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Abstract— This paper presents current work on developing an 
operational semantic theory of cyber defense against advanced 
persistent threats (APTs), which is grounded in cyber threat 
analytics, science of evidence, knowledge engineering, and 
machine learning. After introducing advanced persistent threats, 
it overviews a systematic APT detection framework and the 
corresponding APT detection models, the formal representation 
and learning of these models in the knowledge base of a cognitive 
agent, and the development and integration of such agents into a 
specific cyber security operation center.  

advanced persistent threat, cyber threat analytics, cognitive 
assistant, evidence-based reasoning, knowledge-based learning, 
ontology, argumentation models, symbolic probabilities. 

I. INTRODUCTION 
An Advanced Persistent Threat (APT) is an adversary that 

leverages superior resources, knowledge, and tactics to achieve 
its goals through computer network exploitation (CNE).  APTs 
are characterized by their persistence in gaining and 
maintaining access to targeted networks and their ability to 
adapt to efforts of network defenders to identify and remediate 
their activity [1].    

Security research companies have been tracking APT 
groups for years, independently giving them unique names as 
specific tools, techniques, and procedures (TTPs) are attributed 
to a group.  FireEye/Mandiant has published reports on 30 APT 
groups since 2013, naming them simply APT1 through APT30 
[2]. 

APT1 is the name given by Mandiant to a group of APT 
actors, attributed to China’s People’s Liberation Army unit 
61398, who have lead a campaign of cyber espionage since at 
least 2004.  APT1 is known for a regimented approach to 
computer intrusion activity.  An APT1 intrusion typically 
consists of the following phases: (i) gain access to a network by 
sending fraudulent, malicious email messages to specific users 
(spearphishing); (ii) use multiple types of backdoor programs 
to maintain presence and provide remote connectivity to the 
target network; (iii) use a collection of command-and-control 
(C2) servers to obfuscate the source of their attacks; (iv) 
escalate privileges and acquire legitimate login credentials to 
access network resources; (v) move laterally within the target 
network using legitimate credentials to gain redundant points of 
presence and identify information of interest; and (vi) exfiltrate 
targeted information through their C2 infrastructure [1]. 

The technical appendices of Mandiant’s report [1] include 
detailed information on their known backdoor, C2, and 
exfiltration tools, and a comprehensive set of indicators of 

compromise (IOCs).  Following their report, other security 
researchers, including the Contagio blog [3] have released 
supplementary analysis on APT1 malware, techniques, and 
infrastructure.  

APT1, among other attacker groups, practices evolutionary 
development to adapt to changes in network defense 
technology or simply to increase efficiency.  Further analysis of 
APT1 by Mila at contagiodump.blogspot.com [3] shows a 
timeline of the attacker group’s tool usage from 2004 to 2012, 
including information on dozens of samples of malware.  The 
group evolved their tool set slowly over the course of at least 
eight years.  These changes in the way malware presents itself 
on the network and on disk have made it difficult for signature-
based intrusion detection tools to detect attacks because the 
attacks can change static information in their malware faster 
than defenders can adapt.  However, the patterns of behavior 
change more slowly and with less variance. 

Analysis of the indicators of compromise (IOCs) published 
in [1] shows that APT1 malware demonstrates clusters of 
behavior.  Subsets of the programs share sets of techniques for 
communicating on the network, persisting through a reboot, or 
storing data on disk.  One example of this is the cluster of 
malware comprised of BANGAT, SEASALT, KURTON, and 
AURIGA. While the specific strings used to register the 
malware as a service or device driver and the names of files 
and Registry keys differ, the only substantial difference in 
IOCs between those four tools is the persistence mechanism 
used to survive a reboot. 

Clusters of malware are often called malware families in 
published research.  Each member of the family incrementally 
builds on previous versions as they get detected and become 
less effective. The Sobig virus is an example of a malware 
family. It was used in 2003 in a widespread email phishing 
attack. Joe Stewart describes how the Sobig virus evolved over 
five different revisions [4, 5]. Over the course of those 
revisions, the author changed how the malware set its 
expiration timer, where the command-and-control servers were 
located, and how encryption was used in an effort to improve 
the effectiveness of the malware. 

Modern cyber defense against APTs is currently done in a 
cybersecurity operations center (CSOC), which employs teams 
of network defense experts, analysts, system administrators, 
and forensics experts.  CSOCs leverage a rich tool set including 
host-based and network-based intrusion detection systems 
(IDSs), data collections, analysis tools, and visualization tools. 
CSOCs receive incident information from high-value sources – 
law enforcement, user reporting, or threat intelligence from 
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other CSOCs – and unconfirmed alerts from security 
infrastructure such as antivirus software, IDSs, heuristic alerts, 
or machine learning algorithms. The analyst’s responsibility is 
to monitor alerts and log information from all of these 
information sources, each having differing levels of credibility, 
and use them to make a determination about the presence or 
absence of intrusion activity [6]. However, because a single 
event alone does not provide sufficient evidence that an 
intrusion event has occurred, and modern detection 
technologies are error-prone, each event must be carefully 
examined and investigated by a human analyst [6]. In a large 
enterprise, tens of thousands of alerts per day can be reported. 
Therefore, even sensors with a false positive rate of less than 
one percent can generate enough false positives to be 
unmanageable by even large CSOCs. 

This paper presents current research on developing an 
operational semantic theory of cyber defense against advanced 
persistent threats. Grounded in cyber threat analytics, science 
of evidence, knowledge engineering, and machine learning, 
this theory provides a systematic approach to cyber defense, as 
well as analytical knowledge and models that can be formally 
represented in the knowledge bases of cognitive agents, 
enabling them to perform the functions of security analysts, 
both automatically and in collaboration with the analysts. 
These cognitive agents will be directly trained by security 
analysts to detect APTs, through specific analysis examples 
and explanations, acquiring and generalizing their expertise. As 
a result, their analyses will be very explicit, easy to understand, 
and easily updated by the analysts. 

Such agents have the potential to radically change 
established practice by automating the APT analysis process, 
significantly increasing the CSOC’s efficiency, reducing 
operation costs, increasing detection rates, and decreasing false 
positive rates. Most importantly, these agents are designed to 
continuously learn from security analysts and from the agents’ 
own experience, to keep up with and even anticipate new 
threats. They will also facilitate sharing of evolving APT 
analytic expertise and training of the cyber analysts. 

The next section presents the systematic APT detection 
framework and the corresponding APT detection models. 
Section III overviews the formal representation of these models 
in an APT ontology and APT detection patterns with ontology-
based applicability conditions. Section IV discusses the 
learning of these models. Section V overviews the architecture 
of a learning agent shell, a general agent building tool that 
contains reasoning and learning modules for APT detection, as 
well as a general knowledge base. It also discusses its use in 
the generation of customized agents for a specific CSOC.  

II. DISCOVERY-BASED APT DETECTION FRAMEWORK 
The APT detection framework is represented in Fig.1. 

Evidence of suspicious activity triggers alternative explanatory 
hypotheses, which are used to guide the collection of relevant 
evidence which, in turn, is used to assess the hypotheses.  

As will be discussed in this paper, this is both an adaptation 
and an extension of the general discovery-based framework we 
have previously developed for intelligence analysis, and 
implemented in the TIACRITIS [7], Disciple-CD [8, 9] and 

Cogent [10] analytical tools. A major difference, however, is 
the significantly higher degree of automation required by the 
cyber defense process. While the human analysts will still be 
involved in this process, it is assumed that all the operations 
can be automatically performed by the cognitive agents. 

 
Fig. 1. Automatic APT detection framework. 

APT detection is modelled as a continuous collaboration of 
three automated processes: Evidence in search of hypotheses, 
Hypotheses in search of evidence, and Evidentiary testing of 
hypotheses, each described in the following sections. 

A. Evidence in Search of Hypotheses 
 As shown in the left hand side of Fig.1, evidence of 

suspicious activity was detected (e.g., by monitoring agents, by 
Bro [11] or Snort [12] IDSs, etc.) and the question is: What 
hypotheses may explain it? Through abductive (imaginative) 
reasoning, which shows that something is possibly true, the 
agent generates a set of alternative hypotheses, some 
corresponding to actual APT activity, while others 
corresponding to non-threat activities. Fig.2 is an illustration of 
this process.  

Fig. 2. Evidence in search of hypotheses. 

A suspicious connection was signaled by a Snort alert [12] 
from the internal IP 10.10.1.11 to 69.195.129.70, which is 
mapped to “a-jsm.infobusinessus.org,” a known APT1 domain. 
It is therefore possible that there is an APT1 intrusion using 
one of the APT1 malware implants (Bangat, Seasalt, Kurton, 
Auriga, etc. [1]). But it is also possible that there is no 
intrusion, and the above connection is the result of network 
security intelligence gathering, or it was generated by a known 
trusted application for some legitimate purpose. Each of these 
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hypotheses may explain the suspicious connection. The agent 
would need to automatically analyze each of these hypotheses 
to determine which of them is actually true. For this, it needs 
additional evidence which is obtained through the next process. 

B. Hypotheses in Search of Evidence  
As shown in the middle part of Fig.1, the agent puts each of 

the generated alternative hypotheses to work guiding the 
collection of relevant evidence. The question is: Assuming that 
this hypothesis is true, what evidence should be observable?  

Fig.3 is an illustration of this process for the hypothesis 
“Connection 1 is part of APT1 intrusion using Bangat.” This 
hypothesis is successively decomposed into simpler and 
simpler hypotheses, down to the level of elementary 
hypotheses for which it is clear what evidence to look for, and 
collection agents can be automatically invoked with specific 
search requests. In particular, if there is an APT1 intrusion 
using Bangat, then there should be activity attributable to APT1 
on the Alpha network containing the computer with the IP 
10.10.1.11, and the Bangat malware should be present on this 
host computer. Each of these sub-hypotheses is reduced, in 
turn, to specific indicators. The indicators for the first one are 
the possible detection of patterns of DNS resolution consistent 
with the TTPs of APT1, and the usage of other APT1 domains 
on the Alpha network. These, in turn, lead to the generation of 
specific search requests to be carried out by special collection 
agents, as indicated at the bottom of Fig.3.  

 
Fig. 3. Hypothesis in search of evidence. 

1) Context-dependent Reasoning 
Notice in the tree from Fig.3 that some words, such as 

APT1 and Bangat, appear in blue. This is because they are part 
of the agent’s knowledge base, and are recognized by it.  

Notice also that only some hypotheses are completely 
specified, while their sub-hypotheses are abstracted and 
understood in the context of their upper-level hypotheses. For 
example, “host-based indicators” is understood as “There are 
host-based indicators that the Bangat malware is present on the 
host computer 10.10.1.11.” Similarly, “malware attributes” is 

understood as “The malware attributes are a host-based 
indicator that the Bangat malware is present on the host 
computer 10.10.1.11.”  

Context-dependent analysis enables a very succinct 
representation of the reasoning structures of the agent, helping 
the analyst to visualize a larger portion of it in the agent’s 
whiteboard [10]. At the same time, the agent is aware of the 
complete representation of each hypothesis which is necessary 
for the learning and reuse of analytic expertise, as will be 
discussed in a follow-on section. 

2) Collection Agents 
The collection agents will return the found evidence as 

formal statements, each with its own credibility which 
represents the probability that the statement is correct [9]. For 
example, “Search the computer with IP 10.10.1.11 for the 
attributes of the program which used Port 11234 to 
communicate with 69.195.129.70 on Port 53 at time 
06/15/2015 16:23 GMT” may return, among others, the 
following items of evidence: 

[E4] ati.exe 10.10.1.11 made connection Connection 1  
(credibility: certain) 

[E5] ati.exe 10.10.1.11 is registered as a Windows Service  
with name iprip (credibility: certain) 

[E6] ati.exe 10.10.1.11 has as unique Bangat string  
superhard corp. (credibility: certain) 

In some cases, the collection agents may also return the 
relevance [9] of an item of evidence to a corresponding 
elementary hypothesis. For example, the result of “Search 
Alpha network DNS logs for a pattern of DNS resolution 
which matches TTPs of APT1” may return the following item 
of evidence: 

[E1] pattern of DNS resolution partially matches TTPs of  
APT1 (credibility: certain, relevance: very likely) 

In this case the collection agent is certain that there is a 
partial match, and the relevance of very likely expresses the 
degree of match. 

This evidence is represented in the agent’s knowledge base, 
and is used to estimate the probability of the top-level 
hypothesis from Fig.3, which is done through the next process. 

C. Evidentiary Testing of Hypotheses  
As shown in the right hand side of Fig.1, the agent uses the 

discovered evidence to test each hypothesis. Hypothesis testing 
is probabilistic because the evidence is always incomplete, 
usually inconclusive, frequently ambiguous, commonly 
dissonant, and with various degrees of credibility [9, 13].  

As in Cogent [10], it is possible to use different assessment 
scales, but all are based on the same system of Baconian 
probabilities [14, 15] with Fuzzy qualifiers [16], where the 
values are on an ordered positive scale, as in the following 
“Probability” scale which is used in this paper: 

lack of support < likely < very likely < almost certain < certain 

In this case, there may be a lack of support from the 
available evidence to the considered hypothesis, or the 
evidence may indicate some level of support (e.g., likely). 
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Examples of other assessment scales are: 

lack of belief < weak < moderate < strong < total belief 

no strength < very low < low < medium < high < 
< very high < full strength 

As evidence is returned by the collection agents, the 
corresponding parts of the tree in Fig.3 are regenerated, either 
to assess sub-hypotheses or to generate additional search 
requests, ultimately resulting in an evidence-based 
argumentation for assessing the top-level hypothesis, as 
illustrated in Fig.4. 

Notice that each leaf hypothesis is directly assessed based 
on evidence, and these assessments are automatically 
combined, from bottom-up, based on the structure of the 
argumentation, to obtain the assessment of the top hypothesis. 
Let us consider the item of evidence “[E5] ati.exe 10.10.1.11 is 
registered as a Windows service with name iprip” from the 
bottom of Fig.4. Notice that the statement asserted by this item 

of evidence is precisely the elementary hypothesis to which it is 
attached (“ati.exe 10.10.1.11 is registered as a Windows service 
with name iprip”). Therefore, its relevance is certain. When the 
collection agent returns this item of evidence, it also returns its 
credibility, which, in this case, is also certain. The credibility 
and the relevance are combined (through the minimum 
function) to obtain the inferential force of the item of evidence 
on the elementary hypothesis (certain, in this case), as 
discussed in [9, 10]. 

 Notice also “[E7] ati.exe 10.10.1.11 does not have as MD5 
hash Bangat MD5 hash.” This is disfavoring evidence for the 
hypothesis “ati.exe 10.10.1.11 has as MD5 hash Bangat MD5 
hash,” and therefore there is a lack of support for this 
hypothesis.  

As indicated, the probabilities of the elementary hypotheses 
are combined, from bottom-up, based on the structure of the 
argumentation. For example, there are two favoring arguments 
for the hypothesis “ati.exe 10.10.1.11 has Bangat attributes”:  

 
Fig. 4. Evidentiary testing of hypothesis. 
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IF “ati.exe 10.10.1.11 has as unique Bangat string 
superhard corp” THEN “ati.exe 10.10.1.11 has Bangat 
attributes” is likely  

IF “ati.exe 10.10.1.11 has as MD5 hash Bangat MD5 hash” 
THEN “ati.exe 10.10.1.11 has Bangat attributes” is certain 

The relevance of each argument (i.e., likely and certain, 
respectively) is combined with the probability of the 
corresponding sub-hypothesis (i.e., certain and lack of support, 
respectively), and the results are again combined, to produce an 
assessment of the probability of “ati.exe 10.10.1.11 has Bangat 
attributes”: max(min(certain, likely), min(lack of support, 
certain)) = likely. 

Further up in the argumentation are three possible host-
based indicators of the presence of the Bangat malware on the 
host computer 10.10.1.11: persistence mechanism (P), malware 
attributes (M), and file system artifacts (F). Each indicator may 
be present with a certain probability, or it may not be present. 
The more indicators are present, the more relevant they are, 
collectively, to the presence of the Bangat malware. Fig.5 
shows the relevance of each subset of these indicators. 

 
Fig. 5. Relevance of different subsets of indicators. 

If all of them are present (i.e., the intersection of the three 
discs), then their relevance is certain. However, if only the 
persistence mechanism (P) is present, then its relevance is only 
likely. The actual probability of the “host-based indicator” 
hypothesis based on the three indicators (i.e., P, M, F) can be 
assessed by computing the inferential force for each possible 
combination of present indicators, and then selecting the 
maximum value. In this particular example, since all the three 
indicators are present, their relevance is certain, but the 
minimum of their probabilities is likely, which produces an 
overall assessment of likely. However, one obtains a higher 
assessment by ignoring the “malware attributes” indicator 
which the evidence indicates to be only likely. In such a case, 
the relevance of the other two indicators is lower (very likely), 
but they are both certain, giving an assessment of very likely to 
the “host-based indicators” hypothesis. In Fig.4, this 
“combined indicators” operator is marked with “*”. Fig.4 also 
shows that the “Bangat attributes” indicator is ignored in this 
assessment by using an interrupted relevance link. 

There are additional argument structures that are not 
illustrated by the argumentation from Fig.4. For example, a 
hypothesis may have an argument that consists of a conjunction 
of sub-hypotheses, in which case its probability is obtained as 

the minimum between the relevance of the argument and the 
probabilities of the sub-hypotheses.  

For a hypothesis there may be both favoring and 
disfavoring arguments, and a hypothesis may have both 
favoring and disfavoring evidence. In such cases, the 
probability of the hypothesis is obtained by using an on-
balance function which is initialized to a default set of values 
and automatically updated based on the values provided by the 
analyst when analyzing hypotheses. 

III. REPRESENTATION OF THE APT DETECTION MODELS 
The previous section presented a systematic process of APT 

detection through evidence in search of hypotheses, hypotheses 
in search of evidence, and evidentiary testing of hypotheses 
(see Fig.1). To enable an agent to automatically perform this 
kind of reasoning, the knowledge of the APT detection models 
has to be formally represented.  

We employ a learnable hybrid knowledge representation 
consisting of an APT ontology and reasoning tree patterns with 
ontology-based applicability conditions. The ontology 
language is an extension of RDFS [17, 18] with additional 
features to facilitate learning and evidence representation [19, 
20, 21]. A fragment of the APT ontology, corresponding to the 
reasoning discussed in the previous section, is illustrated in 
Fig.6. 

The middle left side shows the (partial) representation of 
Connection 1, the suspicious connection that triggered the 
APT1 detection process. The upper-right side represents some 
malware instances and concepts (e.g., APT1, Bangat, Seasalt, 
APT group). Under this fragment there is a partial 
representation of the network structure, showing the Alpha 
network and Corp_wkst_1, the computer used as host by the 
Bangat malware. The upper-left side shows some general 
concepts related to cybersecurity. The bottom right shows two 
features together with their domains and ranges. The bottom 
left of Fig.6 shows some of the evidence items returned by the 
collection agents as a result of executing the searches from the 
bottom part of Fig.3. Each evidence about a fact (e.g., “ati.exe 
10.10.1.11 has as unique Bangat string superhard corp.”) is 
labelled with its evidence name (i.e., [E6]), and has a certain 
credibility (not shown in Fig.6). Such facts are used to generate 
argumentation structures such as that from Fig.4, as will be 
discussed next.  

Another component of the hybrid knowledge representation 
are the general tree patterns with ontology-based applicability 
conditions, such as that shown in Fig.7. The condition 
represents the semantics of the tree pattern and the context in 
which it can be applied to automatically generate specific tree 
structures. In particular, the tree pattern from Fig.7 will 
generate the search tree from Fig.3 if its condition is satisfied in 
the current situation, where V1 is instantiated to Connection 1, 
V2 is instantiated to APT1, and V3 to Bangat. The current 
situation is represented by the facts in the ontology from Fig.6. 

IV.MIXED-INITIATIVE LEARNING OF APT DETECTION MODELS 
Tree patterns, such as that in Fig.7, can be learned from 

specific examples of trees defined by cyber security experts, by 
employing a multi-strategy learning approach that integrates 
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several learning strategies including learning from examples, 
learning from explanations, and learning by analogy and 
experimentation, in a mixed-initiative interaction with the 
analyst, as presented in [20 - 24]. 

In essence, the expert will direct the agent to learn a tree 
pattern from a fragment of an argumentation, such as that 
shown at the bottom left of Fig.8. Then the agent interacts with 
the expert to determine the important features of the instances 
from the argument fragment. They include those that link the 
instances appearing in the top-level hypothesis (i.e., Bangat and 
10.10.1.11) with the instances that appear only in the sub-
hypotheses (i.e., ati.exe 10.10.1.11). Such a feature is “[E3] 
ati.exe 10.10.1.11 runs on 10.10.1.11.” These and other 
potentially relevant features, such as “[E4] ati.exe 10.10.1.11 
made connection Connection 1,” are proposed by the agent and 
the relevant ones are selected by the expert. The upper left side 
of Fig.8 shows the identified relevant features together with the 
superconcepts of the instances in the APT ontology. 

Next the agent automatically generates the tree pattern from 
the bottom right side of Fig.8. The tree pattern is obtained by 
simply replacing each instance (e.g., Bangat) with a variable 
(i.e., V1), and by removing the probabilities of the hypotheses. 
Direct relevance links, such as certain of “host-based 
indicator”, are preserved in the pattern. The relevance of the 
combined indicators, such as those under the “host-based 
indicator” hypothesis, is generalized to a function. 

The agent also automatically generates the applicability 
condition of the learned pattern, shown in the upper right side 
of Fig.8. Notice however that, instead of a single applicability 
condition (such as the one in Fig.7), there is an upper bound 
condition and a lower bound condition. They are obtained as 
maximal and, respectively, minimal generalizations of the 
instances and their important relationships, in the context of the 
APT ontology which is used as a generalization hierarchy.  

As the agent learns new tree patterns from the cybersecurity 
expert, their interaction evolves from a teacher-student 
interaction, toward an interaction where they both collaborate 
on APT detection. In this case the agent automatically 
generates argumentation structures by applying the partially 
learned patterns and the expert critiques the reasoning, guiding 
the agent in refining its patterns. Correct argument structures 
generated by the agent lead to automatic generalization of the 
lower bound conditions of the used patterns. Any mistake 
identified by the expert leads either to the specialization of the 
upper bound condition of the responsible pattern, or to the 
addition of an except-when condition (with both an upper 
bound and a lower bound). The except-when conditions should 
not be satisfied in order for the pattern to be applicable. In time, 
the lower and the upper bound conditions of a pattern converge 
toward one another and to an exact applicability condition. The 
goal is to improve the applicability condition of the pattern so 
that it only generates correct argumentation fragments. 

 
Fig.6. Ontology fragment. 
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V. LEARNING AGENT SHELL 
The developed APT detection theory 

and associated methods for knowledge 
representation, reasoning, and learning 
are being used to develop a prototype 
learning agent shell whose overall 
architecture is presented in Fig.9. This is 
a general agent development tool that 
contains general reasoning modules for 
the three APT detection processes from 
Fig.1, modules for development and 
refinement of the agent’s ontology, 
modules for learning and refining the 
detection patterns, as well as modules for 
management of evidence, knowledge 
bases in the knowledge repository, and 
knowledge in knowledge bases. The 
learning agent shell will also incorporate 
a significant amount of general 
cybersecurity expertise for automatic 
APT detection into its general 
knowledge base, which is applicable in 
any CSOC. This includes an ontology, as 
well as tree patterns with ontology-based 
applicability conditions, for detection of 
a wide range of APT activities. The 
learning agent shell is used to rapidly 
generate a set of agents and their 
knowledge bases, all customized to a 
specific CSOC. They include a 
Hypotheses Generation Agent, several 
Automatic Analysis Agents, and several 
Mixed-Initiative Analysis Assistants. 

The main customization of the 
knowledge base consists of populating it 
with a representation of CSOC’s 
network, including its layout (see the 
middle right hand side of Fig.6), 
available sensors, operating systems 
used, and network security tools used. 

The Hypotheses Generation Agent is 
a customization of the learning agent 
shell centered around the Hypotheses 
Generation module. It will generate 
hypotheses, such as those from the top 
part of Fig.2, from a variety of logs, 
network capture sensors, and intrusion 
detection devices and systems such as 
Bro [11] and Snort [12]. 

The Automatic Analysis Agents are 
all instantiations of the learning agent 
shell centered around the Automatic 
Analysis module. For each new 
generated hypothesis (e.g., “Connection 1 
is part of APT1 intrusion using Bangat”), 
an instantiation of such an agent is 
automatically created to generate analysis 
trees such as those in Fig.3 and Fig.4. 

 

Fig.8. Illustration of tree pattern learning. 
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Fig.7. Tree pattern for evidence collection. 
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Search requests generated by the Automatic Analysis 
Agents (see the bottom of Fig.3) are sent to a Collection 
Manager which manages and forwards them to corresponding 
Local Collection Agents. It also returns evidence (and its 
credibility) found by the collection agents to the corresponding 
automatic analysis agents.  

Each Mixed-Initiative Analysis Assistant is an instantiation 
of the learning agent shell centered around the Mixed-Initiative 
Analysis module. It enables a specific CSOC analyst or 
operator to access the current state of the detection process in 
the form of a list of hypotheses of interest and their partial 
analyses. It also collaborates with the analyst who may update 
any of the analyses, provide additional evidence, or make 
several assumptions when no evidence is found. In the case of a 
new type of attack, the analyst and the mixed-initiative 
assistant can develop together an analysis tree from which new 
detection patterns are learned. 

VI.CONCLUSIONS 
We have presented current work on developing a semantic 

theory of cyber defense against advanced persistent threats, and 
using it to develop collaborative cognitive agents that generate 
defensible and persuasive analyses which show very clearly the 
argumentation logic, what evidence was used, and how. Such 
agents are integrated in cybersecurity operations centers to 
improve both the speed and the quality of the performed 
analyses, and to significantly increase the probability of 
accurately detecting intrusion activity while drastically 
reducing the workload of the CSOC operators. Moreover, this 
approach is developed to enable continuous learning from 
cybersecurity experts, based on evolving threat intelligence, to 
cope with new threats, thus providing high defense agility to 
the CSOC. 
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Fig.9. Learning agent shell for APT detection. 
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