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Abstract. Mine Countermeasures Missions (MCM) take place in very complex 

and uncertain environments which poses complexity for planning and explana-

tion algorithms.  In order to keep a mission on target, constant disruption moni-

toring and frequent schedule adjustments are needed. To address this capability 

gap, we have developed the Case-Based Disruption Monitoring and Analyzing 

(CDMA) algorithm. The CDMA algorithm automatically detects disruptions 

within a mission and attempts to determine possible root causes. Once confirmed, 

our second developed algorithm, CLOSR modifies existing schedules to com-

pensate for these root causes. Evaluation of CDMA on simulated MCM opera-

tions demonstrates the effectiveness of case-based disruption monitoring. Both 

the CDMA and CLOSR algorithms, along with simulator, are enclosed with our 

KRePE system.  

1 Introduction 

Unforeseen disruptions occur when planning in the real world. When monitoring for 

such disruptions and providing an explanation as to why the disruption occurs, better 

insight is provided in order to fix the plan. Mine Countermeasure Missions (MCM) for 

example, uses planning constantly. MCM planning uses a variety of resources and each 

resource has its own set of capabilities and operational constraints, as well as charac-

teristic failure points.  

Mine Countermeasure Missions (MCM)  must respond to frequent disruptions, and 

recovering from these disruptions can be complex. MCM missions involve the location, 

identification, and neutralization of enemy explosive ordnance in a maritime context. 

This is key to naval power projection and sea control, two core capabilities of U.S. 

maritime power, as characterized by A Cooperative Strategy for 21st Century Seapower 

[4]. Due to high complexity and uncertainty when scheduling MCM missions, accurate 

plans must be created and frequently revised once a mission has started. Frequent dis-

ruptions in MCM operations can occur due to many types such as: changes in sea state, 

visibility, weather, equipment failure, etc. Situations like these interfere with resource 

availability and/or readiness. Therefore, schedules for MCM operations require fre-

quent changes and updates where the disruptions are monitored in order to keep the 

success of the mission. Current practice calls for manually observing all incoming data 
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for detection of issues that could cause a mission to fail. The manual process of moni-

toring for disruptions can be tedious and prone to error.  

To meet this need, we are developing a system for MCM operation decision making 

and planning support called KRePE. KRePE builds upon a foundation of cognitive ar-

chitecture components, algorithms and simulations. Housed within the KRePE archi-

tecture the Case-Based Disruption Monitoring and Analyzing (CDMA) algorithm per-

forms monitoring and analysis of disruptions and Case-Based Local Schedule Repair 

(CLOSR) reschedules tasks that MCM planner operators perform on a frequent basis. 

Both the CDMA and CLOSR algorithms fall in a problem solving paradigm known as 

Case-based reasoning (CBR) by relying on general and specific knowledge of MCM 

operations, how operations might be disrupted, and how to fix these interruptions.  

In this paper, we discuss the challenges of continuous situation monitoring, and root 

cause analysis of mission disruptions through case-based reasoning. We close with an 

empirical study that demonstrates this effective anomaly detection in order to generate 

schedule modifications that achieve mission success.   

2 Mine Countermeasures Mission Scheduling & Operations 

MCM operations involve the location, identification, and neutralization of sea mines 

[5]. These operations employ surface vehicles, aircraft, divers, and unmanned surface 

and underwater vehicles, and can take weeks to plan and execute. While the operations 

are taking place, they are disrupted early and often by events such as unforeseen 

weather conditions, technological failures, and incorrect enemy course of action esti-

mations. While technology exists to automatically create an initial schedule, distribute 

tasks, and track task completion, the critical monitoring and rescheduling tasks have 

been, to date, poorly supported [6].  

MCM operations involve a unique set of specialized tasks that must be scheduled to 

minimize the risk to ships from sea mines. What follows is a brief description of the 

tasks in an MCM operation and their characteristics. The schedule for an MCM opera-

tion tasks multiple vehicles to repeatedly hunt and/or sweep subsections of a specified 

threat area where mines are expected, slowly transiting back and forth in a lawnmower-

like search pattern, until the risk of remaining mines is reduced to an acceptably low 

level. The paths followed by these search vehicles are referred to as tracks.  

Hunting is a search and destroy activity that encompasses use of specialized sensors 

to find underwater objects that are mine-like, identification of mine-like objects as 

mines or non-mines, and neutralization of all discovered mines. The probability of de-

tection describes the equipment’s sensitivity within that range to the size and reflectiv-

ity of mine casings. Because mines may be missed, missions are commonly evaluated 

according to a percent clearance objective. Percent clearance is defined as the proba-

bility that a mine at any given position in the search area will be detected.  

Sweeping is an activity that uses specialized apparatus to destroy all mines present 

in a given area either by cutting the chains that connect them to the ocean floor or 

employing signal generators which mimic the magnetic and acoustic signatures, of 

ships, to trigger mines that are activated by those signatures. 
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The operation schedule, which may consist of hundreds of tasks of heterogeneous 

types, must be repeatedly adjusted over the course of the operation in response to un-

expected events which invalidate it. The task of keeping the schedule up to date despite 

hundreds of interrelated tasks is complex, difficult, and laborious, particularly given the 

constant time pressure of typical operations. Modifications to schedules are kept to a 

minimum, in order to reduce expense and opportunities for error; we refer to this char-

acteristic as minimal operational disruption. However, modified schedules must also 

fulfill operational requirements such as percent clearance, time limits, and risk to equip-

ment. These difficult tasks (i.e., monitoring, response, and rescheduling) can be greatly 

aided by new computational tools. 

3 CDMA 

One way to reduce the burden on MCM human operators is to help with constant mon-

itoring of disruptions that will impact the mission. Constant monitoring of a vast array 

of disruption types can be quite difficult. In addition to detecting the disruption, diag-

nosing the root cause of the problem can be daunting, or easily overlooked. Case-Based 

Disruption Monitoring and Analyzing (CDMA) within the KRePE architecture handles 

both disruption monitoring and providing possible root causes.  

Case-based reasoning (CBR) is a problem solving paradigm that relies on general 

cases of a problem domain along with specific domain cases. These cases consist of a 

mapping between problems and a solution. When a new problem is introduced, gener-

ally CBR systems map and provides this new problem to the most similar problem 

already stored in its case base and provides a solution associated with the known prob-

lem. We describe the case representation and the CDMA algorithm in detail in the fol-

lowing subsections.  

3.1  CDMA Representation 

CDMA uses case-based reasoning for monitoring and analysis of disruptions that will 

impact an ongoing operation. Based on limited information of the world state, the 

CDMA algorithm determines if a disruption has occurred. A disruption case in our sys-

tem are generated manually and consists of five parts: violated expectations, parame-

ters, root cause likelihood, root cause questions and new assumptions. 

The case applies when all of the violated expectations are met; and the parameters 

indicate which variables are applied to a specific problem instance. An example prob-

lem representation is shown in Table 1. In this example, there is a disruption where the 

operator has not heard from the unit within the past 15 minutes while it was out in the 

field performing a task.  

The likelihood and list of root cause questions provide information that can be ac-

cessed by an operator through an interactive decision making process. The likelihood 

provides an apriori probability of how likely a particular root cause is for a given dis-

ruption. The root cause tests constitute a set of questions that can help the operator 
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deduce what is causing the disruption. The parameters defined by the violated expecta-

tions populate the variables within the questions, detailing the questions to a specific 

unit, piece of equipment, etc. If these questions are answered, the likelihoods for the 

root causes adjust to this information. Using the example from above, Table 1 provides 

the entire case representation. The new assumptions are a set of suppositions or beliefs 

as to which root cause explains the disruption. The parameters defined from the violated 

expectations instantiate the problem information into these new assumptions.  

 

 

Table 1. Case Representation for CDMA algorithm. 

With the use of a standard relational database called the Integrated Rule Inference 

System (IRIS) [8], CDMA can reuse case(s) in the problem space without having to 

generate new cases for each set of parameter values. Therefore similarity metrics are 

not being used. From the example, we do not need to create new cases for each type of 

equipment or unit, as it can handle all of the parameters. When monitoring detects a 

disruption, it alerts human operators with a message. The operator then decides the root 

cause of a given disruption. CDMA adds this confirmed root cause assumptions to the 

case base providing more information to its case base. These new assumptions trigger 

schedule repair to occur because the disruption affects the mission.  

 

 

Fig. 1. Workflow for CDMA algorithm. 

3.2 CDMA Algorithm 

CDMA performs the following steps for disruption monitoring and analysis as shown 

in Figure 1: 
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1. Find Relevant Case: To find a possible disruption, CDMA searches through the list 

of cases to find a relevant case that matches a violated expectation. Each case that 

matches provides a possible root cause for the disruption. 

2. Construct Analysis Using Case Solution: To analyze a disruption, the parameter 

values indicated by a specific violated expectation are substituted for the parameters 

specified by an individual case problem.  

3. Return Analyses: Each possible disruption is provided on screen for the user to re-

view, detailing the types of root causes for the disruption, along with additional in-

formation such as root cause tests and likelihood for each cause.  

4. Adapt Analyses Based on Responses: Users can answer these root cause test ques-

tions in order for the system to better understand the disruption for future root causes.  

5. Return Analyses: The system returns updated likelihoods, sorted with highest like-

lihood first, along with clearing out infeasible causes.  

6. Add New Assumptions about World State: After user selection of the root cause for 

a disruption, the system creates new assumptions about the world and why the dis-

ruption occurred. These new assumptions are added into the case base, providing 

new information that can be used to generate schedule repair if necessary.  

4 CLOSR  

To repair schedules that don’t meet the criterion of minimal operation disruption, we 

use the Case-Based Local Schedule Repair (CLOSR) algorithm [10]. This Case base 

reasoning algorithm in the KRePE architecture creates new assumptions and generates 

repairs. These repairs strive for “minimal disruption” meaning changes to the schedule 

should be kept at a minimum while rescheduling to fix a disruption. For example, in 

MCM operations, repairing a vehicle communication disruption might try to resolve 

the problem without leaving its search area to minimize transiting time and fuel. Sub-

sequent to case reuse, an adaptation process examines and resolves conflicts created by 

the schedule repair procedure which is useful for its flexibility. For more detail, please 

see [10]. 

5 Evaluation  

We hypothesize that the discrepancy monitoring and analysis capabilities of CDMA 

outperforms ablations that ignore alerts or acts on randomly-selected root causes. To 

demonstrate this, we ran the CDMA algorithm in an automated manner on a series of 

simulated MCM operations. For each operation, we measured and compared the per-

formances of three decision makers that: (1) ignores all alerts from CDMA and keeps 

the original schedule, (2) acknowledges CDMA found disruptions and chooses a ran-

dom root cause from those suggested therefore rescheduling randomly and (3) acknowl-

edges CDMA found disruptions and chooses the root cause with the highest likelihood. 

Difference between decision makers indicate the performance improvement that can be 

achieved by adopting the recommendations made by the CDMA algorithm.  
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Our study examines an MCM mission with a mine clearing objective. As it is im-

possible to ensure that 100% of mines are removed in the real world, missions are 

planned to achieve a high level of percent clearance. This means that there is a high 

chance that a mine at any given point in the search area would be observed if it existed. 

The operations conducted in our study are intended to achieve a 95% clearance level; 

in other words, we would expect 95% of the mines present to be removed. We hypoth-

esize that the decision maker using KRePE’s case base will achieve these performance 

objectives, and that the decision maker that ignores the disruptions will not. This will 

demonstrate both that monitoring and analyzing disruptions is necessary to achieve an 

acceptable level of performance under simulated conditions, and that the system is suf-

ficient to achieve that performance. 

5.1 Experimental Framework 

A simulator for MCM operations, Search and Coverage Simulator (SCSim), another 

component of KRePE, supports rapid and repeated evaluation and testing of MCM de-

cision support systems and component algorithms. SCSim simulates search missions 

involving multiple heterogeneous search units, including ships and helicopters, each 

with different available equipment configurations. Mines and mine-like objects are dis-

tributed randomly by SCSim in fields and lines according to pre-set distributions with 

variable density and object counts. This facilitates evaluation of algorithm performance 

under varying operating conditions. As a benchmark, automated testing of a two month 

operation takes less than one minute. 

SCSim simulates the assignment of parameterized tasks to units according to a 

schedule, including transit, sweep, and hunt tasks. Task parameters include, for exam-

ple, the equipment to use for sweeping, and sensor depth for hunting. To simulate a 

mission, SCSim automatically generates appropriate tracks for each task and simulta-

neously changes the position of each vehicle along its assigned tracks. Observations 

(e.g., contacts) are generated based on vehicles’ positions and the sensor equipment in 

use. Interactions of deployed sweeping equipment is also simulated, and changes the 

internally represented status of mines. In addition to the scheduled tasks, SCSim is re-

sponsible for simulating random events the unexpected difficulties that invalidate an 

existing schedule (e.g., equipment failure, bad weather, operator errors).  

An individual mission test using SCSim is controlled by a scenario description. Sce-

nario descriptions include, at a minimum, the vehicles and equipment available for use, 

threat areas to be cleared of sea mines, and task areas where vehicles will operate. Other 

elements of the scenario specify random distributions for mine like objects, mine line 

placements, and events that may occur. To mimic the real world as closely as possible, 

SCSim provides only partial observations for the purposes of rescheduling. For exam-

ple, when a helicopter’s communications system fails, its position is no longer reported 

to the system. As a result, the helicopter appears not to move. 

Experiments are driven by a test harness that integrates with SCSim as shown in 

Figure 2. The test harness generates scenarios defining: the area of operations, available 

assets, and the ranges of random experimental variables, such as what mine types will 

be deployed and when events will trigger. The Test Generator applies an appropriate 
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decision maker that acts as a user of the system. Each decision maker encodes different 

responses to situations, such as alerts, that arise during the mission simulation. After all 

simulated missions are complete, the Performance Evaluator tabulates and summarizes 

these results in a human readable form. 

 

 

 

Fig. 2. KRePE simulation driven evaluation 

5.2 Experiment Setup 

Our experiments used three decision makers and ten randomly generated test scenarios. 

The first decision maker, “KRePE DM”, confirms the correct root cause with the high-

est disruption likelihoods and selects a new schedule from those generated to activate. 

The second decision maker, “Random DM”, randomly chooses a root cause and selects 

a new schedule from that root cause. The third decision maker, our baseline, “Ignore 

DM”, ignores KRePE’s recommendations, never changing its schedule when 

prompted. Comparing performance of these three decision makers allows us to measure 

the efficacy and correctness of schedules generated by case-base disruption monitoring 

system.  

The performance of each decision maker was evaluated in each of ten randomly 

generated scenarios, generated. (See Table 2). Scenarios differ primarily in the thirty 

random events that occur and the positions of mines and mine-like objects. Each event 

was additionally parameterized with a trigger time (chosen randomly over the first six-

hundred hours of the mission) and target unit (chosen randomly among the six tasked 

assets). The times were chosen in this fashion because events that occur when a unit 

has already performed all its tasks cause no problems, and therefore are uninteresting 

to our study. Four mine lines, each with a mine count between ten and thirty, at various 

depths and mine types were placed randomly in each scenario.  

The fixed parameters used in all scenarios included the area searched, and seven 

assets, consisting of four helicopters, two MCM ships, and one support ship that could 
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assist in tasks if necessary. Each ship and helicopter has available equipment for hunt-

ing mines, contact sweeping, detection, and mine neutralization.  

5.3 KRePE Metrics 

We evaluated KRePE DM, Random DM, and Ignore DM using the following three 

metrics: (1) percent contacts detected: This measures the percentage of mines detected 

by a unit; (2) percent mines neutralized: Percentage all mines are neutralized by a unit 

and (3) operation duration: Total simulation time required to complete the operation. 

The first two metrics are calculated based on the true number of mines and mine-

like objects generated in the scenario. These summarize the plan’s effectiveness in 

terms of how well the MCM mission goal of searching for and eliminating mines was 

achieved. Each scenario generated includes a large number of non-mine mine-like ob-

jects uniformly spread throughout the threat area, so the percent contacts detected value 

is an approximation of the percent clearance, or probability that a mine would be de-

tected at any given location. The third metric, operation duration, illustrates a plan’s 

efficiency by measuring the total simulation time required to complete all tasks. 

5.4 KRePE Results 

Experiments were run on an i7 processor laptop, taking one hour to complete. Figure 3 

shows a scatter plot that displays the percentage of existing contacts that were classified 

correctly and duration of each mission operation measured in simulation hours. The 

duration of an operation performed by Ignore DM varies little, as the original schedule 

is never updated, whereas the duration of KRePE DM and Random DM missions can 

vary greatly. A schedule can be lengthened dramatically when new mine types have 

been discovered; to ensure safety, many new hunt and/or sweep tasks must be intro-

duced to clear the additional mines. Similarly, if vehicles are damaged beyond repair, 

the diminished resources can greatly increase mission length. The increased time and 

repaired schedules allow KRePE DM to outperform Ignore DM by classifying between 

95 and 100% of the mine like objects in every mission. Random DM, like KRePE DM, 

responds to disruptions, but because it does not choose the most likely cause, its task 

performance is not as high as KRePE DM's. Note that neither Ignore DM nor Random 

DM represents any real human decision maker; rather these results should be inter-

preted to show the difficulty of the task and that CDMA’s suggestions are benefitting 

mission performance.  

Table 2 shows one-tailed t-test with paired examples. The results include the average 

and standard deviation for each metric and decision maker. Note: indicate the (small) 

likelihood that Ignore DM might on average achieve higher values than KRePE DM if 

many more experiments were undertaken.  
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Fig. 3. Scatter Plot of Operation Duration to Percent Contacts Classified Correctly 

Table 2. KRePE Results 

 

6 Related Work 

Case-based reasoning [1] is a problem solving process based on the adaptation and ap-

plication of known solutions to new problems. It has been applied to many different 

domains and problems besides disruption detection.  

DISCOVERHISTORY [9] looks for explanations of observations through abductive rea-

soning, where it maps an observation to a hypothesis that accounts for the observation. 

DISCOVERHISTORY has been shown to be effective over a large problem space, but is 

slow with determining disruptions. This is not sufficient for quick detection of imme-

diate issues required by mine countermeasures operations.  

A case-based reasoning system, CHEF [7] creates food recipes and explains its own 

failures. The system tries strategies to see which one can be used to fix the recipe plan. 

CHEF uses causal rules to explain why its own plan fails. However, the system does 

not handle constrained resources present in a typical scheduling problem.  

The system described in [3] is a CBR system that focuses on wartime equipment 

maintenance by analyzing feature sets of equipment for maintenance. The system au-

tomates the process of deciding the quality of the equipment. CDMA, in contrast,  sup-

ports a “man-in-the-loop” in order to allow operators to have control over what should 

be done about disruptions. 
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7 Conclusion 

We presented the CDMA algorithm within the KRePE system that supports monitoring 

for disruptions and disruption analysis in mine countermeasures operations. Scheduling 

in this domain is challenging due to the complexities resulting from a large number of 

tasks that must be allocated over numerous resources. CDMA includes components that 

assist operation planners by constantly monitoring the environment for changes and 

providing analysis of discrepancies. Once disruption detection occurred CDMA made 

it possible for the CLOSR algorithm to reschedule without the need to replan by rec-

ommending alternative schedules. We introduced the requirement of minimally disrup-

tive repair as a key operational requirement for automatic schedule repair algorithms in 

MCM applications. 

Our results indicate the efficacy of a case-based strategy; schedule repair was rapid, 

and created new schedules on demand that ensured the elimination of all mines and 

increased clearance to a reasonable level. This presents a novel and measurable increase 

in automated MCM rescheduling capabilities. In the future, we want to apply our sys-

tem to Unmanned Combat Logistic missions in order to demonstrate effective case-

base disruption monitoring with other domains.  

8 Bibliographic References 

1. Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological 

variations, and system approaches. AI communications, 7(1), 39-59. 

2. Boyd, John, R. (1995). The essence of winning and losing. 28 June 1995.  

3. Cai, Jiwei., Jia, Yunxian., Gu, Chuang., and Wu, W. (2011). Research of Wartime Equip-

ment Maintenance Intelligent Decision-making Based on Case-Based Reasoning. In Proce-

dia Engineering (Volume 15, 2011, pp. 163-167. CEIS 2011).  

4. Chief of Naval Operations, Commandant of the Marine Corps, & Commandant of the Coast 

Guard. (2007). A Cooperative Strategy for 21st Century Seapower.  

5. Cummings, Mary, and Collins, Angelo. (2010). Autonomous Aerial Cargo/Utility. In Con-

cept of Operations, Department of the Navy, ONR, Science & Technology.  

6. Garcia, G. A., & Wettergren, T. A. (2012). Future planning and evaluation for automated 

adaptive minehunting: A roadmap for mine countermeasures theory modernization. In SPIE 

Defense, Security, and Sensing. International Society for Optics and Photonics.  

7. Hammond, Kristian J. (1986). CHEF: A Model of Case-Based Planning. In Proceedings of 

the Fifth National Conference on Artificial Intelligence. Philadelphia, Pennsylvania. 

8. IRIS. Program documentation. IRIS Reasoner. Vers. 0.6. N.p., 3 Apr. 2008. Web. 1 Aug. 

2015. <http://www.iris-reasoner.org/pages/user_guide.pdf>. 

9. Molineaux, M., Kuter, U. and Klenk, M. (2012). DiscoverHistory: Understanding the past 

in planning and execution. In Proceedings of the Eleventh International Conference on Au-

tonomous Agents and Multiagent Systems (pp. 989–996. ACM Press, Valencia).  

10. Molineaux, M., Auslander, B., Moore, P. G., & Gupta, K. M. (2015). Minimally disruptive 

schedule repair for MCM missions. In SPIE Defense+ Security. International Society for 

Optics and Photonics. 

67


