
Submitted to:
TTC 2015

Solving the TTC’15 Train Benchmark Case Study with
SIGMA

Filip Křikava
Faculty of Information Technology

Czech Technical University, Czech Republic
filip.krikava@fit.cvut.cz

This paper describes a solution for the Transformation Tool Contest 2015 (TTC’15) Train
Benchmark case study using SIGMA, a family of Scala internal Domain-Specific Languages

(DSLs) that provides an expressive and efficient API for model consistency checking and
model transformations.

1 Introduction

The purpose of the TTC’15 Train Benchmark case study [3] is to systematically assess the scal-
ability of consistency checking and repair of large scale models. It presents a scenario from the
railway domain for which the solution requires to implement 5 constraints and repair operations
of increasing complexity. An associated framework is then used to evaluate the correctness and
performance of the solutions over large model instances.

In this paper we present our solution using SIGMA [1], a family of Scala1 internal DSLs for
model manipulation tasks such as model validation, model to model (M2M), and model to text
(M2T) transformations. Scala is a statically typed production-ready General-Purpose Language

(GPL) that supports both object-oriented and functional styles of programming. It uses type infer-
ence to combine static type safety with a “look and feel” close to dynamically typed languages.
Furthermore, it is supported by the major integrated development environments bringing EMF
modeling to other IDEs than traditionally Eclipse (e.g. IntelliJ IDEA was used for this solution).

SIGMA DSLs are embedded in Scala as a library allowing one to manipulate models using
high-level constructs similar to the ones found in the external model manipulation DSLs. The
intent is to provide an approach that developers can use to implement many of the practical model
manipulations within a familiar environment, with a reduced learning overhead as well as improved
usability and performance.

The solution is based on the Eclipse Modeling Framework (EMF) [2], which is a popular meta-
modeling framework widely used in both academia and industry, and which is directly supported
by SIGMA. The complete source code is available on Github2 in the fork of the original case study
repository.

1http://scala-lang.org
2https://github.com/fikovnik/trainbenchmark-ttc in the hu.bme.mit.trainbenchmark.

ttc.benchmark.sigma module

mailto:filip.krikava@fit.cvut.cz
http://scala-lang.org
https://github.com/fikovnik/trainbenchmark-ttc


2 Solving the TTC’15 Train Benchmark Case Study with SIGMA

2 Solution Description

The solution for this transformation case study consist of a set of queries that check for violations
of a number of model constrains and repair transformations that in turn fixes them. SIGMA pro-
vides a dedicated model consistency checking DSL with the ability to provide quick fixes repairing
invariant validations. However, given the benchmark framework used in the case study, we decided
to provide a more dedicated support for the given query/repair tasks in a form of an internal DSL.
The reason is that (1) it allows for an easy comparison between the reference implementations in
Java and EMF-IncQuery and (2) it shows the expressiveness of the language allowing one in few
lines of code to bridge the gap between the problem-level abstractions (query, repair transforma-
tion) and the implementation-level concepts (e.g., classes, higher-order functions). We therefore
only rely on the SIGMA operations for model navigation (i.e. projecting information from models)
and modification (i.e. changing model properties or elements). Essentially, these operations bridge
the model classes (Ecore classes in this case) to be compatible with Scala allowing for example
one to use the powerful Scala collection library.

On the top of SIGMA, we have created a small internal DSL that allows us to solve the given
benchmark cases in an expressive and compact way. Following the case study description, the
top-level domain concept is a constraint. A constraint is composed of a model query that finds
all model instances violating a certain model restriction and a repair transformation correcting the
failed instances. Concretely, a query is a function that given a model element—i.e. a context of
the constraint in the classical model consistency checking—returns a set of matches. A match can
either be a single instance or a tuple of instances of model elements that are related to the violations.

The following description of the solution is split in two parts: (1) the core part that describes
the queries and repair transformations, (2) the integration part gives an overview how it has been
integrated in the case study source code.

2.1 Queries and Repair Transformations DSL

A typical way of creating an internal DSL in Scala is by designing a library that allows one to write
fragments of code with domain-specific syntax. These fragments are woven within Scala’s own
syntax so that it appears different.

One way to represent the above concepts is using a Scala case class:

1 case class Constraint[A <: EObject, B <: AnyRef](
2 query: (A) => Iterable[B],
3 repair: (B) => Unit
4 )

This defines a case class with a field for both query and repair. A case class in Scala is like a
regular class with some additional properties out which, in our case, the important one is that
it can be instantiated without the new keyword and thus limiting the language noise. The two
type parameters A, B specify the model context for the query and the types of matches the query
produces. The input type is further constrained to be a subtype of an EObject. The query and
repair are defined as functions A! Iterable[B] and B! Unit where Unit is like void in
Java.



F. K

ˇ

rikava 3

In some cases the match returned by the query is of the same type as the query context. The
query can be therefore simplified to a boolean expression selecting instances on which it evaluates
to true. For these types of queries we provide a dedicated construct called BooleanConstraint:

1 case class BooleanConstraint[A <: EObject : ClassTag](
2 query: (A) => Boolean,
3 repair: (A) => Unit
4 )

For example, the first query, PosLength, which finds all the segments with negative length can
be written as:

1 BooleanConstraint[Segment](
2 query = segment => segment.length < 0,
3 repair = segment => segment.length += -segment.length + 1
4 )

We do not have to specify the types of the parameter nor the result as they will be inferred by the
Scala compiler.

Another example using more complex expression is the SwitchSet constraint:

1 Constraint[SwitchPosition, (Semaphore, Route, SwitchPosition, Switch)](
2 query = swP => {
3 for {
4 semaphore <- Option(swP.route.entry) if semaphore.signal == Signal.GO
5 sw = swP.switch if sw.currentPosition != swP.position
6 } yield (semaphore, swP.route, swP, sw)
7 },
8
9 repair = {

10 case (_, _, swP, sw) => sw.currentPosition = swP.position
11 }
12 )

This is a more complex constraint that matches a tuple of model elements. It is using a for com-

prehension, a lightweight notation for expressing sequence comprehensions3. Scala for compre-
hensions have the form for (enumerators) yield e, where enumerators refers to a list of
enumerators. An enumerator is either a generator which introduces new variables, or it is a filter.
A comprehension evaluates the body e for each binding generated by the enumerators and returns
a sequence of these values.

In this concrete example, the generator is the optional value of the Route.entry reference.
It either generates a single value in the case the actual instance contains one or it does not produce
anything. There is a small inconsistency in the model, the Route.entry should have the cardi-
nality set to 0..1 instead of 1, and that is why we need to explicitly convert the reference to an
Option.

Finally, the repair function is defined using a pattern matching construct allowing us to con-
cisely assign variables from the matching tuple.

3http://docs.scala-lang.org/tutorials/tour/sequence-comprehensions.html

http://docs.scala-lang.org/tutorials/tour/sequence-comprehensions.html


4 Solving the TTC’15 Train Benchmark Case Study with SIGMA

2.2 Operationalization and Integration

The integration consists in making our solution work within the provided benchmark framework.
First, next to constraint syntax, we also need to define its semantics. For that we define a validator
which operationalizes the DSL executing the checks and consequent repairs of the incorrect model
instances. It is defined as an abstract class with two methods that correspond to the two operations:

1 abstract class Validator[A <: EObject, B <: AnyRef] {
2 def check(container: EObject): Iterator[B]
3 def repair(matches: Iterator[B]): Unit
4 }

The implementation is straight forward. For all elements contained in a container, we first
collect all instances of the required context type and then query them using the query function
provided by the given constraint. The repair simply executes the constraint repair function on the
matching element.

1 case class ConstraintValidator[A <: EObject, B <: AnyRef](constraint: Constraint[A, B])
2 extends Validator[A, B] {
3
4 override def check(container: EObject) =
5 container.eAllContents collect { case x: A => x } flatMap constraint.query
6
7 override def repair(matches: Iterator[B]) =
8 matches foreach constraint.repair
9 }

Finally, we instantiate all the constraints, plugs them into the validator and connects the result
to the provided framework. The integration schema is shown in Appendix B. We also create a
SigmaBenchmarkComparator that is used to compare the matches as required by the case
study. It is a general comparator that either compares single instances (results from boolean con-
straints violations) or tuples (regular constraints violations).

3 Evaluation

In this section we provide an evaluation of our solution following the categories specified in the
case study.

Correctness and Completeness of Model Queries and Transformations. We developed a solu-
tion for all of the tasks required by the case study and the solution passes the provided tests.

Conciseness. The solution itself consists of 52 lines of Scala code the internal DSL developed for
this case study. The DSL itself has been implemented using 20 lines of Scala code using SIGMA.
The integration part consists of three files with the total of 65 lines. All measures are source lines
only excluding comments and new lines. Given these measures, we believe that the code is rather
concise.

Readability. Next to being concise, the solution is also quite expressive. This means that the
given problem (queries and repair transformations) naturally maps into the implementation. The
higher-level abstraction provided by both SIGMA and the internal DSLs helps to facilitate it making



F. K

ˇ

rikava 5

a significant improvement over the Java reference implementation. The code is also type-safe as
Scala is statically typed language. A notable consequence is that it is very easy to use the DSL with
an IDE like Eclipse or IntelliJ that provides a robust code completing functionalities, outline views
and other features increasing one’s productivity.

In summary, while readability is a subjective matter and largely depends on the background
and experience of users, we believe that SIGMA scores well. Thanks to the syntax of Scala which
is close to one of Java/C++ and hence shall be familiar to many developers. The expressiveness of
the first-order logic collection operation should be familiar to anyone knowing OCL or any other
function language.

Performance on Large Models. The tests have been performed on an 2.3 GHz Intel Core i7 ma-
chine with 16 GB of RAM being dedicated to the JVM process. We ran our solution together with
the reference implementation in Java. We used the model instances from size 1 to 8192 and set 8GB
memory to be dedicated to the JVM. The performance is similar to the Java reference implementa-
tion which has been expected due to the fact that Scala compiles directly to Java bytecode and we
use the same underlying libraries for accessing EMF models. This shows that we can leverage from
concise and expressive queries without sacrificing performance. The overhead of using SIGMA is
mostly on the compile time where the implicit conversions are inlined by the Scala compiler.

It is important to note that we do not developed any extra functionality for these benchmarks—
i.e. no caching or incremental validations. On the other hand, functional approach we have selected
makes it perfect for further parallelization.

4 Conclusion

This paper presents a solution for the Train Benchmark case study of the 2015 Transformation Tool
Contest. It demonstrates some of the features of the SIGMA internal DSLs for model manipulation
as well as the extensibility, expressiveness and scalability of the Scala host language. The solu-
tion is realized as a tiny internal DSL in Scala that mixes in SIGMA common infrastructure for
EMF model querying and manipulation. There is a significant improvement in the readability and
conciseness of the solution, yet the performance is similar to the reference Java version.

Acknowledgments. This work is partially supported by the Datalyse project4.

References
[1] Filip Krikava, Philippe Collet & Robert France (2014): SIGMA: Scala Internal Domain-Specific Lan-

guages for Model Manipulations. In: Proceedings of 17th International Conference on Model-Driven

Engineering Languages and Systems, MODELS, Valencia.
[2] Dave Steinberg, Frank Budinsky, Marcelo Paternostro & Ed Merks (2008): EMF: Eclipse Modeling

Framework (2nd Edition). Addison-Wesley Professional.
[3] Gábor Szárnyas, Oszkár Semeráth, István Ráth & Dániel Varró (2015): The TTC 2015 Train Benchmark

Case for Incremental Model Validation*. In: Transformation Tool Contest 2015.

4http://www.datalyse.fr

http://www.datalyse.fr


6 Solving the TTC’15 Train Benchmark Case Study with SIGMA

A Constraints

In the following we describe the individual constraints that were part of the case study (case study
tasks) except the PosLength and SwitchSet which have already been shown above (cf. Section 2).

— SwitchSensor

1 BooleanConstraint[Switch](
2 query = switch => switch.sensor.isEmpty,
3 repair = switch => switch.sensor = Sensor()
4 )

The isEmpty is a method that is defined on an Option type (coming from the standard Scala
library) representing a type which may or may not have a value. Since in the model, the sensor

reference of the Switch class is defined as optional (with cardinality 0..1), in SIGMA we
represent the reference using the Option class. Not only makes this the cardinality expressed
in the type definition, but it also prevents some of the NullPointerExceptions caused by
traversing unset references. Technically, this is realized by implicit conversions (cf. Krikava et

al. [1]).

— RouteSensor

1 Constraint[Route, (Route, Sensor, SwitchPosition, Switch)](
2 query = route => {
3 for {
4 swP <- route.follows
5 sw = swP.switch
6 sensor <- sw.sensor if !(route.definedBy contains sensor)
7 } yield (route, sensor, swP, sw)
8 },
9

10 repair = {
11 case (route, sensor, _, _) => route.definedBy += sensor
12 }
13 )

The implementation is similar to the the previous case. It is also based on a for comprehension
and closely follows the description of the query.

— SemaphoreNeighbor

1 Constraint[Route, (Semaphore, Route, Route, Sensor, Sensor, TrackElement, TrackElement)](
2 query = route1 => {
3 for {
4 sensor1 <- route1.definedBy if route1.exit != null
5 te1 <- sensor1.elements
6 te2 <- te1.connectsTo
7 sensor2 <- te2.sensor
8 route2 <- sensor2.sContainer[Route] if route1 != route2
9 semaphore = route1.exit if semaphore != route2.entry

10 } yield (semaphore, route1, route2, sensor1, sensor2, te1, te2)
11 },
12
13 repair = {
14 case (semaphore, _, route2, _, _, _, _) => route2.entry = semaphore
15 }
16 )



F. K

ˇ

rikava 7

Again based on the for comprehension. Additionally, we provide a shortcut using the route1.exit
!= null so immediately skip the route instances that do not have an exit semaphore set.

B Integration with the Train Benchmark Framework

Figure 1 shows the various layers of integration of the solution into the train benchmark framework.

+ query: A => Boolean
+ repair: A => Unit

BooleanConstraint
+ query: A => Iterable[B]
+ repair: B => Unit

Constraint
A,BA

Validator
A

ConstraintValidator BooleanConstraintValidator

SigmaBenchmark

EMFBenchmark

11

1validator

+ check(container: Object): Iterator[A]
+ repair(matches: Iterator[A]): Unit

constraint constraint

PosLength: BooleanConstraint
SwitchSensor: BooleanConstraint

SwitchSet: Constraint
RouteSensor: Constraint

SemaphoreNeighbor: Constraint

SigmaBenchmarkComparator

uses

Solution

DSL

Plumbing code

Train benchmark

Figure 1: Integration schema

C Performance Comparison

The performance comparison charts (cf. Figures 2, 3, 4 and 5) have been generated by the case
study benchmark. They present a performance comparison between SIGMA and the reference
implementation in Java on the model instances from size 1 to 8192 using 8GB memory dedicated
to the JVM. The corresponding results are shown in the figures 2 and 3. We compare them to the
Java solution which is shown in the figures 4 and 5.



8 Solving the TTC’15 Train Benchmark Case Study with SIGMA

● ●
●

●
●

●

●

●

●

●

●

●

●

●

221.09

523.91

1241.49

2941.89

6971.22

16519.31

39144.85

92759.28

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

Sigma, fixed, Function: read+check (Y: Log2) (X: Log2)

Figure 2: SIGMA fixed validation batch

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8.38

27.93

93.11

310.44

1035.04

3451

11506.22

38363.63

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

Sigma, fixed, Function: repair+recheck (Y: Log2) (X: Log2)

Figure 3: SIGMA fixed revalidation



F. K

ˇ

rikava 9

● ●
●

●
●

●

●

●

●

●

●

●

●

●

205.83

493.26

1182.08

2832.78

6788.61

16268.51

38986.54

93429

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

Java, fixed, Function: read+check (Y: Log2) (X: Log2)

Figure 4: Java fixed validation batch

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5.14

16.83

55.13

180.61

591.71

1938.57

6351.22

20808.05

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

Java, fixed, Function: repair+recheck (Y: Log2) (X: Log2)

Figure 5: Java fixed revalidation


	1 Introduction
	2 Solution Description
	2.1 Queries and Repair Transformations DSL
	2.2 Operationalization and Integration

	3 Evaluation
	4 Conclusion
	A Constraints
	B Integration with the Train Benchmark Framework
	C Performance Comparison

