

Towards an Operational Semantic Theory of Cyber
Defense Against Advanced Persistent Threats

Steven Meckl, Gheorghe Tecuci, Mihai Boicu, Dorin Marcu

Learning Agents Center, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA
smeckl@masonlive.gmu.edu, teuci@gmu.edu, mboicu@gmu.edu, dmarcu@gmu.edu

Abstract— This paper presents current work on developing an
operational semantic theory of cyber defense against advanced
persistent threats (APTs), which is grounded in cyber threat
analytics, science of evidence, knowledge engineering, and
machine learning. After introducing advanced persistent threats,
it overviews a systematic APT detection framework and the
corresponding APT detection models, the formal representation
and learning of these models in the knowledge base of a cognitive
agent, and the development and integration of such agents into a
specific cyber security operation center.

advanced persistent threat, cyber threat analytics, cognitive
assistant, evidence-based reasoning, knowledge-based learning,
ontology, argumentation models, symbolic probabilities.

I. INTRODUCTION
An Advanced Persistent Threat (APT) is an adversary that

leverages superior resources, knowledge, and tactics to achieve
its goals through computer network exploitation (CNE). APTs
are characterized by their persistence in gaining and
maintaining access to targeted networks and their ability to
adapt to efforts of network defenders to identify and remediate
their activity [1].

Security research companies have been tracking APT
groups for years, independently giving them unique names as
specific tools, techniques, and procedures (TTPs) are attributed
to a group. FireEye/Mandiant has published reports on 30 APT
groups since 2013, naming them simply APT1 through APT30
[2].

APT1 is the name given by Mandiant to a group of APT
actors, attributed to China’s People’s Liberation Army unit
61398, who have lead a campaign of cyber espionage since at
least 2004. APT1 is known for a regimented approach to
computer intrusion activity. An APT1 intrusion typically
consists of the following phases: (i) gain access to a network by
sending fraudulent, malicious email messages to specific users
(spearphishing); (ii) use multiple types of backdoor programs
to maintain presence and provide remote connectivity to the
target network; (iii) use a collection of command-and-control
(C2) servers to obfuscate the source of their attacks; (iv)
escalate privileges and acquire legitimate login credentials to
access network resources; (v) move laterally within the target
network using legitimate credentials to gain redundant points of
presence and identify information of interest; and (vi) exfiltrate
targeted information through their C2 infrastructure [1].

The technical appendices of Mandiant’s report [1] include
detailed information on their known backdoor, C2, and
exfiltration tools, and a comprehensive set of indicators of

compromise (IOCs). Following their report, other security
researchers, including the Contagio blog [3] have released
supplementary analysis on APT1 malware, techniques, and
infrastructure.

APT1, among other attacker groups, practices evolutionary
development to adapt to changes in network defense
technology or simply to increase efficiency. Further analysis of
APT1 by Mila at contagiodump.blogspot.com [3] shows a
timeline of the attacker group’s tool usage from 2004 to 2012,
including information on dozens of samples of malware. The
group evolved their tool set slowly over the course of at least
eight years. These changes in the way malware presents itself
on the network and on disk have made it difficult for signature-
based intrusion detection tools to detect attacks because the
attacks can change static information in their malware faster
than defenders can adapt. However, the patterns of behavior
change more slowly and with less variance.

Analysis of the indicators of compromise (IOCs) published
in [1] shows that APT1 malware demonstrates clusters of
behavior. Subsets of the programs share sets of techniques for
communicating on the network, persisting through a reboot, or
storing data on disk. One example of this is the cluster of
malware comprised of BANGAT, SEASALT, KURTON, and
AURIGA. While the specific strings used to register the
malware as a service or device driver and the names of files
and Registry keys differ, the only substantial difference in
IOCs between those four tools is the persistence mechanism
used to survive a reboot.

Clusters of malware are often called malware families in
published research. Each member of the family incrementally
builds on previous versions as they get detected and become
less effective. The Sobig virus is an example of a malware
family. It was used in 2003 in a widespread email phishing
attack. Joe Stewart describes how the Sobig virus evolved over
five different revisions [4, 5]. Over the course of those
revisions, the author changed how the malware set its
expiration timer, where the command-and-control servers were
located, and how encryption was used in an effort to improve
the effectiveness of the malware.

Modern cyber defense against APTs is currently done in a
cybersecurity operations center (CSOC), which employs teams
of network defense experts, analysts, system administrators,
and forensics experts. CSOCs leverage a rich tool set including
host-based and network-based intrusion detection systems
(IDSs), data collections, analysis tools, and visualization tools.
CSOCs receive incident information from high-value sources –
law enforcement, user reporting, or threat intelligence from

STIDS 2015 Proceedings Page 58

other CSOCs – and unconfirmed alerts from security
infrastructure such as antivirus software, IDSs, heuristic alerts,
or machine learning algorithms. The analyst’s responsibility is
to monitor alerts and log information from all of these
information sources, each having differing levels of credibility,
and use them to make a determination about the presence or
absence of intrusion activity [6]. However, because a single
event alone does not provide sufficient evidence that an
intrusion event has occurred, and modern detection
technologies are error-prone, each event must be carefully
examined and investigated by a human analyst [6]. In a large
enterprise, tens of thousands of alerts per day can be reported.
Therefore, even sensors with a false positive rate of less than
one percent can generate enough false positives to be
unmanageable by even large CSOCs.

This paper presents current research on developing an
operational semantic theory of cyber defense against advanced
persistent threats. Grounded in cyber threat analytics, science
of evidence, knowledge engineering, and machine learning,
this theory provides a systematic approach to cyber defense, as
well as analytical knowledge and models that can be formally
represented in the knowledge bases of cognitive agents,
enabling them to perform the functions of security analysts,
both automatically and in collaboration with the analysts.
These cognitive agents will be directly trained by security
analysts to detect APTs, through specific analysis examples
and explanations, acquiring and generalizing their expertise. As
a result, their analyses will be very explicit, easy to understand,
and easily updated by the analysts.

Such agents have the potential to radically change
established practice by automating the APT analysis process,
significantly increasing the CSOC’s efficiency, reducing
operation costs, increasing detection rates, and decreasing false
positive rates. Most importantly, these agents are designed to
continuously learn from security analysts and from the agents’
own experience, to keep up with and even anticipate new
threats. They will also facilitate sharing of evolving APT
analytic expertise and training of the cyber analysts.

The next section presents the systematic APT detection
framework and the corresponding APT detection models.
Section III overviews the formal representation of these models
in an APT ontology and APT detection patterns with ontology-
based applicability conditions. Section IV discusses the
learning of these models. Section V overviews the architecture
of a learning agent shell, a general agent building tool that
contains reasoning and learning modules for APT detection, as
well as a general knowledge base. It also discusses its use in
the generation of customized agents for a specific CSOC.

II. DISCOVERY-BASED APT DETECTION FRAMEWORK
The APT detection framework is represented in Fig.1.

Evidence of suspicious activity triggers alternative explanatory
hypotheses, which are used to guide the collection of relevant
evidence which, in turn, is used to assess the hypotheses.

As will be discussed in this paper, this is both an adaptation
and an extension of the general discovery-based framework we
have previously developed for intelligence analysis, and
implemented in the TIACRITIS [7], Disciple-CD [8, 9] and

Cogent [10] analytical tools. A major difference, however, is
the significantly higher degree of automation required by the
cyber defense process. While the human analysts will still be
involved in this process, it is assumed that all the operations
can be automatically performed by the cognitive agents.

Fig. 1. Automatic APT detection framework.

APT detection is modelled as a continuous collaboration of
three automated processes: Evidence in search of hypotheses,
Hypotheses in search of evidence, and Evidentiary testing of
hypotheses, each described in the following sections.

A. Evidence in Search of Hypotheses
 As shown in the left hand side of Fig.1, evidence of

suspicious activity was detected (e.g., by monitoring agents, by
Bro [11] or Snort [12] IDSs, etc.) and the question is: What
hypotheses may explain it? Through abductive (imaginative)
reasoning, which shows that something is possibly true, the
agent generates a set of alternative hypotheses, some
corresponding to actual APT activity, while others
corresponding to non-threat activities. Fig.2 is an illustration of
this process.

Fig. 2. Evidence in search of hypotheses.

A suspicious connection was signaled by a Snort alert [12]
from the internal IP 10.10.1.11 to 69.195.129.70, which is
mapped to “a-jsm.infobusinessus.org,” a known APT1 domain.
It is therefore possible that there is an APT1 intrusion using
one of the APT1 malware implants (Bangat, Seasalt, Kurton,
Auriga, etc. [1]). But it is also possible that there is no
intrusion, and the above connection is the result of network
security intelligence gathering, or it was generated by a known
trusted application for some legitimate purpose. Each of these

Threat and non-threat hypotheses

Evidence of
suspicious activity

Probability of hypotheses

Which is the
evidence-based

probability of
each hypothesis?

Assuming that
this hypothesis

is true, what
evidence
should be

observable?

What
hypotheses
may explain

this suspicious
activity?

Hypotheses in
search of evidence

Evidence in search
of hypotheses

Evidentiary testing
of hypotheses

Relevant Evidence

InductionDeductionAbduction

APT1 intrusion

Suspicious Connection 1 from IP 10.10.1.11 (Port 11234) to
IP 69.195.129.70 (Port 53) at time 06/15/2015 16:23 GMT,

using known APT1 domain a-jsm.infobusinessus.org

no intrusion

Connection 1
was generated by
network security

intelligence gathering

Connection 1
was generated by
a known trusted

application

Connection 1
is part of APT1
intrusion using

Auriga

…
Connection 1

is part of APT1
intrusion using

Bangat

STIDS 2015 Proceedings Page 59

hypotheses may explain the suspicious connection. The agent
would need to automatically analyze each of these hypotheses
to determine which of them is actually true. For this, it needs
additional evidence which is obtained through the next process.

B. Hypotheses in Search of Evidence
As shown in the middle part of Fig.1, the agent puts each of

the generated alternative hypotheses to work guiding the
collection of relevant evidence. The question is: Assuming that
this hypothesis is true, what evidence should be observable?

Fig.3 is an illustration of this process for the hypothesis
“Connection 1 is part of APT1 intrusion using Bangat.” This
hypothesis is successively decomposed into simpler and
simpler hypotheses, down to the level of elementary
hypotheses for which it is clear what evidence to look for, and
collection agents can be automatically invoked with specific
search requests. In particular, if there is an APT1 intrusion
using Bangat, then there should be activity attributable to APT1
on the Alpha network containing the computer with the IP
10.10.1.11, and the Bangat malware should be present on this
host computer. Each of these sub-hypotheses is reduced, in
turn, to specific indicators. The indicators for the first one are
the possible detection of patterns of DNS resolution consistent
with the TTPs of APT1, and the usage of other APT1 domains
on the Alpha network. These, in turn, lead to the generation of
specific search requests to be carried out by special collection
agents, as indicated at the bottom of Fig.3.

Fig. 3. Hypothesis in search of evidence.

1) Context-dependent Reasoning
Notice in the tree from Fig.3 that some words, such as

APT1 and Bangat, appear in blue. This is because they are part
of the agent’s knowledge base, and are recognized by it.

Notice also that only some hypotheses are completely
specified, while their sub-hypotheses are abstracted and
understood in the context of their upper-level hypotheses. For
example, “host-based indicators” is understood as “There are
host-based indicators that the Bangat malware is present on the
host computer 10.10.1.11.” Similarly, “malware attributes” is

understood as “The malware attributes are a host-based
indicator that the Bangat malware is present on the host
computer 10.10.1.11.”

Context-dependent analysis enables a very succinct
representation of the reasoning structures of the agent, helping
the analyst to visualize a larger portion of it in the agent’s
whiteboard [10]. At the same time, the agent is aware of the
complete representation of each hypothesis which is necessary
for the learning and reuse of analytic expertise, as will be
discussed in a follow-on section.

2) Collection Agents
The collection agents will return the found evidence as

formal statements, each with its own credibility which
represents the probability that the statement is correct [9]. For
example, “Search the computer with IP 10.10.1.11 for the
attributes of the program which used Port 11234 to
communicate with 69.195.129.70 on Port 53 at time
06/15/2015 16:23 GMT” may return, among others, the
following items of evidence:

[E4] ati.exe 10.10.1.11 made connection Connection 1
(credibility: certain)

[E5] ati.exe 10.10.1.11 is registered as a Windows Service
with name iprip (credibility: certain)

[E6] ati.exe 10.10.1.11 has as unique Bangat string
superhard corp. (credibility: certain)

In some cases, the collection agents may also return the
relevance [9] of an item of evidence to a corresponding
elementary hypothesis. For example, the result of “Search
Alpha network DNS logs for a pattern of DNS resolution
which matches TTPs of APT1” may return the following item
of evidence:

[E1] pattern of DNS resolution partially matches TTPs of
APT1 (credibility: certain, relevance: very likely)

In this case the collection agent is certain that there is a
partial match, and the relevance of very likely expresses the
degree of match.

This evidence is represented in the agent’s knowledge base,
and is used to estimate the probability of the top-level
hypothesis from Fig.3, which is done through the next process.

C. Evidentiary Testing of Hypotheses
As shown in the right hand side of Fig.1, the agent uses the

discovered evidence to test each hypothesis. Hypothesis testing
is probabilistic because the evidence is always incomplete,
usually inconclusive, frequently ambiguous, commonly
dissonant, and with various degrees of credibility [9, 13].

As in Cogent [10], it is possible to use different assessment
scales, but all are based on the same system of Baconian
probabilities [14, 15] with Fuzzy qualifiers [16], where the
values are on an ordered positive scale, as in the following
“Probability” scale which is used in this paper:

lack of support < likely < very likely < almost certain < certain

In this case, there may be a lack of support from the
available evidence to the considered hypothesis, or the
evidence may indicate some level of support (e.g., likely).

Connection 1 is part of APT1 intrusion using Bangat

malware
attributes

file system
artifacts

network-based indicators host-based indicators

Search the
computer

with IP
10.10.1.11

for the list of
files used by

Bangat

Search the
computer with IP
10.10.1.11 for the
attributes of the
program which

used Port 11234 to
communicate with
69.195.129.70 on

Port 53 at time
06/15/2015
16:23 GMT

There is APT1 activity
on the Alpha network

Bangat malware is present on
the host computer 10.10.1.11

DNS data

Pattern of DNS
resolution matches

TTPs of APT1

Usage of other
APT1 domains

on Alpha network

Search Alpha
network DNS

logs for a
pattern of DNS

resolution
which matches
TTPs of APT1

Search Alpha
network DNS

records for the
domains

associated
with IP

69.195.129.70

STIDS 2015 Proceedings Page 60

Examples of other assessment scales are:

lack of belief < weak < moderate < strong < total belief

no strength < very low < low < medium < high <
< very high < full strength

As evidence is returned by the collection agents, the
corresponding parts of the tree in Fig.3 are regenerated, either
to assess sub-hypotheses or to generate additional search
requests, ultimately resulting in an evidence-based
argumentation for assessing the top-level hypothesis, as
illustrated in Fig.4.

Notice that each leaf hypothesis is directly assessed based
on evidence, and these assessments are automatically
combined, from bottom-up, based on the structure of the
argumentation, to obtain the assessment of the top hypothesis.
Let us consider the item of evidence “[E5] ati.exe 10.10.1.11 is
registered as a Windows service with name iprip” from the
bottom of Fig.4. Notice that the statement asserted by this item

of evidence is precisely the elementary hypothesis to which it is
attached (“ati.exe 10.10.1.11 is registered as a Windows service
with name iprip”). Therefore, its relevance is certain. When the
collection agent returns this item of evidence, it also returns its
credibility, which, in this case, is also certain. The credibility
and the relevance are combined (through the minimum
function) to obtain the inferential force of the item of evidence
on the elementary hypothesis (certain, in this case), as
discussed in [9, 10].

 Notice also “[E7] ati.exe 10.10.1.11 does not have as MD5
hash Bangat MD5 hash.” This is disfavoring evidence for the
hypothesis “ati.exe 10.10.1.11 has as MD5 hash Bangat MD5
hash,” and therefore there is a lack of support for this
hypothesis.

As indicated, the probabilities of the elementary hypotheses
are combined, from bottom-up, based on the structure of the
argumentation. For example, there are two favoring arguments
for the hypothesis “ati.exe 10.10.1.11 has Bangat attributes”:

Fig. 4. Evidentiary testing of hypothesis.

Connection 1 is part of APT1 intrusion using Bangat

Bangat file system

artifacts present

host-based indicators

There is APT1 activity

on the Alpha network

Bangat malware is present on

the host computer 10.10.1.11

ati.exe 10.10.1.11 has

Bangat attributes

ati.exe 10.10.1.11 has

Bangat persistence mechanism

ati.exe 10.10.1.11 is

registered as a Windows

service with name iprip

ati.exe 10.10.1.11

has as MD5 hash

Bangat MD5 hash

ati.exe 10.10.1.11 has as

unique Bangat string

superhard corp.

*

very likely very likely

certain

very likely

very likely

certain likely certain

certain

certain certain

certain lack of support

certain

certain

certain

certain

certain

certain

network-based indicators

DNS data

Pattern

of DNS

resolution

matches

TTPs of APT1

Usage of

other APT1

domains on

the Alpha

network

[E1] pattern of DNS

resolution partially

matches TTPs of APT1

certain

very likely

very likely

*

certain

very likely

likely

certain

certain

very likely

*

certain

very likely certain

[E5] ati.exe 10.10.1.11 is

registered as a Windows

service with name iprip

[E6] ati.exe 10.10.1.11

has as unique Bangat

string superhard corp.

…

[E7] ati.exe 10.10.1.11

does not have as MD5

hash Bangat MD5 hash

…

Disfavoring

evidence

STIDS 2015 Proceedings Page 61

IF “ati.exe 10.10.1.11 has as unique Bangat string
superhard corp” THEN “ati.exe 10.10.1.11 has Bangat
attributes” is likely

IF “ati.exe 10.10.1.11 has as MD5 hash Bangat MD5 hash”
THEN “ati.exe 10.10.1.11 has Bangat attributes” is certain

The relevance of each argument (i.e., likely and certain,
respectively) is combined with the probability of the
corresponding sub-hypothesis (i.e., certain and lack of support,
respectively), and the results are again combined, to produce an
assessment of the probability of “ati.exe 10.10.1.11 has Bangat
attributes”: max(min(certain, likely), min(lack of support,
certain)) = likely.

Further up in the argumentation are three possible host-
based indicators of the presence of the Bangat malware on the
host computer 10.10.1.11: persistence mechanism (P), malware
attributes (M), and file system artifacts (F). Each indicator may
be present with a certain probability, or it may not be present.
The more indicators are present, the more relevant they are,
collectively, to the presence of the Bangat malware. Fig.5
shows the relevance of each subset of these indicators.

Fig. 5. Relevance of different subsets of indicators.

If all of them are present (i.e., the intersection of the three
discs), then their relevance is certain. However, if only the
persistence mechanism (P) is present, then its relevance is only
likely. The actual probability of the “host-based indicator”
hypothesis based on the three indicators (i.e., P, M, F) can be
assessed by computing the inferential force for each possible
combination of present indicators, and then selecting the
maximum value. In this particular example, since all the three
indicators are present, their relevance is certain, but the
minimum of their probabilities is likely, which produces an
overall assessment of likely. However, one obtains a higher
assessment by ignoring the “malware attributes” indicator
which the evidence indicates to be only likely. In such a case,
the relevance of the other two indicators is lower (very likely),
but they are both certain, giving an assessment of very likely to
the “host-based indicators” hypothesis. In Fig.4, this
“combined indicators” operator is marked with “*”. Fig.4 also
shows that the “Bangat attributes” indicator is ignored in this
assessment by using an interrupted relevance link.

There are additional argument structures that are not
illustrated by the argumentation from Fig.4. For example, a
hypothesis may have an argument that consists of a conjunction
of sub-hypotheses, in which case its probability is obtained as

the minimum between the relevance of the argument and the
probabilities of the sub-hypotheses.

For a hypothesis there may be both favoring and
disfavoring arguments, and a hypothesis may have both
favoring and disfavoring evidence. In such cases, the
probability of the hypothesis is obtained by using an on-
balance function which is initialized to a default set of values
and automatically updated based on the values provided by the
analyst when analyzing hypotheses.

III. REPRESENTATION OF THE APT DETECTION MODELS
The previous section presented a systematic process of APT

detection through evidence in search of hypotheses, hypotheses
in search of evidence, and evidentiary testing of hypotheses
(see Fig.1). To enable an agent to automatically perform this
kind of reasoning, the knowledge of the APT detection models
has to be formally represented.

We employ a learnable hybrid knowledge representation
consisting of an APT ontology and reasoning tree patterns with
ontology-based applicability conditions. The ontology
language is an extension of RDFS [17, 18] with additional
features to facilitate learning and evidence representation [19,
20, 21]. A fragment of the APT ontology, corresponding to the
reasoning discussed in the previous section, is illustrated in
Fig.6.

The middle left side shows the (partial) representation of
Connection 1, the suspicious connection that triggered the
APT1 detection process. The upper-right side represents some
malware instances and concepts (e.g., APT1, Bangat, Seasalt,
APT group). Under this fragment there is a partial
representation of the network structure, showing the Alpha
network and Corp_wkst_1, the computer used as host by the
Bangat malware. The upper-left side shows some general
concepts related to cybersecurity. The bottom right shows two
features together with their domains and ranges. The bottom
left of Fig.6 shows some of the evidence items returned by the
collection agents as a result of executing the searches from the
bottom part of Fig.3. Each evidence about a fact (e.g., “ati.exe
10.10.1.11 has as unique Bangat string superhard corp.”) is
labelled with its evidence name (i.e., [E6]), and has a certain
credibility (not shown in Fig.6). Such facts are used to generate
argumentation structures such as that from Fig.4, as will be
discussed next.

Another component of the hybrid knowledge representation
are the general tree patterns with ontology-based applicability
conditions, such as that shown in Fig.7. The condition
represents the semantics of the tree pattern and the context in
which it can be applied to automatically generate specific tree
structures. In particular, the tree pattern from Fig.7 will
generate the search tree from Fig.3 if its condition is satisfied in
the current situation, where V1 is instantiated to Connection 1,
V2 is instantiated to APT1, and V3 to Bangat. The current
situation is represented by the facts in the ontology from Fig.6.

IV.MIXED-INITIATIVE LEARNING OF APT DETECTION MODELS
Tree patterns, such as that in Fig.7, can be learned from

specific examples of trees defined by cyber security experts, by
employing a multi-strategy learning approach that integrates

certain
very
likely

file system artifacts (F)

m
alw

are attributes (M
)

pe
rs

ist
en

ce
 m

ec
ha

ni
sm

 (P
)

almost
certainlikely

likely

almost
certain

very
likely

STIDS 2015 Proceedings Page 62

several learning strategies including learning from examples,
learning from explanations, and learning by analogy and
experimentation, in a mixed-initiative interaction with the
analyst, as presented in [20 - 24].

In essence, the expert will direct the agent to learn a tree
pattern from a fragment of an argumentation, such as that
shown at the bottom left of Fig.8. Then the agent interacts with
the expert to determine the important features of the instances
from the argument fragment. They include those that link the
instances appearing in the top-level hypothesis (i.e., Bangat and
10.10.1.11) with the instances that appear only in the sub-
hypotheses (i.e., ati.exe 10.10.1.11). Such a feature is “[E3]
ati.exe 10.10.1.11 runs on 10.10.1.11.” These and other
potentially relevant features, such as “[E4] ati.exe 10.10.1.11
made connection Connection 1,” are proposed by the agent and
the relevant ones are selected by the expert. The upper left side
of Fig.8 shows the identified relevant features together with the
superconcepts of the instances in the APT ontology.

Next the agent automatically generates the tree pattern from
the bottom right side of Fig.8. The tree pattern is obtained by
simply replacing each instance (e.g., Bangat) with a variable
(i.e., V1), and by removing the probabilities of the hypotheses.
Direct relevance links, such as certain of “host-based
indicator”, are preserved in the pattern. The relevance of the
combined indicators, such as those under the “host-based
indicator” hypothesis, is generalized to a function.

The agent also automatically generates the applicability
condition of the learned pattern, shown in the upper right side
of Fig.8. Notice however that, instead of a single applicability
condition (such as the one in Fig.7), there is an upper bound
condition and a lower bound condition. They are obtained as
maximal and, respectively, minimal generalizations of the
instances and their important relationships, in the context of the
APT ontology which is used as a generalization hierarchy.

As the agent learns new tree patterns from the cybersecurity
expert, their interaction evolves from a teacher-student
interaction, toward an interaction where they both collaborate
on APT detection. In this case the agent automatically
generates argumentation structures by applying the partially
learned patterns and the expert critiques the reasoning, guiding
the agent in refining its patterns. Correct argument structures
generated by the agent lead to automatic generalization of the
lower bound conditions of the used patterns. Any mistake
identified by the expert leads either to the specialization of the
upper bound condition of the responsible pattern, or to the
addition of an except-when condition (with both an upper
bound and a lower bound). The except-when conditions should
not be satisfied in order for the pattern to be applicable. In time,
the lower and the upper bound conditions of a pattern converge
toward one another and to an exact applicability condition. The
goal is to improve the applicability condition of the pattern so
that it only generates correct argumentation fragments.

Fig.6. Ontology fragment.

10.10.1.11

69.195.129.70

Port 53

Port 11234Connection 1

suspicious

connection

has as

source IP

address

has as source port

has as destination port

has as destination

IP address

maps to

APT1 domain

network port

internal port external port

IPv4 address

IP address

internal IP external IP

APT1

APT group

Bangat

malware

Seasalt

cnndaily.net

hacker group

Corp_wkst_1

workstation

Alpha network

has as IP address

server

computer

has as

subnet
Corporate subnet

has as

computer

network structure

subnet

address

domain address

network

protocol

element

a-jsm.infobusinessus.org

ati.exe 10.10.1.11

made connection

is registered as aWindows

Service with name

runs on

has as unique Bangat string

connection

Bangat MD5 hash

does not have as MD5 hash

physical address

MAC address

iprip

made connection

connection

program domain

range

runs on

IP address

program
domain

range

[E4] [E3]

[E6]

[E5]

[E7]
superhard corp.

STIDS 2015 Proceedings Page 63

V. LEARNING AGENT SHELL
The developed APT detection theory

and associated methods for knowledge
representation, reasoning, and learning
are being used to develop a prototype
learning agent shell whose overall
architecture is presented in Fig.9. This is
a general agent development tool that
contains general reasoning modules for
the three APT detection processes from
Fig.1, modules for development and
refinement of the agent’s ontology,
modules for learning and refining the
detection patterns, as well as modules for
management of evidence, knowledge
bases in the knowledge repository, and
knowledge in knowledge bases. The
learning agent shell will also incorporate
a significant amount of general
cybersecurity expertise for automatic
APT detection into its general
knowledge base, which is applicable in
any CSOC. This includes an ontology, as
well as tree patterns with ontology-based
applicability conditions, for detection of
a wide range of APT activities. The
learning agent shell is used to rapidly
generate a set of agents and their
knowledge bases, all customized to a
specific CSOC. They include a
Hypotheses Generation Agent, several
Automatic Analysis Agents, and several
Mixed-Initiative Analysis Assistants.

The main customization of the
knowledge base consists of populating it
with a representation of CSOC’s
network, including its layout (see the
middle right hand side of Fig.6),
available sensors, operating systems
used, and network security tools used.

The Hypotheses Generation Agent is
a customization of the learning agent
shell centered around the Hypotheses
Generation module. It will generate
hypotheses, such as those from the top
part of Fig.2, from a variety of logs,
network capture sensors, and intrusion
detection devices and systems such as
Bro [11] and Snort [12].

The Automatic Analysis Agents are
all instantiations of the learning agent
shell centered around the Automatic
Analysis module. For each new
generated hypothesis (e.g., “Connection 1
is part of APT1 intrusion using Bangat”),
an instantiation of such an agent is
automatically created to generate analysis
trees such as those in Fig.3 and Fig.4.

Fig.8. Illustration of tree pattern learning.

Connection 1

suspicious
connection

ati.exe 10.10.1.11

made connection
[E4] runs on

[E3]

10.10.1.11

connection

Bangat

malware

IPv4 address

IP address

internal IP

addressprogram

V1 file system
artifacts
present

host-based indicators

V1 malware is present on
the host computer V2

V3 has
V1 attributes

V3 has V1
persistence
mechanism

*

certain

function 3

Upper bound condition
V1 is program
V2 is IP address
V3 is program

made connection V4 [V5]
runs on V2 [V6]

V4 is connection
V5 is evidence
V6 is evidence
Lower bound condition
V1 is malware
V2 is (internal IP, IPv4 address)
V3 is program

made connection V4 [V5]
runs on V2 [V6]

V4 is suspicious connection
V5 is evidence
V6 is evidence

Bangat file system
artifacts present

host-based indicators

Bangat malware is present on
the host computer 10.10.1.11

ati.exe 10.10.1.11
Has Bangat attributes

ati.exe 10.10.1.11 has Bangat
persistence mechanism

*

very likely

certain

very likely

very likely

certain

likely

certain

Fig.7. Tree pattern for evidence collection.

V1 is part of V2 intrusion using V3

malware
attributes

file system
artifacts

network-based indicators host-based indicators

Search the
computer
with IP V5
for the list

of files used
by V3

Search the
computer with

IP V5 for the
attributes of the
program which

used V6 to
communicate
with V7 on V8

at time V9

There is V2 activity
on the V4

V3 malware is present
on the host computer V5

DNS data

Pattern of DNS
resolution

matches TTPs of V2

Usage of other
V2 domains on

the V4

Search V4 DNS
logs for a pattern
of DNS resolution

which matches
TTPs of V2

Search V4 DNS
records for

the domains
associated
with IP V7

Condition
V1 is suspicious connection

has as source IP address V5
has as destination IP address V7
has as source port V6
has as destination port V8
has as time stamp V9

V2 is hacker group
uses as domain V10
uses as malware V3

V3 is malware
V4 is network structure

has as subnet V11
V5 is internal IP
V6 is network port
V7 is external IP

maps to V10
V8 is network port
V9 is time stamp
V10 is domain address
V11 is network structure

has as computer V12
V12 is computer

has as IP address V5

STIDS 2015 Proceedings Page 64

Search requests generated by the Automatic Analysis
Agents (see the bottom of Fig.3) are sent to a Collection
Manager which manages and forwards them to corresponding
Local Collection Agents. It also returns evidence (and its
credibility) found by the collection agents to the corresponding
automatic analysis agents.

Each Mixed-Initiative Analysis Assistant is an instantiation
of the learning agent shell centered around the Mixed-Initiative
Analysis module. It enables a specific CSOC analyst or
operator to access the current state of the detection process in
the form of a list of hypotheses of interest and their partial
analyses. It also collaborates with the analyst who may update
any of the analyses, provide additional evidence, or make
several assumptions when no evidence is found. In the case of a
new type of attack, the analyst and the mixed-initiative
assistant can develop together an analysis tree from which new
detection patterns are learned.

VI.CONCLUSIONS
We have presented current work on developing a semantic

theory of cyber defense against advanced persistent threats, and
using it to develop collaborative cognitive agents that generate
defensible and persuasive analyses which show very clearly the
argumentation logic, what evidence was used, and how. Such
agents are integrated in cybersecurity operations centers to
improve both the speed and the quality of the performed
analyses, and to significantly increase the probability of
accurately detecting intrusion activity while drastically
reducing the workload of the CSOC operators. Moreover, this
approach is developed to enable continuous learning from
cybersecurity experts, based on evolving threat intelligence, to
cope with new threats, thus providing high defense agility to
the CSOC.

REFERENCES
[1] Mandiant Intelligence. 2013. APT1: Exposing one of China’s cyber

espionage units, Mandiant.com.
[2] FireEye. 2015. APT30 and the Mechanics of a Long-running Cyber

Espionage Operation, FireEye, April.
[3] Mila. 2013. Mandiant APT1 samples categorized by malware families,

contagio, 03 March.

[4] Stewart J. 2003a. Sobig.a and the Spam You Received Today,
joestewart.org, 08 Jul. http://www.joestewart.org/sobig.html, Accessed:
15 May 2015.

[5] Stewart J. 2003b. Sobig.e - Evolution of the Worm, joestewart.org, 08-
Jul-2003. http://www.joestewart.org/sobig-e.html, Accessed: 15 May
2015.

[6] Zimmerman C. 2014. Ten Strategies of a World-Class Cybersecurity
Operations Center. MITRE Corporation.

[7] Tecuci G., Marcu D., Boicu M., Schum D.A., Russell K. 2011.
Computational Theory and Cognitive Assistant for Intelligence Analysis,
in Proceedings of the Sixth International Conference on Semantic
Technologies for Intelligence, Defense, and Security – STIDS, pp. 68-75,
Fairfax, VA, 16-18 November.

[8] Tecuci G., Schum D.A., Marcu D., Boicu M. 2014. Computational
Approach and Cognitive Assistant for Evidence-Based Reasoning in
Intelligence Analysis, International Journal of Intelligent Defence
Support Systems, 5(2):146–172.

[9] Tecuci G., Schum D.A., Marcu D., Boicu M. 2015. Intelligence Analysis
as Discovery of Evidence, Hypotheses, and Arguments: Connecting the
Dots, Cambridge University Press, to appear.

[10] Tecuci G., Marcu D., Boicu M., Schum D. 2015. COGENT: Cognitive
Agent for Cogent Analysis. In the Proceedings of the 2015 AAAI Fall
Symposium “Cognitive Assistance in Government and Public Sector
Applications”, Arlington, VA, November.

[11] Bro home page http://www.bro-ids.org .
[12] Snort homepage https://www.snort.org/
[13] Schum D. A. 2001. The Evidential Foundations of Probabilistic

Reasoning, Northwestern University Press.
[14] Cohen L. J. 1977. The Probable and the Provable, Clarendon Press,

Oxford.
[15] Cohen L. J. 1989. An Introduction to the Philosophy of Induction and

Probability, Clarendon Press, Oxford.
[16] Zadeh L. 1983. The Role of Fuzzy Logic in the Management of

Uncertainty in Expert Systems. Fuzzy Sets and Systems, 11:199-227.
[17] W3C. 2004. http://www.w3.org/TR/rdf-schema/
[18] Allemang D. and Hendler J. 2011. Semantic Web for the Working

Ontologist: Effective Modeling in RDFS and Owl, Morgan Kaufmann
Publishers.

[19] Tecuci G., Boicu M., Ayers C., Cammons D. 2005. Personal Cognitive
Assistants for Military Intelligence Analysis: Mixed-Initiative Learning,
Tutoring, and Problem Solving. In Proceedings of the 1st International
Conference on Intelligence Analysis, McLean, VA, 2-6 May.

[20] Tecuci G., Boicu M., Marcu D., Stanescu B., Boicu C., Comello J.,
Lopez A., Donlon J., Cleckner W. 2002. Development and Deployment
of a Disciple Agent for Center of Gravity Analysis. In Proceedings of
the Eighteenth National Conference of Artificial Intelligence and the
Fourteenth Conference on Innovative Applications of Artificial
Intelligence, AAAI-02/IAAI-02, pp. 853 - 860, Edmonton, Alberta,
Canada, AAAI Press/The MIT Press.

[21] Tecuci G. Boicu M. Boicu C. Marcu D. Stanescu B. Barbulescu M.
2005. The Disciple-RKF Learning and Reasoning Agent, Computational
Intelligence, 21(4):462-479.

[22] Tecuci G., Boicu M., Marcu D., Boicu C., Barbulescu M., Ayers C.,
Cammons D. 2007. Cognitive Assistants for Analysts, Journal of
Intelligence Community Research and Development. Also in Auger J.
and Wimbish W. eds. Proteus Futures Digest, pp.303-329, Joint
publication of National Intelligence University, Office of the Director of
National Intelligence, and US Army War College Center for Strategic
Leadership.

[23] Tecuci, G., Boicu, M., Cox, M. T. 2007. Seven Aspects of Mixed-
Initiative Reasoning: An Introduction to the Special Issue on Mixed-
Initiative Assistants, AI Magazine, 28(2):11-18, Summer.

[24] Tecuci G., Marcu D., Boicu M., Schum D.A. 2015. Knowledge
Engineering: Building Personal Learning Assistants for Evidence-based
Reasoning, Cambridge Univ Press (to appear).

Fig.9. Learning agent shell for APT detection.

Knowledge Base Transactional Access

Asynchronous Message-Based Interaction

Repository
Management

Mixed-
Initiative
Analysis

Ontology
Development

Gr
ap

hi
ca

l U
se

r I
nt

er
fa

ce

Knowledge
Management

Hypotheses
Generation

Automatic
Analysis

Automatic
Collection

Pattern
Learning and
Refinement

Evidence
Management

Ontology
and

Detection
Patterns

General
Knowledge

Base

STIDS 2015 Proceedings Page 65

http://www.joestewart.org/sobig.html
http://www.joestewart.org/sobig-e.html
http://www.bro-ids.org/
https://www.snort.org/
http://www.w3.org/TR/rdf-schema/

