 g butter, 40 g flour,
5 dl bouillon, 5 dl milk, 1 tb parsely, minced,
- - salt, - - pepper

6.1 Procedure for use case 1: �Surprise me.�

In the following description only some examples of the possible substitution
candidates are listed.

1. Choose the ingredient with the largest proportion relative to all ingredients
of Irc as isb [common mushrooms].

2. Compute (sb + ssp) for all csb ∈ Csb [class “mushrooms”: yellow boletus,
morel, truffle; extract of class “vegetables”: red pepper, tomato, cucumber]

3. Compute sn for all pairs of csb and isb [listing parsley, cauliflower, morel,
yellow boletus as the one with a high score sn].

4. Derive scd for all csb.
5. Derive scb for all csb with respect to the elements of Irem.
6. Sum up s for each pair of csb and isb following Eq. 1.

Numerical results for the different experimental levels ecd and ecb are listed in
Tab. 1. Parsley is left out as it is already part of the recipe. The results show, that
a user with a low ecd of 1 and a medium or high ecb of 2 or 3 will be recommended
a tomato soup. In case a very common combination of ingredients is wanted
(s(1, 1)), morel soup is proposed instead. Reason for this is that the recipes with
common mushrooms and morel often share the basic combination of ingredients.
A user who wants uncommon ingredients in a uncommon combination gets truffle
as substitution candidate (s(3, 3)). Elements of the class mushrooms are mostly
preferred. A whole class like “mushrooms” could also be excluded, resulting
in recommendations of cauliflower as substitution candidate as a less common
ingredient than tomatoes. As the terms scd and scb are based on the statistical
analysis of the recipe database, the result depends strongly on the size and the
quality of the recipe database.

6.2 Procedure for use case 2: �Work with what I have.�

In use case 2 the user desires a recipe with the ingredient set Ius = {butter, flour,
parsley, bouillon, red pepper}. Firstly, for all elements of Ius the frequencies fcb
to each other are checked heuristically: If all fcb > 0 and the mean µfcb > 0.1,
then CooCo accepts the set Ius. Otherwise the dialogue with the user is reopened
to ask for other set members. In the example, the set is accepted. The recipe
that matches best Ius is mushroom soup, based on the simple rule to look for

238

Table 1. Numerical results of use case 1. The result s(j, k) means s based on ecd = j
ecb = k. The respective candidate with the largest score s is marked in bold letters.

.

y. boletus morel truffle red pepper tomato cucumber cauliflower

sb + ssp 30 30 30 25 25 25 25
sn 29.2 29.2 29.0 9.4 5.6 12.8 33.0

fcd 0.007 0.004 0.002 0.107 0.142 0.010 0.010
fcb 0.397 0.543 0.286 0.347 0.346 0.236 0.367

s(1, 1) 49 59 19 44 51 8 48
s(1, 2) 49 39 39 54 61 28 48
s(1, 3) 49 19 59 64 71 48 48

s(2, 1) 59 79 39 24 31 18 58
s(2, 2) 59 59 59 34 41 38 58
s(2, 3) 59 39 79 44 51 58 58

s(3, 1) 69 99 59 4 11 28 68
s(3, 2) 69 79 79 14 21 48 68
s(3, 3) 69 59 99 24 31 68 68

those recipes with the smallest number of missing ingredients Ims = {ims|(ims ∈
Irc) ∧ (ims /∈ Ius)}. However, red pepper is not part of the original recipe.
The algorithm now attends to compute based on Eq. 1 as criteria whether red
pepper is a suitable substitution candidate csb for one of the missing ingredients.
Some of the missing ingredients {pepper, salt, bouillon} are marked as standard
ingredients in the database. CooCo assumes as first guess that they are available
also in case the user did not mentioned them explicitly. If this is confirmed by the
user, the only missing ingredients left are Ims = {common mushrooms, milk}.
Considering the experimental levels, the score s is derived for all pairs of csb with
one of the elements of Ims. The computation result looking at the substitution
pair red pepper - common mushrooms differs slightly compared to the result of
use case 1 because milk is left out in the computation of scb as it is missing. As
consequence, fcb is classified here in Bcb,3 resulting in scb = 0, independently of
ecb as the weight factor in Eq. 6 is zero. Therefore, for all ecb levels the score s is
identical to s(j, 2) with ecd = j, cf. Tab. 1. The highest score s = 54 is reached
for ecd = 1. Considering a threshold scheme of [120 . . . 80] (very good),]80 . . . 40]
(acceptable),]40 . . . 0] (not recommended) for s, the substitution pair red pepper
- common mushrooms is evaluated as ”acceptable”. In no case it is an option to
replace milk with red pepper, the highest score is s = 29. This is reasonable, but
a rule should be added in future versions to avoid the substitution of liquid and
solid ingredients in any case. This is possible by adding an appropriate property
in the semantic net. Milk remains here as missing candidate. Two different last
options are possible: (1) Ask the user explicitly whether there is after all a
potential substitution candidate. If yes, repeat the procedure. (2) Evaluate how
well the missing ingredient could be omitted. Therefore, sb+ssp+sn is computed
in relation to all ingredients of Irm to get a hint if one of them could make up
for the omission by increasing its quantity. In this specific example, the result
of 17.5 for milk in relation to butter is not promising enough to propose this

239

as solution. As final step, the amount of liquid within the recipe ingredients is
checked leading here to an increase of the amount of bouillon to recover the
original amount of liquid. The final solution with appropriate comments based
on the score s is presented to the user.

7 Conclusion and future work

A new feature of the currently developed application CooCo is presented. An
approach to derive recipe variations by replacing ingredients is introduced. Two
different use cases are addressed. The introduced examples provide reasonable
results. This first proposed version of the approach has to be further improved
and expanded in future work. An evaluation of the substitution results is planned
based on feedback of users integrated in the speech dialogue system. The mech-
anism how to choose the best starting recipe in use case 2 can be ameliorated,
including e.g. more information of the gustatory preferences of the user. The
present approach prefers recipes with a small number of ingredients. In summary,
the approach is a first step for computer-based tasty cooking recipe variations.

Acknowledgement. The authors would like to thank the anonymous re-
viewers for their helpful comments to improve the final version of the paper and
their suggestions for future work in this research field.

References

1. CCC: Computer cooking contest (2015), cc2015.loria.fr/index.php, 3.3.2015
2. Dufour-Lussier, V., Le Ber, F., Lieber, J., Nauer, E.: Automatic case acquisition

from texts for process-oriented case-based reasoning. Inf Systems 40, 153–167 (2014)
3. Easier Baking, www.easierbaking.com, 9.7.2015
4. Gamrad, D.: Modeling, simulation, and realization of cognitive technical systems.

Ph.D. thesis, Universität Duisburg-Essen (2011)
5. Herz, J.: Kalorio (2015), www.kalorio.de/, 27.2.2015
6. IBM, Inst of Culinary Education: Cognitive Cooking with Chef Watson: Recipes for

Innovation from IBM & the Institute of Culinary Education. Sourcebooks (2015)
7. Ihle, N., Newo, R., Hanft, A., Bach, K., Reichle, M.: CookIIS - A Case-Based Recipe

Advisor. In: Proc 8th Int Conf on CBR 2009, Seattle, USA, pp. 269-278 (2009)
8. Lison, P.: Structured Probabilistic Modelling for Dialogue Management. Ph.D. the-

sis, Dep Informatics, University of Oslo (2014)
9. Morbini, F., Audhkhasi, K., Sagae, K., Artstein, R., Can, D., Georgiou, P.,

Narayanan, S., Leuski, A., Traum, D.: Which ASR should I choose for my dialogue
system? In: Proc SIGDIAL 2013, Metz, France. pp. 394 – 403 (2013)

10. Open Dial, www.opendial-toolkit.net, 9.7.2015
11. Schäfer, U., Arnold, F., Ostermann, S., Reifers, S.: Ingredients and recipe for a

robust mobile speech-enabled cooking assistant for german. In: KI 2013: Advances
in Artificial Intelligence, pp. 212–223. No. 8077 in LNCS, Springer (2013)

12. SousChef, www.acaciatreesoftware.com/, 9.7.2015
13. Wolf, K.I., Goetze, S., Wellmann, J., Winneke, A., Wallhoff, F.: Concept of a

nutrition consultant application with context based speech recognition. In: Proc
Workshop Kognitive Systeme 2015, Bielefeld (2015)

240

Enriching Cooking Workflows with Multimedia Data

from a High Security Cloud Storage

Patrick Bedué | bedue@stud.uni-frankfurt.de

Wenxia Han | s0611400@stud.uni-frankfurt.de

Mathias Hauschild | s8722400@stud.uni-frankfurt.de

Maximilian Pötz | s8084343@stud.uni-frankfurt.de

Mirjam Minor | minor@cs.uni-frankfurt.de

Abstract: With increasing growth of cloud services and the ability to choose

from different cloud providers, we propose a new way to connect cooking

workflows with a high security cloud storage. We use Activiti for workflow de-

sign and JavaScript Object Notation (JSON) for structured data interchange

with a sealed cloud storage. This approach supports cooking workflows with

instructions from multimedia data (e.g. videos, pictures) for special interest

groups of the cooking domain like private communities or even chronically ill

patients. The paper makes a contribution to current trends in information-sys-

tems related research such as scalability and experience reuse. Further, it con-

nects Cloud Computing with Business Process Management.

1 Introduction

With growing globalization, information technology has become a key resource for

business success or failure. IT is often used to manage business processes in companies

and has become increasingly important, leading to a rise in new ways to organize busi-

ness processes (Aalst, Benatallah et al. 2003). Cloud Computing changes the way we

can develop and organize our resources and also enables a flexible and individual allo-

cation of resources (Ciovică, Cristescu et al. 2014, Schulte, Janiesch et al. 2015).

Business processes are modelled as a collection of activities, dependencies between

activities and are technically supported by workflows (Aalst, Benatallah et al. 2003).

Regarding actual research topics, realizing business processes in a flexible and cost-

efficient way is on a rise (Schulte, Janiesch et al. 2015). There are some studies focusing

on workflow execution in the cloud investigating infrastructural challenges of elastic

Business Process Management or security issues (Wang, Korambath et al. 2014,

Schulte, Janiesch et al. 2015).

To develop our research proposition, we concentrate our work on the implementa-

tion of workflows in the cooking domain with a special focus on applying secure cloud

technology for multimedia data integration and data objects representing ingredients.

To improve the user experience, we investigate the feasibility of using multimedia

data from a high security cloud storage and of integrating this data into workflows. The

user advantage is that she no longer needs to store big multimedia files on her device

and can execute workflows in a web interface. Secure cloud technology provides rapid

Copyright © 2015 for this paper by its authors. Copying permitted for private and
academic purposes. In Proceedings of the ICCBR 2015 Workshops. Frankfurt, Germany.

241

mailto:minor@cs.uni-frankfurt.de

scalability as well as data protection. Both are beneficial properties for using multime-

dia data in the cooking domain. With our proposed solution, the user is able to easily

create cooking recipes on a platform and store multimedia data. Having started the

workflow, the user is provided with cooking instructions including pictures or videos.

Using secure cloud technology addresses private communities which e.g. do not want

to publish content or appear in any videos accessible to the public, for instance chroni-

cally ill persons or allergy sufferers who do not want to share their special recipes or

videos because their identity might be linked to serious diseases. For many people it is

not an option to simply store the content on scalable platforms like YouTube because

their children might be visible or because their employer might get knowledge about

their special concerns. Our solution combines scalability with additional security and

ensures that content is protected from persons who are not supposed to have access to

the recipes. The technical solution is based on IDGARD which allows to separate data

in different, sealed containers and to keep own videos or pictures confidential.

With this new solution we address the open challenge of the Computer Cooking

Contest.

The remainder of our paper is structured as follows. At first we will provide an over-

view of our architecture and a sample of a workflow to ease comprehensibility. After

that we will present our implementation concept and workflows from the cooking do-

main, which are based on cooking recipes of pasta. We conclude with a discussion of

our research contribution and the new prospects for both companies and researchers.

2 Fundamentals

Sealed Cloud

A broad range of providers offer different models for services at different layers. But

most of them do not guarantee security for the clients of a cloud provider or the privacy

of the data (Santos, Gummadi et al. 2009). Especially in Germany, data protection and

compliance issues require new technologies such as sealed cloud technology (Rieken

2015). A sealed cloud offers the technology to encrypt contents and meta data so that

the cloud provider itself is not able to access data contents. The monitoring of user

behavior and the possible access to protected content by providers is a big issue as part

of data privacy and anonymity in the internet. We implement a new architecture to

integrate multimedia data from the cloud using Activiti as a workflow engine and the

sealed cloud IDGARD.

Copyrighted Content

From a user perspective, the access to files via the internet, for instance, by using

mobile devices can be risky, because some information can be spied out by unauthor-

ized persons. If some potential attackers retrieve user information while data is sent

over the wire they may gain full access to the data storage. To prevent these attacks the

usage of security tokens or passcodes (received via SMS) is necessary. IDGARD pro-

vides some of these additional security mechanisms.

242

From the provider perspective it is also difficult to secure data and protect it from

unauthorized access or illegal sharing. Providers want to ensure that only one user or a

specific user group is able to access data with the registered devices. By sending the

unique keys to the registered devices, content providers can prevent the unauthorized

sharing of data (e.g. by using a sealed cloud). There are similar examples in the nutrition

domain where images or videos are already protected, for instance mycoachnutri-

tion.com (MyCoachNutrition 2015). Like our approach, these services offer user indi-

vidual content. In contrast to our work, they do not provide rapid scalability.

Definition of Workflows

Work is often organized as a sequence of individual tasks in which the progress can

be observed (Hammer and Champy 1994). These individual tasks are linked to each

other and they underlie a business objective or a policy goal (Workflow Management

Coalition 1998). The automation of business processes is called workflow. According

to the definition of the Workflow Management Coalition, a workflow is: “The automa-

tion of a business process, in whole or part, during which documents, information or

tasks are passed from one participant to another for action, according to a set of proce-

dural rules.” (Workflow Management Coalition 1998). In the remainder of this paper,

we will use the term “workflow” as synonym for “business process”. For our project,

we model different cooking instructions using Activiti as a workflow engine. A simple

workflow consists of a start event, a task with a data object and an end event (see Figure

1). A task or an activity describes a piece of work that forms a logical step in a process.

To support the process execution the workflow activity requires human and/or machine

resources for process execution (Workflow Management Coalition 1998). We use dif-

ferent tasks and data objects to describe a cooking control flow.

Task (cook)

Rice

Figure 1: Sample workflow (own representation)

243

3 Architecture

General overview

As illustrated in Figure 2, the introduced architecture consists of three layers:

From the perspective of the user, the first layer or sub-component is based on the so

called Ninja Web-Framework, which is required in order to handle the graphical inter-

action with the user by initiating a workflow instance.

Below the Web Framework, the Business Process Management (BPM) platform Ac-

tiviti initially receives the user commands and controls the processing of the corre-

sponding instance. The Activity engine requests relevant information from the data

source (IDGARD) and hands them over to the user.

IDGARD, as the third or bottom layer of the architecture, is not just an external

database but a sealed cloud solution. Therefore, it does not only store the data but pro-

vides API functions that ensure secure retrieval.

Worklist/ User
Interaction

Resource Access (Data
Interaction)

Submission Handling
 (Flow Control)

Reasons for Usage of a 3-Layer-Architecure and its Components

Since the goal is to develop and execute (cooking) workflows it is required to use

Business Process Management and a solution to save the corresponding multimedia

data. As a result, it is pre-determined to stage a 2-Layer-Architecure at minimum. Since

it is a typical demand that users have not just local access to the workflows, a browser-

based solution is reasonable. This kind of functionality is not offered by the already

mentioned layers and therefore asks for an additional one.

Figure 2: Architecture (own representation)

244

Starting from the bottom layer, there is the complex question of how to save an ap-

plication’s data or where to put it. As Cloud Computing nowadays has already over-

come just being a trend, it is appropriate and scientifically valuable to embed this idea

into various contexts.

IDGARD´s sealed cloud is specifically designed to enhance security. Because pro-

tecting own content like graphically supported cooking steps or even whole recipes can

be important, such a cloud service might be beneficial. This especially applies to com-

panies that want to distribute such services via Internet and protect themselves against

copyright infringements.

Concerning the choice of a workflow engine, there is a huge range of open source

technologies available. In terms of basic functionality (e.g. integration in an IDE or

graphically establishing workflows) they usually show similarities. To address our re-

quirements properly we decided to use two different GUI’s for our project. Activiti as

the modelling GUI and the Ninja Web-Framework for the user worklist. However, Ac-

tiviti convinces with a distinct manual, a large community and a clear, browser based

testing environment.

To provide the worklist, the Ninja Web-Framework is useful because, as an inte-

grated software stack, it already comprises many important libraries.

By using a MongoDB database, we save standardized keywords for each possible

instruction and ingredient on the one hand, as well as the recipes with already assigned

processing times, instructions and information on the other hand. We are planning to

use time information for the retrieval of a process in our future work.

4 Implementation Concept

An abstract class in Java defines the fundamental set of functions, i.e. basic java

members and abstract methods that deal with communicating information between java

and JSON, and the log file for further checks and troubleshooting. Each function has

still its own unique representation for requests and responses including the correspond-

ing JSON formats. In order to successfully connect request- and response functionality

for data interchange, some middleware classes are required. For providing cloud access,

we have to send login-data and a random token of the client for identification purposes.

The factory pattern is used to invoke requests and their corresponding response classes.

The Java classes that realize the communication with the cloud server are directly im-

plemented in the workflows, which we use for cooking instructions.

Workflow engines for Business Process Management are abounding. Examples for

these are JBoss, jBPM or Activiti. For our workflow development, we use Activiti as

an open source workflow engine. Activiti uses BPMN 2.0 as a modelling language and

can be easily integrated with Java environments (Alfresco 2015). We used seven al-

ready created pasta cooking workflows from the work of Minor et al. and converted

them into an Activiti workflow (see Figure 3 following Minor, Bergmann et al. 2010).

Each cooking task is modelled by a service task. This kind of task enables us to invoke

245

a Java class for API cloud access. We also deposit the ingredients as data objects di-

rectly in the activity workflow. Other content like pictures or movies for cooking in-

structions are stored in the cloud.

In the example we have four individual instructions for the user. First, cook and place

in serving bowl as well as puree should be conducted in parallel. Parallelization can be

modelled using XOR-, AND- (symbolized by the plus), or LOOP-blocks (Schumacher,

Minor et al. 2013). When both branches are finished the last task is toss. In each task,

users get instructions with support of multimedia data from the cloud. To execute our

designed workflows we use the Ninja Web framework. The Web framework (worklist)

is a resource which performs the work presented by a workflow activity instance and

therefore directly interacts with the user and supports her in executing her tasks

(Workflow Management Coalition 1998). After successfully logging in, a user can

choose to design her own recipe and upload new elements or choose ingredients to

process. When searching for new processes for recipes in the database it is difficult to

find a workflow or recipe which is well suited for the desired ingredients. To implement

a search, case-based retrieval can be used. However, because of the small size of the

recipe base in our solution this is not implemented yet.

Each recipe consists of several steps that are described by its linked ingredients, re-

lated instructions and actions that are supposed to be undertaken. In Figure 4, the pro-

totypical implementation of our worklist is depicted. The sample picture is directly im-

ported from the cloud. The non-multimedia information around the task is saved in a

MongoDB database. When the user starts to cook she immediately sees which ingredi-

ents she needs, processing time, next steps and a video or picture to support her task. In

the left top corner of Figure 4, one can see the ingredients to be used for the particular

task. In the center is a management board with the instructions supported by a video or

Figure 4: Current worklist (own representation)

246

a picture of the specific task. The workflow running in the background is modelled in

BPMN 2.0. By pressing next step the user is guided to the next task of the related recipe

as specified in the BPMN workflow. Thereby, we provide a worklist with different

instructions for a kitchen chef.

5 Discussion and Conclusion

In our paper we present a novel approach to integrate a high security cloud storage

(sealed cloud) in Business Process Management. We implement a new model for using

a sealed cloud multimedia data storage for our workflow contents. The implementation

of a case-based retrieval is not implemented yet. As a first step, we demonstrate a pasta-

cooking workflow, which can be processed or uploaded by the user in a web form. The

content is stored in the sealed cloud IDGARD of the Uniscon GmbH who provides the

cloud infrastructure. The content and meta data is encrypted and protected from unau-

thorized provider or third-party access. By using cloud storage for our workflows we

examine two main benefits: data protection and scalability. With the IDGARD solution

third parties are not able to copy or even access the data.

Scalable storage provides the advantage of adapting storage up and down on-demand

without using rare data space on physical disks of computers or other devices

(Armbrust, Fox et al. 2009). By using IDGARD, we are able to scale our storage ca-

pacity in a flexible way in response to service usage and new customer demands. Since

it is very difficult to estimate, what recipes and data with instructions will be added,

scalability is very important. Apart from that, the evolution in terms of video quality

has significantly risen in the past years (and probably keeps rising in the future) which

contributes to the fact that scalability is an important factor because customers also tend

to pressure companies to provide state-of-the-art content. The amount of data that goes

along with this development is significant. It is also possible to migrate our workflow

engine into a cloud solution in future. As a result, the whole platform can be scaled in

response to service usage.

To sum up, our approach of using cloud storage for workflows in the cooking domain

benefits from flexible scalability, higher privacy and data protection leading to a higher

user experience especially for special interest groups of the cooking domain. The user

no longer needs to use her limited, physical storage. She can store multimedia data with

cooking instructions directly in the cloud. Our work also contributes to other future

trends besides the cooking domain. Sealed cloud technology offers opportunities to use

cloud storage without harming privacy or security regulations. This can be very im-

portant for audit companies who want to store audit-documents or other critical contents

in the cloud.

247

7 Acknowledgment

We would like to acknowledge our partnership with the Uniscon GmbH who pro-

vided us with their sealed cloud service IDGARD.

8 References

Aalst, W. M., B. Benatallah and F. Casati (2003). Business Process Management,

Springer-Verlag Berlin Heidelberg.

Alfresco. (2015). "Activiti mission statement." Retrieved 08.06.15, 2015, from

http://activiti.org/vision.html.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D.

A. Patterson, A. Rabkin, I. Stoica and M. Zaharia (2009). Above the Clouds: A

Berkeley View of Cloud Computing, Technical Report, UC Berkeley Reliable Adaptive

Distributed Systems Laboratory.

Ciovică, L., M. P. Cristescu and L. A. Fraţilă (2014). "Cloud Based Business Processes

Orchestration." Procedia Economics and Finance 16(0): 592-596.

Workflow Management Coalition (1998) "Terminology & Glossary." Retrieved

08.06.15, 2015, from http://www.wfmc.org/resources.

Hammer, M. and J. Champy (1994). Business Reengineering: Die Radikalkur für das

Unternehmen. Campus-Verlag Frankfurt.

Minor, M., R. Bergmann, S. Görg and K. Walter (2010). Adaptation of cooking

instructions following the workflow paradigm, In: ICCBR 2010 Workshop

Proceedings, pp. 199-208.

MyCoachNutrition. (2015). "MyCoachNutrition." Retrieved 06.07.15, 2015, from

http://www.mycoachnutrition.com/.

Rieken, R. (2015). Datensicherheit als Herausforderung im Cloud-Computing-Trend.

In: Marktplätze im Umbruch: pp 751-759, Springer.

Santos, N., K. P. Gummadi and R. Rodrigues (2009). Towards trusted cloud computing.

In: Proceedings of the 2009 conference on Hot topics in cloud computing. San Diego,

California, USENIX Association.

Schulte, S., C. Janiesch, S. Venugopal, I. Weber and P. Hoenisch (2015). "Elastic

Business Process Management: State of the art and open challenges for BPM in the

cloud." Future Generation Computer Systems 46(0): 36-50.

Schumacher, P., M. Minor and E. Schulte-Zurhausen (2013). Extracting and enriching

workflows from text. In: Proceedings of the 2013 IEEE 14th International Conference

on Information Reuse and Integration (IRI), pp. 285-292.

Wang, J., P. Korambath, I. Altintas, J. Davis and D. Crawl (2014). "Workflow as a

Service in the Cloud: Architecture and Scheduling Algorithms." Procedia Computer

Science 29(0): 546-556.

248

http://activiti.org/vision.html
http://www.mycoachnutrition.com/

	CookingCAKE: A Framework for the adaptation of cooking recipes represented as workflows

